Request of the EU Commission
for an Opinion on the science behind the development
 of a risk assessment of PPPs on bees (Apis mellifera
             Bombus spp. and solitary bees)
     and to prepare an EFSA Guidance on the risk
              assessment of PPPs on bees.


      ECPA-IBMA workshop – EFSA evaluation of PPPs
                     26 April 2012                      1
Bee mandate M-2011-0185


• EFSA-Q-2011-00417: Scientific Opinion on the science behind the
  development of a Risk Assessment of Plant Protection Products on
  bees (Apis mellifera, Bombus spp. and solitary bees).

• EFSA-Q-2011-00418: Guidance Document on the Risk Assessment
  of Plant Protection Products on bees (including Apis mellifera,
  Bombus spp. and solitary bees).

• EFSA-Q-2011-00794: Public consultation on the draft Guidance
  Document on the Risk Assessment of Plant Protection Products on
  bees (including Apis mellifera, Bombus spp. and solitary bees).


                                                                     2
Bee mandate M-2011-0185
Composition of the working group:
•    4 members of PPR Panel (expertise in pesticide risk assessment,
     uncertainty analysis, fate and behaviour of pesticides, probabilistic risk
     asessment)

•    4 experts in honeybee biology (one beekeeper) (expertise in all aspects
     of honeybee biology, test methods, exposure, monitoring)

•    2 experts in bumblebee and solitary bee biology (expertise in all aspects
     of non-Apis bee biology, monitoring, test methods)
•    1 hearing expert from Industry (only invited to give information to the
     group but no active involvement)

•    4 EFSA staff members (expertise in pesticide risk assessment, bee
     biology/behaviour, toxicology)

                                                                                  3
Bee mandate M-2011-0185
Terms of reference:
•    The Guidance Document should address the risk to Apis mellifera,
     Bombus spp and to solitary bees.

•    The assessment of the acute and chronic effects of Plant Protection
     Products on bees, including the colony survival and development.

•    The estimation of the long term effects due to exposure to low
     concentrations.

•    The development of a methodology to take into account cumulative and
     synergistic effects.

•    The evaluation of the existing validated test protocols and the possible
     need to develop new protocols, especially to take into account the
     exposure of bees to pesticides through nectar and pollen.


                                                                                4
Bee mandate M-2011-0185

Chapters of the opinion:

1.   Introduction
2.   Specific protection goals
3.   Exposure
4.   Chronic toxicity of pesticides in bees after continuous
     exposure at low (sub-lethal) doses
5.   The evaluation of the existing test protocols for honeybees,
     social non-Apis (bumblebees) and solitary bees
     (laboratory/semi-field/field)
6.   How to take into account cumulative and synergistic effects
7.   Risk assessment for honeybees, bumblebees and solitary
     bees
8.   Conclusions and recommendations                                5
Bee mandate M-2011-0185

Chapter 2: Specific protection goals (SPG)

Follows the approach outlined in the Scientific Opinion of EFSA (2010) on
the definition of specific protection goals.
Ecosystem services to protect:
1. Pollination
2. Food production (hive products)
3. Genetic resources and cultural services (education, aesthetic, recreation)

Ecological entity:
Apis mellifera: colony for all SPGs, foragers for pollination
Non-Apis – population (colonies for bumblebees)



                                                                                6
Bee mandate M-2011-0185
Chapter 2: Specific protection goals (SPGs)

Attributes to protect:
EU regulation (EC) No 1107/2009 lists acute and chronic effects on the
survival and development of colonies and effects on larvae and honey bee
behaviour as attributes to protect. It is suggested to include also
abundance/biomass and reproduction because they are important for long-term
survival of the colony.

Magnitude of effects:
Small effects on foragers in field (in the range of days), negligible effects off-
field, negligible effects on colonies (at the field edge).

Exposure assessment goals:
The overall level of protection includes also the exposure assessment goal.

                                                                                     7
WG Bee risk assessment
Chapter 2: Specific protection goals (SPGs)

Exposure assessment goals:

Consider each of the regulatory zones as the total area for all SPGs.

Focus on the field scale to avoid “dilution” of the spatial population with a large
fraction of e.g. unexposed hives.

95th percentile of the spatio-temporal concentration distribution is used as a
working hypothesis (90th percentiles were accepted in the past but may not be
conservative enough).




                                                                                      8
WG Bee risk assessment
Chapter 2: Specific protection goals (SPGs)

Exposure assessment goals:

Current risk assessment relies on HQ approach and semi-field and field tests.
Difficult to ascertain that a specific exposure percentile is achieved. Flow chart
for checking whether exposure in semi-field or field study was higher than the
corresponding 95th percentile. These main factors could include:

• Crop and development stage in study in relation to agricultural reality
• Dosage in study and in reality
• Measures taken in the study to ensure exposure
• Location and weather conditions in the study compared to zone for which the
risk assessment is carried out
• Generation of guttation water in the study compared to reality

                                                                                     9
Bee mandate M-2011-0185

Chapter 3: Exposure
Major exposure routes (oral, contact, inhalation) were identified for honeybees,
bumblebees and solitary bees for sprayed, non-sprayed (systemic and non-
systemic) substances and for soil fumigants.

Information was collected on consumption of nectar, pollen, water,
interception of droplets of different life stages of honeybees (foragers, wax
producing bees, nurse bees, winter bees, drones queens, swarms, larvae),
bumblebees (workers, drones, queens, larvae) and solitary bees (adult male, adult
female, larvae).

Information was collected on residues in nectar, pollen, water, honey, bee
bread, nesting material (wax, propolis, resins), soil and plant surfaces.

Based on the information retrieved and expert judgement the most exposed
categories of bees were identified by expert judgement.
                                                                             10
Bee mandate M-2011-0185
Chapter 3: Exposure

Honeybees:
Foraging bees, winter bees and larvae were most exposed via the oral route.
Larvae were most exposed to residues in wax and foragers, drones, queens and
swarms were most exposed to interception of droplets and vapour (contact and
inhalation exposure).

Bumblebees:
Workers, queens and larvae were most exposed via oral route and also via
contact and inhalation (nest in soil).

Solitary bees:
Adult females and larvae were most exposed via oral route. Adult and larvae
show maximum exposure to soil and foliar residues (nesting material).

                                                                              11
Bee mandate M-2011-0185
Chapter 3: Exposure


Water consumption was unknown and therefore it was not possible to give an
estimate on the relative importance of exposure to residues in water.

A potential high exposure to guttation droplets was highlighted for certain
crops (e.g. maize). The potential risk to bees depends on the distance between
the colony and the crop and the availability of alternative sources of water and
the frequency (e.g. the risk could be high if a crop is treated with a highly bee
toxic compound, the crop shows guttation activity frequently and the colony is
close to the crop).




                                                                                12
Bee mandate M-2011-0185
Chapter 3: Exposure


Dust drift can lead to relevant exposure during sowing of treated seeds or
application of granular formulations due to deposition of dust particles on the
soil in the field, soil and plants outside the field, on puddles in the field,
interception of particles by flying bees, particles entering the hive via air
exchange.

The level of exposure of bees is extremely variable and depends on the quality
of the seed dressing (abrasion), machinery used, number of seeds per ha, time of
sowing, size of the sown area, the vegetation in the margin of the field and on the
meteorological conditions.




                                                                                 13
Bee mandate M-2011-0185

Chapter 4: Chronic toxicity of pesticides in bees after
continuous exposure at low (sub-lethal) doses

Concerns were raised that biologically persistent toxins will have cumulative
effects that are disproportionate to their short-term manifestations.

The conventional regulatory tests are likely to be unsuited to assess the risks of
long-term exposures because they are short-term (48-96 h), which means that
they could fail to detect the true potential for harm.

A new method is proposed to detect cumulative toxicity based on Haber`s
law.



                                                                                     14
Bee mandate M-2011-0185
Chapter 4: Chronic toxicity of pesticides in bees after
continuous exposure at low (sub-lethal) doses

Overview on the available studies on low doses and long-term effects of
pesticides on bees highlighted gaps in knowledge and future research needs.

For honeybees, more studies are required on a wider range of pesticides, on
larvae, on both low-doses and long-term effects (most studies deal with low
dose only), on exposure through contact and inhalation (most studies deal with
oral exposure), in field conditions (most studies are conducted under laboratory
conditions) and more studies are needed on endpoints such as biochemical and
neurophysiological effects, fecundity and longevity.

For non-Apis bees, few studies are available in literature and they involved only
few species. The use of micro-colonies in bumblebees appears to be well-suited
to measure lethal and sublethal effects of pesticides with low doses and long-
term effects.                                                                       15
Bee mandate M-2011-0185

Chapter 5: The evaluation of the existing test protocols

Laboratory tests
Oral and contact exposure of adult bees following OECD 213 and 214 guidelines.

Intermittent and prolonged exposure of adults and larvae testing is not included.

It is recommended in the first tier to include chronic testing of adult bees, a
laboratory test on larval toxicity test and precise observations of sublethal
effects (to be included in future risk assessment).




                                                                                    16
Bee mandate M-2011-0185
Chapter 5: The evaluation of the existing test protocols

Semi-field tests
Semi-field testing follows the test guidelines of EPPO 170(4), OECD 75 (bee
brood) and Oomen et al. (1992) test (bee brood).

Several weaknesses were identified for each of the guidelines, e.g. the limited
size of crop area, limited duration of the studies (one brood cycle), difficult to
extrapolate results to larger colony sizes.

It is recommended to include a more detailed assessment of behavioural
effects, investigation of sublethal and delayed effects and to develop methods
to investigate in particular systemic compounds including exposure to dust and
guttation droplets. Results should be analysed with appropriate statistical
methods.

                                                                                     17
Bee mandate M-2011-0185
Chapter 5: The evaluation of the existing test protocols

Field tests for honeybees
Field testing follows the guidelines of EPPO 170.

Several weaknesses were identified such as the small distance between the hives
and the treated fields, the low surface of the test field, uncertainties with regard to
the real exposure of honeybees. Not enough replicates to conduct a statistical
analysis.

It is recommended to develop guidelines adapted to the specific application of
a substance (e.g. also covering all important exposure routes for seed treatments)
and to investigate different effects e.g. homing flight, orientation, foraging
behaviour. The health status of the colonies needs to be assessed, increased
distance between controls and test fields, test design should allow statistical
analysis.
                                                                                      18
Bee mandate M-2011-0185

Chapter 6: How to take into account of cumulative and
synergistic effects

This chapter aims to review the evidence of cumulative and synergistic effects of
pesticide mixtures in bees and to develop recommendations for risk assessment
purposes.

At low levels of exposure concentration addition has been observed more often
than synergistic or antagonistic effects for mixtures of pesticides with a common
mode of action.

Independent action (response addition) has been observed for compounds with a
different mode of action.



                                                                                    19
Bee mandate M-2011-0185


Chapter 6: How to take into account of cumulative and
synergistic effects

The mechanism of synergistic effects involve inhibition or induction of either
detoxification enzymes (cytochrome P-450) or transporters which then
enhancing the toxicity of the mixture.

From available literature there is an indication that deviations from
concentration addition, such as synergy is rarely more than a factor of 2 to 3.




                                                                                  20
Bee mandate M-2011-0185
Chapter 7: How to take into account of cumulative and
synergistic effects

In the case of synergism which can be predicted based on the mode of action of
the chemicals involved (e.g. EBI fungicides and insecticides) and in the absence
of data on the toxicity of the mixture it is recommended to design full dose-
response studies in adult bees and larvae for these mixtures of potential
synergists to provide a basis to derive benchmark doses and their limit as
suggested by EFSA`s scientific committee.

There is growing evidence that there are interactions between bee diseases and
pesticide effects. Further work is required to identify the molecular basis of
interactions between environmentally realistic exposure to pesticides and the
range of honeybee diseases to determine whether and how these may be included
in the risk assessment.

                                                                                 21
Bee mandate M-2011-0185

Chapter 7: Risk assessment for honeybees, bumblebees and
solitary bees

Two new risk assessment schemes are proposed, one for honeybees and one for
bumblebees and solitary bees.

The most important exposure routes are covered:
Exposure of foragers by spray or dust by contact or oral intake, exposure of
all adult bees and larvae from exposure to residues in pollen, nectar or
guttation droplets.

Toxicity testing over longer exposure period for adult bees and larvae is
included in the first tier.

Investigation of cumulative effects.
                                                                               22
Bee mandate M-2011-0185

Chapter 7: Risk assessment for honeybees, bumblebees and
solitary bees

A 7 day laboratory larvae test (Aupinel) is always required. The Oomen test is
required if the LD50 for adult bees is below 100 µg/bee or the laboratory larvae
test gives an indication of cumulative toxicity. The Oomen test integrates brood
care behaviour of adult bees. The lower endpoint of both tests should be used in
the scheme.

The scheme for bumblebees and solitary bees is based on less well defined
steps and toxicity tests. The scheme uses data for honey bees as a surrogate
input. The development of standardized contact and oral toxicity test, semi field
and field tests for bumblebees and solitary bees has yet to be completed and ring
tested.

                                                                                    23
Bee mandate M-2011-0185


Timelines:

Opinion to be issued by April 2012

Guidance Document to be issued by December 2012

Public consultation on draft GD:
July 2012 – September 2012



                                                  24
Bee mandate M-2011-0185


Thank you for your attention!




           Questions

                                25

Franz Streissl - Bee risk assessment

  • 1.
    Request of theEU Commission for an Opinion on the science behind the development of a risk assessment of PPPs on bees (Apis mellifera Bombus spp. and solitary bees) and to prepare an EFSA Guidance on the risk assessment of PPPs on bees. ECPA-IBMA workshop – EFSA evaluation of PPPs 26 April 2012 1
  • 2.
    Bee mandate M-2011-0185 •EFSA-Q-2011-00417: Scientific Opinion on the science behind the development of a Risk Assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees). • EFSA-Q-2011-00418: Guidance Document on the Risk Assessment of Plant Protection Products on bees (including Apis mellifera, Bombus spp. and solitary bees). • EFSA-Q-2011-00794: Public consultation on the draft Guidance Document on the Risk Assessment of Plant Protection Products on bees (including Apis mellifera, Bombus spp. and solitary bees). 2
  • 3.
    Bee mandate M-2011-0185 Compositionof the working group: • 4 members of PPR Panel (expertise in pesticide risk assessment, uncertainty analysis, fate and behaviour of pesticides, probabilistic risk asessment) • 4 experts in honeybee biology (one beekeeper) (expertise in all aspects of honeybee biology, test methods, exposure, monitoring) • 2 experts in bumblebee and solitary bee biology (expertise in all aspects of non-Apis bee biology, monitoring, test methods) • 1 hearing expert from Industry (only invited to give information to the group but no active involvement) • 4 EFSA staff members (expertise in pesticide risk assessment, bee biology/behaviour, toxicology) 3
  • 4.
    Bee mandate M-2011-0185 Termsof reference: • The Guidance Document should address the risk to Apis mellifera, Bombus spp and to solitary bees. • The assessment of the acute and chronic effects of Plant Protection Products on bees, including the colony survival and development. • The estimation of the long term effects due to exposure to low concentrations. • The development of a methodology to take into account cumulative and synergistic effects. • The evaluation of the existing validated test protocols and the possible need to develop new protocols, especially to take into account the exposure of bees to pesticides through nectar and pollen. 4
  • 5.
    Bee mandate M-2011-0185 Chaptersof the opinion: 1. Introduction 2. Specific protection goals 3. Exposure 4. Chronic toxicity of pesticides in bees after continuous exposure at low (sub-lethal) doses 5. The evaluation of the existing test protocols for honeybees, social non-Apis (bumblebees) and solitary bees (laboratory/semi-field/field) 6. How to take into account cumulative and synergistic effects 7. Risk assessment for honeybees, bumblebees and solitary bees 8. Conclusions and recommendations 5
  • 6.
    Bee mandate M-2011-0185 Chapter2: Specific protection goals (SPG) Follows the approach outlined in the Scientific Opinion of EFSA (2010) on the definition of specific protection goals. Ecosystem services to protect: 1. Pollination 2. Food production (hive products) 3. Genetic resources and cultural services (education, aesthetic, recreation) Ecological entity: Apis mellifera: colony for all SPGs, foragers for pollination Non-Apis – population (colonies for bumblebees) 6
  • 7.
    Bee mandate M-2011-0185 Chapter2: Specific protection goals (SPGs) Attributes to protect: EU regulation (EC) No 1107/2009 lists acute and chronic effects on the survival and development of colonies and effects on larvae and honey bee behaviour as attributes to protect. It is suggested to include also abundance/biomass and reproduction because they are important for long-term survival of the colony. Magnitude of effects: Small effects on foragers in field (in the range of days), negligible effects off- field, negligible effects on colonies (at the field edge). Exposure assessment goals: The overall level of protection includes also the exposure assessment goal. 7
  • 8.
    WG Bee riskassessment Chapter 2: Specific protection goals (SPGs) Exposure assessment goals: Consider each of the regulatory zones as the total area for all SPGs. Focus on the field scale to avoid “dilution” of the spatial population with a large fraction of e.g. unexposed hives. 95th percentile of the spatio-temporal concentration distribution is used as a working hypothesis (90th percentiles were accepted in the past but may not be conservative enough). 8
  • 9.
    WG Bee riskassessment Chapter 2: Specific protection goals (SPGs) Exposure assessment goals: Current risk assessment relies on HQ approach and semi-field and field tests. Difficult to ascertain that a specific exposure percentile is achieved. Flow chart for checking whether exposure in semi-field or field study was higher than the corresponding 95th percentile. These main factors could include: • Crop and development stage in study in relation to agricultural reality • Dosage in study and in reality • Measures taken in the study to ensure exposure • Location and weather conditions in the study compared to zone for which the risk assessment is carried out • Generation of guttation water in the study compared to reality 9
  • 10.
    Bee mandate M-2011-0185 Chapter3: Exposure Major exposure routes (oral, contact, inhalation) were identified for honeybees, bumblebees and solitary bees for sprayed, non-sprayed (systemic and non- systemic) substances and for soil fumigants. Information was collected on consumption of nectar, pollen, water, interception of droplets of different life stages of honeybees (foragers, wax producing bees, nurse bees, winter bees, drones queens, swarms, larvae), bumblebees (workers, drones, queens, larvae) and solitary bees (adult male, adult female, larvae). Information was collected on residues in nectar, pollen, water, honey, bee bread, nesting material (wax, propolis, resins), soil and plant surfaces. Based on the information retrieved and expert judgement the most exposed categories of bees were identified by expert judgement. 10
  • 11.
    Bee mandate M-2011-0185 Chapter3: Exposure Honeybees: Foraging bees, winter bees and larvae were most exposed via the oral route. Larvae were most exposed to residues in wax and foragers, drones, queens and swarms were most exposed to interception of droplets and vapour (contact and inhalation exposure). Bumblebees: Workers, queens and larvae were most exposed via oral route and also via contact and inhalation (nest in soil). Solitary bees: Adult females and larvae were most exposed via oral route. Adult and larvae show maximum exposure to soil and foliar residues (nesting material). 11
  • 12.
    Bee mandate M-2011-0185 Chapter3: Exposure Water consumption was unknown and therefore it was not possible to give an estimate on the relative importance of exposure to residues in water. A potential high exposure to guttation droplets was highlighted for certain crops (e.g. maize). The potential risk to bees depends on the distance between the colony and the crop and the availability of alternative sources of water and the frequency (e.g. the risk could be high if a crop is treated with a highly bee toxic compound, the crop shows guttation activity frequently and the colony is close to the crop). 12
  • 13.
    Bee mandate M-2011-0185 Chapter3: Exposure Dust drift can lead to relevant exposure during sowing of treated seeds or application of granular formulations due to deposition of dust particles on the soil in the field, soil and plants outside the field, on puddles in the field, interception of particles by flying bees, particles entering the hive via air exchange. The level of exposure of bees is extremely variable and depends on the quality of the seed dressing (abrasion), machinery used, number of seeds per ha, time of sowing, size of the sown area, the vegetation in the margin of the field and on the meteorological conditions. 13
  • 14.
    Bee mandate M-2011-0185 Chapter4: Chronic toxicity of pesticides in bees after continuous exposure at low (sub-lethal) doses Concerns were raised that biologically persistent toxins will have cumulative effects that are disproportionate to their short-term manifestations. The conventional regulatory tests are likely to be unsuited to assess the risks of long-term exposures because they are short-term (48-96 h), which means that they could fail to detect the true potential for harm. A new method is proposed to detect cumulative toxicity based on Haber`s law. 14
  • 15.
    Bee mandate M-2011-0185 Chapter4: Chronic toxicity of pesticides in bees after continuous exposure at low (sub-lethal) doses Overview on the available studies on low doses and long-term effects of pesticides on bees highlighted gaps in knowledge and future research needs. For honeybees, more studies are required on a wider range of pesticides, on larvae, on both low-doses and long-term effects (most studies deal with low dose only), on exposure through contact and inhalation (most studies deal with oral exposure), in field conditions (most studies are conducted under laboratory conditions) and more studies are needed on endpoints such as biochemical and neurophysiological effects, fecundity and longevity. For non-Apis bees, few studies are available in literature and they involved only few species. The use of micro-colonies in bumblebees appears to be well-suited to measure lethal and sublethal effects of pesticides with low doses and long- term effects. 15
  • 16.
    Bee mandate M-2011-0185 Chapter5: The evaluation of the existing test protocols Laboratory tests Oral and contact exposure of adult bees following OECD 213 and 214 guidelines. Intermittent and prolonged exposure of adults and larvae testing is not included. It is recommended in the first tier to include chronic testing of adult bees, a laboratory test on larval toxicity test and precise observations of sublethal effects (to be included in future risk assessment). 16
  • 17.
    Bee mandate M-2011-0185 Chapter5: The evaluation of the existing test protocols Semi-field tests Semi-field testing follows the test guidelines of EPPO 170(4), OECD 75 (bee brood) and Oomen et al. (1992) test (bee brood). Several weaknesses were identified for each of the guidelines, e.g. the limited size of crop area, limited duration of the studies (one brood cycle), difficult to extrapolate results to larger colony sizes. It is recommended to include a more detailed assessment of behavioural effects, investigation of sublethal and delayed effects and to develop methods to investigate in particular systemic compounds including exposure to dust and guttation droplets. Results should be analysed with appropriate statistical methods. 17
  • 18.
    Bee mandate M-2011-0185 Chapter5: The evaluation of the existing test protocols Field tests for honeybees Field testing follows the guidelines of EPPO 170. Several weaknesses were identified such as the small distance between the hives and the treated fields, the low surface of the test field, uncertainties with regard to the real exposure of honeybees. Not enough replicates to conduct a statistical analysis. It is recommended to develop guidelines adapted to the specific application of a substance (e.g. also covering all important exposure routes for seed treatments) and to investigate different effects e.g. homing flight, orientation, foraging behaviour. The health status of the colonies needs to be assessed, increased distance between controls and test fields, test design should allow statistical analysis. 18
  • 19.
    Bee mandate M-2011-0185 Chapter6: How to take into account of cumulative and synergistic effects This chapter aims to review the evidence of cumulative and synergistic effects of pesticide mixtures in bees and to develop recommendations for risk assessment purposes. At low levels of exposure concentration addition has been observed more often than synergistic or antagonistic effects for mixtures of pesticides with a common mode of action. Independent action (response addition) has been observed for compounds with a different mode of action. 19
  • 20.
    Bee mandate M-2011-0185 Chapter6: How to take into account of cumulative and synergistic effects The mechanism of synergistic effects involve inhibition or induction of either detoxification enzymes (cytochrome P-450) or transporters which then enhancing the toxicity of the mixture. From available literature there is an indication that deviations from concentration addition, such as synergy is rarely more than a factor of 2 to 3. 20
  • 21.
    Bee mandate M-2011-0185 Chapter7: How to take into account of cumulative and synergistic effects In the case of synergism which can be predicted based on the mode of action of the chemicals involved (e.g. EBI fungicides and insecticides) and in the absence of data on the toxicity of the mixture it is recommended to design full dose- response studies in adult bees and larvae for these mixtures of potential synergists to provide a basis to derive benchmark doses and their limit as suggested by EFSA`s scientific committee. There is growing evidence that there are interactions between bee diseases and pesticide effects. Further work is required to identify the molecular basis of interactions between environmentally realistic exposure to pesticides and the range of honeybee diseases to determine whether and how these may be included in the risk assessment. 21
  • 22.
    Bee mandate M-2011-0185 Chapter7: Risk assessment for honeybees, bumblebees and solitary bees Two new risk assessment schemes are proposed, one for honeybees and one for bumblebees and solitary bees. The most important exposure routes are covered: Exposure of foragers by spray or dust by contact or oral intake, exposure of all adult bees and larvae from exposure to residues in pollen, nectar or guttation droplets. Toxicity testing over longer exposure period for adult bees and larvae is included in the first tier. Investigation of cumulative effects. 22
  • 23.
    Bee mandate M-2011-0185 Chapter7: Risk assessment for honeybees, bumblebees and solitary bees A 7 day laboratory larvae test (Aupinel) is always required. The Oomen test is required if the LD50 for adult bees is below 100 µg/bee or the laboratory larvae test gives an indication of cumulative toxicity. The Oomen test integrates brood care behaviour of adult bees. The lower endpoint of both tests should be used in the scheme. The scheme for bumblebees and solitary bees is based on less well defined steps and toxicity tests. The scheme uses data for honey bees as a surrogate input. The development of standardized contact and oral toxicity test, semi field and field tests for bumblebees and solitary bees has yet to be completed and ring tested. 23
  • 24.
    Bee mandate M-2011-0185 Timelines: Opinionto be issued by April 2012 Guidance Document to be issued by December 2012 Public consultation on draft GD: July 2012 – September 2012 24
  • 25.
    Bee mandate M-2011-0185 Thankyou for your attention! Questions 25