This document is a thesis that examines stochastic differential equations (SDEs). It begins with an introduction that provides background on SDEs and outlines the aims, objectives, and structure of the thesis. The body of the thesis first reviews key concepts in probability, Brownian motion, and stochastic integration. It then defines SDEs and explores numerical methods for solving SDEs such as the Euler-Maruyama and Milstein methods. Applications of SDEs in finance are also discussed, including the Black-Scholes option pricing model. The thesis concludes by summarizing the findings and proposing avenues for further research.