2
 History
 Functions:--
1. Signal transduction
2. Calcium mediated exocytosis
3. Muscular system, vascular system, nervous
system and heart
4. Calcium homeostasis
 Recent advances
 Take home message
Principal founders in the field of
voltage-gated calcium channels :-
A. Sir Bernard Katz
B. Susumu Hagiwara
C. Harald Reuter
Signal transduction
pathways
G protein coupled receptors
Adenylyl cyclase: cAMP
Activation of G-protein coupled receptors through ligand (primary
messenger)
Adenylyl cyclase
cAMP (secondary messenger)
opening of calcium channels activation of protein kinase A
Protein phosphorylation
Adenylyl cyclase: cAMP
• Adrenergic- β
• Histamine-H2
• Dopamine-D1
• Prostacyclin-IP
• Adrenergic- α2
• Dopamine-D2
• 5-HT1
• GABAB
• Opioid- μ, δ
• Angiotensin-AT1
• Prostaglandin-EP3
• Somatostatin
• Adenosine-A1
Phospholipase C: IP3-DAG
Phospholipase C : IP3-DAG
• Adrenergic- α1
• Histamine-H1
• Muscarinic-M1,M3
• 5-HT2
• Vasopressin-Oxytocin
• Angiotensin-AT1
• Prostaglandin-FP, EP3
• Leukotriene
• EndothelinA , endothelinB
Calcium mediated
exocytosis
Ca++ triggers binding of SNARE COMPLEX (Soluble N-
ethylmaleimide-sensitive factor Attachment
Protein REceptor") proteins -"
:- synaptobrevin (red), syntaxin-1 (yellow), and SNAP-25(green) with
Ca++ sensor – synaptotagmin(violet)
fusion of vesicle membrane with plasma membrane + release of
neurotransmitter
• Acetylcholine, glutamate, epinephrine and nor epinephrine
are released from presynaptic neuron by calcium mediated
exocytosis
• Epinephrine:- anaphylactic shock
cardiac resuscitation
along with local anaesthetic
epistaxis
 Stimulation :- insulin secretion from pancreatic beta cells by
sulfonylureas and meglitinide analogues in
diabetes mellitus
 Inhibition :- glutamate secretion from presynaptic neuron
by gabapentin and lamotrigine in partial and
generalised tonic-clonic seizures
Muscular system
Muscle contraction
 Centrally acting muscle relaxant:- baclofen
GABAB receptor activation
Increase K+ conductance and decrease Ca++ conductance
Hyperpolarization of neurons
Decrease release of excitatory neurotransmitters
• Relieve painful spasticity in multiple sclerosis and spinal injuries
• treatment of trigeminal neuralgia, tardive dyskinesia
 Directly acting muscle relaxant:-
dantrolene
Reduce depolarization- induced Ca++ release from sarcoplasmic
reticulum
Drug of choice in malignant hyperthermia( genetic condition
featuring persistent release of Ca++ from SR due to mutation)
• Relieve spasticity in spinal cord injuries, multiple sclerosis and
cerebral palsy
 Botulinum toxin type A
• degrades SNAP-25(Synaptosomal-associated protein 25) and thus
prevents synaptic vesicle fusion with the axon terminal(presynaptic)
membrane
Interfere release of acetylcholine
Paralysis of muscles
 Uses :- several diseases associated with increased muscle tone, such
as torticollis, achalasia, strabismus, blepharospasm, and other focal
dystonias
• approved for cosmetic treatment of facial lines or wrinkles
Vascular system
Calcium channel blockers
 Classification :-
 Dihydropyridines :
nifedipine, nimodipine, nicardipine, amlodipine, nitrendipine
 Non-dihydropyridines :
verapamil, diltiazem
 Mechanism :-
prolonged closure of inactivation gate of voltage gated calcium
channels L- type
Smooth muscle relaxation
Negative ionotropic, chronotropic and dromotropic action
• Cardiac depressant action – verapamil > diltiazem > nifedipine
• Coronary vasodilatation – nifedipine > verapamil > diltiazem
• Peripheral + pulmonary vasodilatation -- nifedipine > verapamil >
diltiazem
 Therapeutic uses :-
Angina, hypertension, post infarct protection
Nitrates and Phosphodiaesterase – 5
inhibitors
Therapeutic uses
 Nitrates :- nitroglycerine, isosorbide dinitrate, isosorbide mononitrate
Angina pectoris
Heart failure
Myocardial infarction
Cyanide poisoning
 Phosphodiaesterase – 5 inhibitors :-sildenafil ,vardenafil , tadalafil
Erectile dysfunction
Pulmonary hypertension
Nervous system
Inositol IP PIP PIP2
Lithium
• In manic depressive bipolar psychoses, lithium inhibits signal
transduction in overactive neurons by blocking the conversion of IP2
(inositol biphosphate) to IP1 and IP1 (inositol monophosphate) to
inositol
• Narrow therapeutic window : 0.5-1.5 mEq/L
• Side effects:-
- inhibition of TSH activated adenylyl cyclase – hypothyroidism
- Inhibition of ADH stimulated adenylyl cyclase – diabetes insipidus
NMDA receptor
• Glutamate receptor –excitatory
• NMDA (N-Methyl-D-aspartate)
antagonist
1. Felbamate – epilepsy
2. Memantine – alzheimer’s
disease
3. Ketamine – general anaesthesia
4. Amantadine - parkinsonism
Ethosuximide
prolonged closure of inactivation gate of voltage gated calcium
channels T- type
Prevent the burst activity of thalamic relay neurons that activate
the cortical cells in absence seizures
Heart
Contraction
Digitalis
• Therapeutic concentration : 0.5-1.4 ng/ml(digoxin)
 Therapeutic uses :-
Congestive heart failure
Atrial fibrillation
Arial flutter
Paroxysmal supraventricular tachycardia
Inodilators (phosphodiaesterase - 3
inhibitors)
• Inamrinone
• Milrinone
• Levosimendan
• Enoximone
- In acute heart failure
Rate & Rhythm
Action potential in nodal tissues(SA
node & AV node)
Calcium channel blockers in
arrhythmia
Calcium channel blockers ( verapamil, diltiazem)
Block L – type calcium channels
Slow calcium dependent depolarization (0 phase) + decreased
slope of phase 4 depolarization in nodal tissues
Prolonged ERP of AV node
AV nodal reentry arrhythmia
 Therapeutic uses :-
Paroxysmal supraventricular tachycardia
Atrial fibrillation
Arial flutter
Calcium homeostasis
Normal serum level : 8.7- 10.2 mg/dL
Hypercalcemia
 Etiology :
• Excessive PTH production
Primary hyperparathyroidism (adenoma, hyperplasia, rarely
carcinoma)
Inactivating mutations in the CaSR (familial hypocalciuric
hypercalcemia)
Alterations in CaSR( calcium sensing receptor) function (lithium
therapy)
• Excessive 1,25(OH)2D production
Vitamin D intoxication
• Primary increase in bone resorption
Hyperthyroidism
Immobilization
• Excessive calcium intake
Milk-alkali syndrome
Total parenteral nutrition
 Medical management:-
• forced diuresis with loop diuretics
• Biphosponates :
- Inhibition of osteoclastic resorption of bones by accelerating
their apoptosis
- Suppression of osteoclast precursors by inhibition of
interleukin-6 release
- 1st generation : etidronate, clodronate, tiludronate
2nd generation : alendronate, pamidronate, ibandronate
3rd generation : risedronate, zolendronate, neridronate,
oxidronate
• Calcitonin :
- inhibit osteoclastic bone resorption by direct action
• Glucocorticoids :
- Antagonise intestinal transport of Ca++ by calcitriol
- Useful in vitamin D intoxication and familial hypocalciuric
hypercalcemia
• Dialysis
Cinacalcet
• Calcimimetic
activation of calcium sensing
receptors(CaSR) over parathyroid
cells
Block PTH secretion
Used in
• Secondary hyperparathyroidism in CRF
• Parathyroid carcinoma
Osteoporosis
 Pathophysiology :-
• Bone remodeling has two primary functions: (1) to repair
microdamage within the skeleton to maintain skeletal
strength(bone matrix production: osteoblast) and (2) to supply
calcium from the skeleton to maintain serum calcium(bone
resorption: osteoclast).
• Acute demands for calcium involve osteoclast-mediated
resorption as well as calcium transport by osteocytes
• Chronic demands for calcium result in secondary
hyperparathyroidism, increased bone remodeling, and overall
loss of bone tissue increased risk of fracture
 Management :-
• Calcium plus vitamin D preparations
• Biphosphonates
• SERM(Selective estrogen receptor modulator) like tamoxifen,
raloxifene in postmenopausal osteoporosis
• Calcitonin
• Recombinant PTH (rPTH – teriparatide)
Hypocalcemia
 Etiology :-
 Low parathyroid hormone levels :
• Parathyroid destruction
Surgical
Radiation
Infiltration by metastases or systemic diseases
Autoimmune
• Reduced parathyroid function
Activating CaSR mutations
 High parathyroid hormone levels :
Vitamin D deficiency or impaired 1,25(OH)2D production/action
Renal insufficiency with impaired 1,25(OH)2D production
PTH receptor mutations
Pseudohypoparathyroidism (G protein mutations)
• Drugs
Calcium chelators
Inhibitors of bone resorption (bisphosphonates)
Altered vitamin D metabolism (phenytoin, ketoconazole)
 Management :-
• Calcium preparations
Calcium citrate
Calcium lactate
Calcium gluconate
Calcium carbonate
Calcium carbonate + vitamin D2
Recently FDA approved
drugs
YEAR Drug Class Indication
2008 clevidipine CCB hypertension
2009 tadalafil PD-5 inhibitor Pulmonary hypertension
capsaicin TRPVI antagonist Postherpetic neuralgia
2010 denosumab RANKL inhibitor osteoporosis
2012 pregabalin VDCC inhibitor Neuropathic pain
avanafil PD-5 inhibitor erectile dysfunction
2013 nimodipine CCB Post-SAH ischemia
THANK YOU

Final calcium

  • 1.
  • 2.
     History  Functions:-- 1.Signal transduction 2. Calcium mediated exocytosis 3. Muscular system, vascular system, nervous system and heart 4. Calcium homeostasis  Recent advances  Take home message
  • 3.
    Principal founders inthe field of voltage-gated calcium channels :- A. Sir Bernard Katz B. Susumu Hagiwara C. Harald Reuter
  • 4.
  • 5.
  • 6.
    Adenylyl cyclase: cAMP Activationof G-protein coupled receptors through ligand (primary messenger) Adenylyl cyclase cAMP (secondary messenger) opening of calcium channels activation of protein kinase A Protein phosphorylation
  • 7.
    Adenylyl cyclase: cAMP •Adrenergic- β • Histamine-H2 • Dopamine-D1 • Prostacyclin-IP • Adrenergic- α2 • Dopamine-D2 • 5-HT1 • GABAB • Opioid- μ, δ • Angiotensin-AT1 • Prostaglandin-EP3 • Somatostatin • Adenosine-A1
  • 8.
  • 9.
    Phospholipase C :IP3-DAG • Adrenergic- α1 • Histamine-H1 • Muscarinic-M1,M3 • 5-HT2 • Vasopressin-Oxytocin • Angiotensin-AT1 • Prostaglandin-FP, EP3 • Leukotriene • EndothelinA , endothelinB
  • 10.
  • 12.
    Ca++ triggers bindingof SNARE COMPLEX (Soluble N- ethylmaleimide-sensitive factor Attachment Protein REceptor") proteins -" :- synaptobrevin (red), syntaxin-1 (yellow), and SNAP-25(green) with Ca++ sensor – synaptotagmin(violet) fusion of vesicle membrane with plasma membrane + release of neurotransmitter
  • 13.
    • Acetylcholine, glutamate,epinephrine and nor epinephrine are released from presynaptic neuron by calcium mediated exocytosis • Epinephrine:- anaphylactic shock cardiac resuscitation along with local anaesthetic epistaxis
  • 14.
     Stimulation :-insulin secretion from pancreatic beta cells by sulfonylureas and meglitinide analogues in diabetes mellitus  Inhibition :- glutamate secretion from presynaptic neuron by gabapentin and lamotrigine in partial and generalised tonic-clonic seizures
  • 15.
  • 16.
  • 17.
     Centrally actingmuscle relaxant:- baclofen GABAB receptor activation Increase K+ conductance and decrease Ca++ conductance Hyperpolarization of neurons Decrease release of excitatory neurotransmitters • Relieve painful spasticity in multiple sclerosis and spinal injuries • treatment of trigeminal neuralgia, tardive dyskinesia
  • 18.
     Directly actingmuscle relaxant:- dantrolene Reduce depolarization- induced Ca++ release from sarcoplasmic reticulum Drug of choice in malignant hyperthermia( genetic condition featuring persistent release of Ca++ from SR due to mutation) • Relieve spasticity in spinal cord injuries, multiple sclerosis and cerebral palsy
  • 19.
     Botulinum toxintype A • degrades SNAP-25(Synaptosomal-associated protein 25) and thus prevents synaptic vesicle fusion with the axon terminal(presynaptic) membrane Interfere release of acetylcholine Paralysis of muscles  Uses :- several diseases associated with increased muscle tone, such as torticollis, achalasia, strabismus, blepharospasm, and other focal dystonias • approved for cosmetic treatment of facial lines or wrinkles
  • 20.
  • 21.
    Calcium channel blockers Classification :-  Dihydropyridines : nifedipine, nimodipine, nicardipine, amlodipine, nitrendipine  Non-dihydropyridines : verapamil, diltiazem  Mechanism :- prolonged closure of inactivation gate of voltage gated calcium channels L- type Smooth muscle relaxation Negative ionotropic, chronotropic and dromotropic action
  • 22.
    • Cardiac depressantaction – verapamil > diltiazem > nifedipine • Coronary vasodilatation – nifedipine > verapamil > diltiazem • Peripheral + pulmonary vasodilatation -- nifedipine > verapamil > diltiazem  Therapeutic uses :- Angina, hypertension, post infarct protection
  • 23.
  • 24.
    Therapeutic uses  Nitrates:- nitroglycerine, isosorbide dinitrate, isosorbide mononitrate Angina pectoris Heart failure Myocardial infarction Cyanide poisoning  Phosphodiaesterase – 5 inhibitors :-sildenafil ,vardenafil , tadalafil Erectile dysfunction Pulmonary hypertension
  • 25.
  • 26.
  • 27.
    Lithium • In manicdepressive bipolar psychoses, lithium inhibits signal transduction in overactive neurons by blocking the conversion of IP2 (inositol biphosphate) to IP1 and IP1 (inositol monophosphate) to inositol • Narrow therapeutic window : 0.5-1.5 mEq/L • Side effects:- - inhibition of TSH activated adenylyl cyclase – hypothyroidism - Inhibition of ADH stimulated adenylyl cyclase – diabetes insipidus
  • 28.
    NMDA receptor • Glutamatereceptor –excitatory • NMDA (N-Methyl-D-aspartate) antagonist 1. Felbamate – epilepsy 2. Memantine – alzheimer’s disease 3. Ketamine – general anaesthesia 4. Amantadine - parkinsonism
  • 29.
    Ethosuximide prolonged closure ofinactivation gate of voltage gated calcium channels T- type Prevent the burst activity of thalamic relay neurons that activate the cortical cells in absence seizures
  • 30.
  • 31.
  • 32.
  • 33.
    • Therapeutic concentration: 0.5-1.4 ng/ml(digoxin)  Therapeutic uses :- Congestive heart failure Atrial fibrillation Arial flutter Paroxysmal supraventricular tachycardia
  • 34.
    Inodilators (phosphodiaesterase -3 inhibitors) • Inamrinone • Milrinone • Levosimendan • Enoximone - In acute heart failure
  • 35.
  • 36.
    Action potential innodal tissues(SA node & AV node)
  • 37.
    Calcium channel blockersin arrhythmia Calcium channel blockers ( verapamil, diltiazem) Block L – type calcium channels Slow calcium dependent depolarization (0 phase) + decreased slope of phase 4 depolarization in nodal tissues Prolonged ERP of AV node AV nodal reentry arrhythmia
  • 38.
     Therapeutic uses:- Paroxysmal supraventricular tachycardia Atrial fibrillation Arial flutter
  • 39.
  • 40.
    Normal serum level: 8.7- 10.2 mg/dL
  • 41.
  • 42.
     Etiology : •Excessive PTH production Primary hyperparathyroidism (adenoma, hyperplasia, rarely carcinoma) Inactivating mutations in the CaSR (familial hypocalciuric hypercalcemia) Alterations in CaSR( calcium sensing receptor) function (lithium therapy) • Excessive 1,25(OH)2D production Vitamin D intoxication
  • 43.
    • Primary increasein bone resorption Hyperthyroidism Immobilization • Excessive calcium intake Milk-alkali syndrome Total parenteral nutrition
  • 44.
     Medical management:- •forced diuresis with loop diuretics • Biphosponates : - Inhibition of osteoclastic resorption of bones by accelerating their apoptosis - Suppression of osteoclast precursors by inhibition of interleukin-6 release - 1st generation : etidronate, clodronate, tiludronate 2nd generation : alendronate, pamidronate, ibandronate 3rd generation : risedronate, zolendronate, neridronate, oxidronate
  • 45.
    • Calcitonin : -inhibit osteoclastic bone resorption by direct action • Glucocorticoids : - Antagonise intestinal transport of Ca++ by calcitriol - Useful in vitamin D intoxication and familial hypocalciuric hypercalcemia • Dialysis
  • 46.
    Cinacalcet • Calcimimetic activation ofcalcium sensing receptors(CaSR) over parathyroid cells Block PTH secretion Used in • Secondary hyperparathyroidism in CRF • Parathyroid carcinoma
  • 47.
    Osteoporosis  Pathophysiology :- •Bone remodeling has two primary functions: (1) to repair microdamage within the skeleton to maintain skeletal strength(bone matrix production: osteoblast) and (2) to supply calcium from the skeleton to maintain serum calcium(bone resorption: osteoclast). • Acute demands for calcium involve osteoclast-mediated resorption as well as calcium transport by osteocytes • Chronic demands for calcium result in secondary hyperparathyroidism, increased bone remodeling, and overall loss of bone tissue increased risk of fracture
  • 48.
     Management :- •Calcium plus vitamin D preparations • Biphosphonates • SERM(Selective estrogen receptor modulator) like tamoxifen, raloxifene in postmenopausal osteoporosis • Calcitonin • Recombinant PTH (rPTH – teriparatide)
  • 49.
  • 50.
     Etiology :- Low parathyroid hormone levels : • Parathyroid destruction Surgical Radiation Infiltration by metastases or systemic diseases Autoimmune • Reduced parathyroid function Activating CaSR mutations
  • 51.
     High parathyroidhormone levels : Vitamin D deficiency or impaired 1,25(OH)2D production/action Renal insufficiency with impaired 1,25(OH)2D production PTH receptor mutations Pseudohypoparathyroidism (G protein mutations) • Drugs Calcium chelators Inhibitors of bone resorption (bisphosphonates) Altered vitamin D metabolism (phenytoin, ketoconazole)
  • 52.
     Management :- •Calcium preparations Calcium citrate Calcium lactate Calcium gluconate Calcium carbonate Calcium carbonate + vitamin D2
  • 53.
  • 54.
    YEAR Drug ClassIndication 2008 clevidipine CCB hypertension 2009 tadalafil PD-5 inhibitor Pulmonary hypertension capsaicin TRPVI antagonist Postherpetic neuralgia 2010 denosumab RANKL inhibitor osteoporosis 2012 pregabalin VDCC inhibitor Neuropathic pain avanafil PD-5 inhibitor erectile dysfunction 2013 nimodipine CCB Post-SAH ischemia
  • 55.

Editor's Notes

  • #29 Ketamine-phencyclidine,zinc, magnesium,pcp-inhibitory; glycine- decreased desensitization