SlideShare a Scribd company logo
P á g i n a 1 | 34
Contenido
CHAPTER 1...........................................................................................................................4
INTRODUCTION................................................................................................................4
CHAPTER 2...........................................................................................................................5
OBJECTIVE........................................................................................................................5
CHAPTER 3...........................................................................................................................5
METHODOLOGY ...............................................................................................................5
CHAPTER 4...........................................................................................................................5
DISTRIBUTION STRUCTURAL..............................................................................................5
CHAPTER5............................................................................................................................7
SCANTLING.......................................................................................................................7
BOTTOM..........................................................................................................................8
SHELL PLATING 3.2.2/3.3.1 ............................................................................................8
....................................................................................................................................8
BAR KEELS 3.2.10/11 .....................................................................................................8
GIRDERS 3.2.4/5.3.1 ......................................................................................................9
TRANSVERSE 3.2.4/5.3.1................................................................................................9
LONGITUDINAL FRAMES 3,2,4/5,3,1...............................................................................9
SIDE...............................................................................................................................10
SHELL PLATING 3,2,2/3,3,1 ..........................................................................................10
SIDE WEB FRAMES 3.2.5/7,1 ........................................................................................11
SIDE STRINGERS 3.2.5/11,1..........................................................................................11
TRANSVERSE FRAMES 3.2.5/11,1 .................................................................................11
DIVING PLATFORM.........................................................................................................12
SHELL PLATING ...........................................................................................................12
BEAMS 3.2.6/1.3 .........................................................................................................13
DECK GIRDERS 3.2.6/3.3 ..............................................................................................13
DECK TRANSVERSES 3.2.6/3.3......................................................................................13
MIDSHIP.........................................................................................................................14
BOTTOM........................................................................................................................14
SHELL PLATING 3.2.2/3.3.1 ..........................................................................................14
..................................................................................................................................14
BAR KEELS 3.2.10/11 ...................................................................................................14
GIRDERS 3.2.4/5.3.1 ....................................................................................................15
TRANSVERSE 3.2.4/5.3.1..............................................................................................16
P á g i n a 2 | 34
LONGITUDINAL FRAMES 3,2,4/5,3,1.............................................................................16
SIDE...............................................................................................................................17
SHELL PLATING 3,2,2/3,3,1 ..........................................................................................17
SIDE WEB FRAMES 3.2.5/7,1 ........................................................................................17
SIDE STRINGERS 3.2.5/11,1..........................................................................................18
TRANSVERSE FRAMES 3.2.5/11,1 .................................................................................18
MAIN DECK ....................................................................................................................18
SHELL PLATING ...........................................................................................................18
BEAMS 3.2.6/1.3 .........................................................................................................19
DECK GIRDERS 3.2.6/3.3 ..............................................................................................19
DECK TRANSVERSES 3.2.6/3.3......................................................................................20
BOW..............................................................................................................................20
BAR STEMS 3.2.10/1.1.................................................................................................20
..................................................................................................................................20
PLATE STREMS 3.2.10/3.5............................................................................................20
DECK, SUPERSTRUCTURE AND DECK HOUSE.....................................................................21
UPPER DECK EXPOSED....................................................................................................21
SHELL DECK.................................................................................................................21
SHELL FRONT BULKHEADS ...........................................................................................21
SHELL END BULKHEADS ...............................................................................................21
SHELL SIDE..................................................................................................................22
GIRDERS.....................................................................................................................22
WEBS .........................................................................................................................22
LONGITUDINAL...........................................................................................................22
CHAPTER 6.........................................................................................................................23
LONGITUDINAL HULL GIRDER STRENGHT .........................................................................23
SECTION MODULUS DIRECT METHOD..............................................................................24
Wave Bending Moment Amidships...............................................................................26
Wave Shear Force. ......................................................................................................26
CHAPTER 7.........................................................................................................................26
LONGITUDINAL STRENGTH..............................................................................................26
LOADCASE..................................................................................................................28
Integration of the Load Curve to get Shear Force Curve ....................................................31
Integration of the Shear Force Curve to get Bending Moment Curve..................................31
CHAPTER 8.........................................................................................................................32
VALIDATION OF STRUCTURAL ELEMENTS BY ANSYS..........................................................32
P á g i n a 3 | 34
CONCLUSIONS....................................................................................................................34
References.........................................................................................................................34
P á g i n a 4 | 34
CHAPTER 1
INTRODUCTION
This booklet is intended to present the scantling of ship for which followed the rules of
classification “ABS RULES for STEEL VESSELS UNDER 90 METERS”
For the layout structural is has that consider the distribution structural that more goodness
notes for the ship in project; structural configuration tat you can use are as follows:
1. LONGITUDINAL
2. TRANSVERSAL
3. MIXED
The final selectionof structural distributionwill dependonthe factors that affectthe designof
the project
Figure 1 LENGTHS SHIP
MAIN DIMENSION ABS
L = 39.77 [mts] 3.1.1/3.1
B = 8.3 [mts] 3.1.1/5
D = 5.7 [mts] 3.1.1/7.1
△ = 342.3 [ton] 3.1.1/11.1
d = 2.5 [mts] 3.1.1/9
Cb = 0.556 3.1.1/11.3
s = 520 [mm]
Table 1 IMPUT DATA
P á g i n a 5 | 34
CHAPTER 2
OBJECTIVE
This booklet analyzes the structural strength of the preliminary design of a yacht. For a quick
estimate of the bending moment and shear force
CHAPTER 3
METHODOLOGY
We proceededtocalculate distributive locate eachexistingweightinthe yacht. These weights
were divided according to technological groups in order to maintain an order.
With these weights distributedin the Hydromsx software,they perform the calculation of the
shear and bending moment curves in the trocoid wave which we consider as the most critical
condition,Inadditiontothis,the minimumbendingmomentestimate wascalculatedusingthe
ABS classification and shear force, these results were compared with those given in the
aforementioned program.
CHAPTER 4
DISTRIBUTION STRUCTURAL
Factor that generally affect the design of a naval structure are as follows:
 The structural distribution must be adapted to the type of work or service of a ship
 Find the minimum weight for maximum structural strength
 The structural distribution should allow easy distribution and easy access
 Apply methods of production appropriate
 Qualified and experienced workforce
For the configuration of the yacht we use a simple bottom to reduce the structural weight
representedbythe doublebottom,becausethe regulationsinECUADORdonotrequire thatfor
these types of boats it is double bottom, on the decks and bottom the configuration is
longitudinal in the sides is transverse, for machine room it is mixed to decrease vibration
𝑠 = 470 +
𝐿 𝑟
0,6
𝑠 = 520 [𝑚𝑚]
Once we getthe spacing,we made the structural scratch the planeswere made. Thenwe show
the structural configuration plans
Figure 2 TYPE OF LINES
P á g i n a 6 | 34
P á g i n a 7 | 34
ASTMA 131 steel isdesignatedfornaval specificationsandstructural constructionsof ships,this
specificationisdesignated by ASTMA 131 / A 131M - 08 in charge of specifyingthe use of this
steel fornaval constructionsandrepairs,whichcomprisestwolevelsof resistance,26whichare
influenced in the mechanical properties of hardness and elongation. In the case of materials,
thisstandardisusedforthemanufacture of sheetssuchasASTMA 131steel fornaval use,which
is produced as a medium strength structural sheet, where its major characteristics are
weldability and malleability. The mechanical properties of ASTM A 131 steel are presented
below.
GRADE
Composición química (%)
C MN≥ Si P S
ASTMA131A 0.21 2.5 × C 0.5 0.035 0.035
GRADE
mechanical characteristics
TENSILE
STRENGTH
(MPa)
PRODUCTION
FORCE
(MPa)
% ELONGATION
IN 2 MIN
in.(50mm)
AFFECTING THE TEST
TEMPERATURE
ASTMA131A 400-520 235 22 20
Table 2 DETAILS OF STEEL ASTMA131
Figure 3 MECHANICAL PROPERTIES OF THE MATERIAL
CHAPTER5
SCANTLING
For the scantlingof the resistanthull wedividedtheminthree partsthatare middle section, aft
peakand fore peaksection,forthe part of resistanthelmetandmaincoveritis steel the super
aluminum structure
P á g i n a 8 | 34
BOTTOM
SHELL PLATING 3.2.2/3.3.1
BAR KEELS 3.2.10/11
PROPORTION
Thicknessesandwidthsother thangivenaboveare acceptable,providedthesectionmoduliand
moments of inertiaaboutthe transversehorizontal axisare notlessthangivenabove,norish/t
more than 4. 5.
t
thickness of bottom shell plating, in mm (in.)
s
frame spacing, in mm (in.)
h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d,
whichever is greater
d
draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater
l
length of vessel, in m (ft), as defined in 3-1-1/3
L
lengthof vessel, in m (ft), as defined in 3-1-1/3
depth, in mm (in.)
h
t
thickness, in mm (in.)
t = 38 [mm]
h1 = 159 [mm]
h/t= 4,18
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
t 7,39 [mm]
s= 520 [mm]
h= 5,70 [mts]
d 2,62 [mts]
l= 39,77 [mts]
t = 8,00 [mm]
𝒉 = 𝟏, 𝟒𝟔 ∗ 𝑳 + 𝟏𝟎𝟎 𝒎𝒎
𝒕 = 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
t 1,5 [in]
𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
h 6,5 [in]
𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
P á g i n a 9 | 34
GIRDERS 3.2.4/5.3.1
l= 4,72 m
h= 5,70 m
s= 2,11 m
c= 0,92
PROPORTION
DEPTH
The minimumdepthof the girderortransverse istobe notlessthan2.5 timesthe depthof the
cutouts for bottom frames, unless effective compensation for cutouts is provided
TRANSVERSE 3.2.4/5.3.1
l= 4,22 m
h= 5,70 m
s= 1,57 m
c= 0,92
SM = 1137 cm^3
LONGITUDINAL FRAMES 3,2,4/5,3,1
l= 1,57 m
h= 5,70 m
h2= 0,55 m
h3= 0,46 m
s= 0,52 m
c= 1,00 m
SM = 57 cm^3
c 0,915
h
vertical distance, in m (ft), from the center of area supported to the deck at
side
s spacing, in m (in.)
l
unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
l= 4,72 m
h= 5,70 m
s= 2,11 m
c= 0,92
SM = 1912 cm^3
c 0,915
h
vertical distance, in m (ft), from the center of area supported to the deck at
side
s spacing, in m (in.)
l
unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
C 1.00 for longitudinal frames clear of tanks, and in way of tanks
h
vertical distance, in m (ft), from the center ofarea supported to the deck at
side
s spacing, in m (in.)
l unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
[KG/M^3] KG/M^2 KG/M
SHELL 8 [mm]
7850
62,8
BAR KEELS 160X38 [mm] 477,28
GIRDER 270X140X8 [mm] 25,748
TRANSVERSE 270X8 [mm] 16,956
LONGITUDINAL
FRAME 10X8 [mm] 6,28
Table 3 DIMENSION OF ELEMENTS BOTTOM
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝒉𝟐 = 𝟎, 𝟎𝟏 ∗ 𝑳 + 𝟎, 𝟏𝟓 𝒎
P á g i n a 10 | 34
Figure 4 Longitudinal Frames with Transverse Webs
Figure 5 BOTTOM STRUCTURE
SIDE
SHELL PLATING 3,2,2/3,3,1
t
thickness of bottom shell plating, in mm (in.)
s
frame spacing, in mm (in.)
h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d,
whichever is greater
d
draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater
l
length of vessel, in m (ft), as defined in 3-1-1/3
t 6,58 [mm]
s= 520 [mm]
h= 3,98 [mts]
d 2,62 [mts]
l= 39,77 [mts]
h3= 2,95 [mts]
h1= 2,50 [mts]
h2= 3,98 [mts]
d1= 2,50 [mts]
d2= 2,62 [mts]
t center = 7,00 [mm]
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
P á g i n a 11 | 34
SIDE WEB FRAMES 3.2.5/7,1
c 0.915 aft of the forepeak
1.13 inthe forepeakof vessel 61m (200 ft) or greaterinlength.
H on frames having no tween decks above, the vertical distance, in m (ft), from the mid
length of the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m
(0.02L + 1.5 ft).
H on frames having tween decks above, the vertical distance, in m (ft), from the middle
of l to the load line or 0.5l, whichever is greater, plus bh
1
/45K (bh
/150K).
1
h vertical distance, in m (ft), from the center of area supported to the deck at
side
s spacing, in m (in.)
l straight-line unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by decks or inner bottoms, the length, l, may be measured
as permitted therein
SIDE STRINGERS 3.2.5/11,1
SM = 170 cm^3
TRANSVERSE FRAMES 3.2.5/11,1
l= 1,56 m
h= 5,03 m
s= 0,52 m
c= 0,92
SM = 602 cm^3
SM = 170 cm^3
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
h= 1,26 m
h= 1,32 m
h= 3,98 m
h= 5,03 m
l= 2,63 m
h= 5,03 m
s= 1,57 m
c= 1,13
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝒉𝟏 = 𝟎, 𝟎𝟐 ∗ 𝑳 + 𝟎, 𝟒𝟔 𝒎
𝒉𝟑 = 𝟎, 𝟔𝟐 ∗ 𝑳 + 𝟏, 𝟏𝟐𝟐 𝒎
h= 3,98 m
h1= 1,26 m
h3= 3,59 m
h4= 5,03 m
l= 1,57 m
h= 5,03 m
s= 1,56 m
c= 1,13
SM = 45 cm^3
c
H
H
h
s
l
0.915 aft of the forepeak
1.13 in the forepeak of vessel 61 m (200 ft) or greater in length.
on frames having no tween decks above, the vertical distance, in
m (ft), from the mid
length of the frame to the freeboard deck at side, but not less
vertical distance, in m (ft), from the center of area supported to
the deck at
side
spacing, in m (in.)
straight-line unsupported span, in m (ft). Where brackets are
fitted in accordance with
3-1-2/5.5 and are supported by decks or inner bottoms, the
length, l, may be measured
as permitted therein
on frames having tween decks above, the vertical distance, in m
(ft), from the middle
of l to the load line or 0.5l, whichever is greater, plus bh
P á g i n a 12 | 34
[KG/M^3] KG/M^2 KG/M
SHELL 7 [mm]
7850
47.1
SIDE WEB FRAMES 250X8 [mm] 15,7
SIDE STRINGERS 180X7 [mm] 9,91
TRANSVERSEFRAME 90X7 [mm] 5,62
Table 4 DIMENSION SIDE
DIVING PLATFORM
SHELL PLATING
t thicknessof bottomshell plating, in mm
(in.)
s
frame spacing, in mm (in.)
h depth, D, inm (ft), as defined in 3-1-1/7.1, but
not less than 0.1L or 1.18d,
whichever is greater
t = 6,00 [mm]
t
thickness of bottom shell plating, in mm (in.)
s
frame spacing, in mm (in.)
h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d,
whichever is greater
d
draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater
l
length of vessel, in m (ft), as defined in 3-1-1/3
Table 5 SIDE STRUCTURE
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎 t 5,53 [mm]
s= 520 [mm]
h= 2,19 [mts]
l= 39,77 [mts]
P á g i n a 13 | 34
d draft for scantlings, as defined in 3-1-1/9,
or 0.066L, whichever is greater
l lengthof vessel, in m (ft), as definedin 3-
1-1/3
BEAMS 3.2.6/1.3
l unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less
than 0.02L + 0.46 m (0.02L + 1.5 ft)
l = 1,56
h = 2,19356
s = 0,52
SM = 21,65
DECK GIRDERS 3.2.6/3.3
l unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less
than 0.02L + 0.46 m (0.02L + 1.5 ft)
DECK TRANSVERSES 3.2.6/3.3
l unsupported span, in m (ft). Where brackets are fitted in
accordance with
3-1-2/5.5 and are supportedbybulkheads, inner bottom or
side shell, the
length, l, may be measured as permitted therein
h vertical distance, inm (ft), from the frame to the freeboard
deck at side, but not less
than 0.02L + 0.46 m (0.02L + 1.5 ft)
[KG/M^3] KG/M^2 KG/M
SHELL 6 [mm]
7850
47,1
BEAMS 50X6 [mm] 3,14
DECK GIRDERS 150X150X7 [mm] 16,485
DECK TRANSVERSES 150X8 [mm] 9,42
l= 1,56 m
h= 2,19 m
s= 0,52 m
c= 1,00
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎
SM = 21,65 cm^3
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
l= 4,68 m
h= 2,19 m
b= 3,71 m
c= 0,60
l = 4,68
h = 2,1936
s = 3,71
SM = 834,18
SM = 834,18 cm^3
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
l = 2,08
h = 2,1936
s = 1,56
SM = 69,29
SM = 69,29 cm^3
P á g i n a 14 | 34
MIDSHIP
BOTTOM
SHELL PLATING 3.2.2/3.3.1
BAR KEELS 3.2.10/11
t
thickness of bottom shell plating, in mm (in.)
s
frame spacing, in mm (in.)
h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d,
whichever is greater
d
draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater
l
length of vessel, in m (ft), as defined in 3-1-1/3
L
lengthof vessel, in m (ft), as defined in 3-1-1/3
depth, in mm (in.)
h
t
thickness, in mm (in.)
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
t 7,39 [mm]
s= 520 [mm]
h= 5,70 [mts]
d 2,62 [mts]
l= 39,77 [mts]
t = 8,00 [mm]
𝒉 = 𝟏, 𝟒𝟔 ∗ 𝑳 + 𝟏𝟎𝟎 𝒎𝒎
𝒕 = 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
P á g i n a 15 | 34
l
lengthof vessel, in m (ft), as definedin 3-
1-1/3
depth, in mm (in.)
h
t
thickness, in mm (in.)
t = 38 [mm]
h1 = 159 [mm]
PROPORTION
Thicknessesandwidthsotherthangivenaboveare acceptable,providedthesectionmoduliand
moments of inertiaaboutthe transversehorizontal axisare notlessthangivenabove,norish/t
more than 4. 5.
GIRDERS 3.2.4/5.3.1
l= 4,72 m
h= 5,70 m
s= 2,11 m
c= 0,92
t = 38 [mm]
h1 = 159 [mm]
h/t= 4,18
c 0,915
h
vertical distance, in m (ft), from the center of area supported to the deck at
side
s spacing, in m (in.)
l
unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
l= 6.24 m
h= 5,70 m
s= 2,11 m
c= 0,92
SM = 3342 cm^3
t 1,5 [in]
𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
h 6,5 [in]
𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
P á g i n a 16 | 34
PROPORTION
DEPTH
The minimumdepthof the girderortransverse istobe notlessthan2.5 timesthe depthof the
cutouts for bottom frames, unless effective compensation for cutouts is provided
TRANSVERSE 3.2.4/5.3.1
l= 4,22 m
h= 5,70 m
s= 1,57 m
c= 0,92
SM = 1137 cm^3
LONGITUDINAL FRAMES 3,2,4/5,3,1
l= 1,57 m
h= 5,70 m
h2= 0,55 m
h3= 0,46 m
s= 0,52 m
c= 1,00 m
SM = 57 cm^3
Figure 6 Longitudinal Frames with Transverse Webs
Figure 7 BOTTOM STRUCTURE
c 0,915
h
vertical distance, in m (ft), from the center of area supported to the deck at
side
s spacing, in m (in.)
l
unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
C 1.00 for longitudinal frames clear of tanks, and in way of tanks
h
vertical distance, in m (ft), from the center ofarea supported to the deck at
side
s spacing, in m (in.)
l unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
[KG/M^3] KG/M^2 KG/M
SHELL 8 [mm]
7850
62,8
BAR KEELS 160X38 [mm] 477,28
GIRDER 300X150X8 [mm] 28.26
TRANSVERSE 300X8 [mm] 18,84
LONGITUDINAL
FRAME 10X8 [mm] 6,28
Table 6 DIMENSION OF ELEMENTS BOTTOM
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝒉𝟐 = 𝟎, 𝟎𝟏 ∗ 𝑳 + 𝟎, 𝟏𝟓 𝒎
P á g i n a 17 | 34
SIDE
SHELL PLATING 3,2,2/3,3,1
SIDE WEB FRAMES 3.2.5/7,1
c 0.915 aft of the forepeak
1.13 inthe forepeakof vessel 61m (200 ft) or greaterinlength.
H on frameshavingnotweendecksabove,the vertical distance, in m (ft), from the mid
length of the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m
(0.02L + 1.5 ft).
H on frameshavingtweendecksabove,the vertical distance,in m (ft), from the middle
of l to the load line or 0.5l, whichever is greater, plus bh
1
/45K (bh
/150K).
1
h vertical distance, in m (ft), from the center of area supported to the deck at
side
s spacing, in m (in.)
l straight-lineunsupportedspan,inm(ft).Where bracketsare fittedinaccordance with
3-1-2/5.5 and are supported by decks or inner bottoms, the length, l, may be
measured
as permitted therein
SM = 783 cm^3
t
thickness of bottom shell plating, in mm (in.)
s
frame spacing, in mm (in.)
h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d,
whichever is greater
d
draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater
l
length of vessel, in m (ft), as defined in 3-1-1/3
t 6,58 [mm]
s= 520 [mm]
h= 3,98 [mts]
d 2,62 [mts]
l= 39,77 [mts]
h3= 2,95 [mts]
h1= 2,50 [mts]
h2= 3,98 [mts]
d1= 2,50 [mts]
d2= 2,62 [mts]
t center = 7,00 [mm]
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
h= 1,26 m
h= 1,32 m
h= 3,98 m
h= 5,03 m
l= 3,00 m
h= 5,03 m
s= 1,57 m
c= 1,13
P á g i n a 18 | 34
SIDE STRINGERS 3.2.5/11,1
SM = 170 cm^3
TRANSVERSE FRAMES 3.2.5/11,1
l= 1,56 m
h= 5,03 m
s= 0,52 m
c= 0,92
[KG/M^3] KG/M^2 KG/M
SHELL 7 [mm]
7850
54.95
SIDE WEB FRAMES 250X8 [mm] 15,7
SIDE STRINGERS 180X7 [mm] 11.304
TRANSVERSEFRAME 90X7 [mm] 5,62
Table 8 DIMENSION SIDE
MAIN DECK
SHELL PLATING
SM = 170 cm^3
t = 6,00 [mm]
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝒉𝟏 = 𝟎, 𝟎𝟐 ∗ 𝑳 + 𝟎, 𝟒𝟔 𝒎
𝒉𝟑 = 𝟎, 𝟔𝟐 ∗ 𝑳 + 𝟏, 𝟏𝟐𝟐 𝒎
h= 3,98 m
h1= 1,26 m
h3= 3,59 m
h4= 5,03 m
l= 1,57 m
h= 5,03 m
s= 1,56 m
c= 1,13
SM = 45 cm^3
c
H
H
h
s
l
0.915 aft of the forepeak
1.13 in the forepeak of vessel 61 m (200 ft) or greater in length.
on frames having no tween decks above, the vertical distance, in
m (ft), from the mid
length of the frame to the freeboard deck at side, but not less
vertical distance, in m (ft), from the center of area supported to
the deck at
side
spacing, in m (in.)
straight-line unsupported span, in m (ft). Where brackets are
fitted in accordance with
3-1-2/5.5 and are supported by decks or inner bottoms, the
length, l, may be measured
as permitted therein
on frames having tween decks above, the vertical distance, in m
(ft), from the middle
of l to the load line or 0.5l, whichever is greater, plus bh
Table 7 SIDE STRUCTURE
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎 t 5,53 [mm]
s= 520 [mm]
h= 2,19 [mts]
l= 39,77 [mts]
P á g i n a 19 | 34
t thicknessof bottomshell plating, in mm
(in.)
s
frame spacing, in mm (in.)
h depth, D, inm (ft), as defined in 3-1-1/7.1, but
not less than 0.1L or 1.18d,
whichever is greater
d draft for scantlings, as defined in 3-1-1/9,
or 0.066L, whichever is greater
l lengthof vessel, in m (ft), as definedin 3-
1-1/3
BEAMS 3.2.6/1.3
l unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less
than 0.02L + 0.46 m (0.02L + 1.5 ft)
l = 1,56
h = 2,19356
s = 0,52
SM = 21,65
DECK GIRDERS 3.2.6/3.3
l unsupported span, in m (ft). Where brackets are fitted in accordance with
3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the
length, l, may be measured as permitted therein
h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less
than 0.02L + 0.46 m (0.02L + 1.5 ft)
t
thickness of bottom shell plating, in mm (in.)
s
frame spacing, in mm (in.)
h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d,
whichever is greater
d
draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater
l
length of vessel, in m (ft), as defined in 3-1-1/3
l= 1,56 m
h= 2,19 m
s= 0,52 m
c= 1,00
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎
SM = 21,65 cm^3
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
P á g i n a 20 | 34
DECK TRANSVERSES 3.2.6/3.3
l unsupported span, in m (ft). Where brackets are fitted in
accordance with
3-1-2/5.5 and are supportedbybulkheads, inner bottom or
side shell, the
length, l, may be measured as permitted therein
h vertical distance, inm (ft), from the frame to the freeboard
deck at side, but not less
than 0.02L + 0.46 m (0.02L + 1.5 ft)
[KG/M^3] KG/M^2 KG/M
SHELL 6 [mm]
7850
47,1
BEAMS 50X6 [mm] 3,14
DECK GIRDERS 150X150X7 [mm] 16,485
DECK TRANSVERSES 150X8 [mm] 9,42
BOW
BAR STEMS 3.2.10/1.1
PLATE STREMS 3.2.10/3.5
SM = 871,41 cm^3
l length of vessel, in m (ft), as
defined in 3-1-1/3
t = 32 [mm]
w = 140 [mm]
l= 4,68 m
h= 2,19 m
b= 3,71 m
c= 0,60
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
l = 2,08
h = 2,1936
s = 1,56
SM = 69,29
SM = 69,29 cm^3
l = 6,24
h = 2,19356
s = 2,18
SM = 871,41
𝑡 = 0,625 ∗ 𝐿 + 6,35 𝑚𝑚
𝑤 = 1,25 ∗ 𝐿 + 90 𝑚𝑚
𝑡 =
𝒔√ 𝒉
𝟐𝟓𝟒
+ 𝟐, 𝟓 [𝒎𝒎]
s
h
d
l
depth, D, in m (ft), as defined in 3-1-1/7.1, but
not less than 0.1L or 1.18d,
whichever is greater
draft for scantlings, as defined in 3-1-1/9,
or 0.066L, whichever is greater
length of vessel, in m (ft), as defined in 3-1-
1/3
frame spacing, in mm (in.)
]
P á g i n a 21 | 34
WEIGHT 70.65[KG/M^2]
DECK, SUPERSTRUCTURE AND DECK HOUSE
UPPER DECK EXPOSED
SHELL DECK
𝑡 = 6 [𝑚𝑚]
SHELL FRONT BULKHEADS
tsele 8,00 mm
SHELL END BULKHEADS
tsele 7,00 mm
L= 39,77
h= 0,99
s= 520,00
q= 1,81
σΥ= 130,00
t 4,55
tmin= 4,00
t= 6,00
s = 610 [mm]
h1 = 5,7 [mts]
h2 = 3,977 [mts]
h3 = 3,10 [mts]
h = 5,7 [mts]
d1 = 2,5 [mts]
d2 = 0 [mts]
d = 2,50 [mts]
L = 39,77 [mts]
t = 9,00 [mm]
𝑡 = 𝑠 ∗
√ 𝑞ℎ
272
+ 2
𝑡 = (
𝑠√ 𝑞
0,6
) (6 + 0,02 ∗ 𝐿)
𝑡 = (
𝑠√ 𝑞
0,6
) (5 + 0,02 ∗ 𝐿)
P á g i n a 22 | 34
SHELL SIDE
tsele 9,00 mm
KG/M^2
FRONT
BULKHEADS
8,00
7850
62,8
END
BULKHEADS
7,00
54,95
SIDE 9,00 70,65
GIRDERS
q 1,81
l= 1,56
b= 8,38
h 0,99
c 0,60
SM= 170,25
SM25%= 212,81
WEBS
q 1,81
l= 8,21
s 1,56
h 0,99
c 0,60
SM= 485,60
SM25%= 607,00
LONGITUDINAL
q 1,81
l= 1,56
s 0,52
h 0,99
c 0,70
SM= 6,82
SM25%= 8,52
Belowwe presentthe summaryof the structural elementsof the superstructure withthe
weightperunit length.
DECKHOUSE SIDE [KG/M^3] KG/M
GIRDER 150X100X9
2700
6,075
FRAME 50X9 1,215
WEB 110X9 2,673
BULKHEADS NO EXPOSED
GIRDER 120X70X8
2700
4,104
WEB 60X7 1,134
BULKHEADS EXPOSED
GIRDER 160X100X8
2700
5,616
WEB 80X80X8 3,456
KG/M^3 KG/M
GIRDERS 100X70X6 2,754
WEBS 100X9 2,43
LONGITUDINALS 50X6 0,81
2700
𝑡 = ( 𝐶1 + 0,045 ∗ 𝐿) ∗ √ 𝑞
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
P á g i n a 23 | 34
SECONDDECK
[KG/M^3] KG/M^2 KG/M
SHELL 6 [mm]
7850
47,1
BEAMS 50X10 [mm] 3,925
DECK GIRDERS 100X70X10 [mm] 13,345
DECK TRANSVERSES 150X70X10 [mm] 17,27
DECKHOUSE SIDE
GIRDER 90X9
2700
2,187
FRAME 100X70X9 4,131
WEB 50X6 0,81
BULKHEADS NO EXPOSED
GIRDER 120X60X6
2700
2,916
WEB 60X7 1,134
BULKHEADS EXPOSED
GIRDER 100X50X9
2700
3,645
WEB 60X7 1,134
CHAPTER 6
LONGITUDINAL HULL GIRDER STRENGHT
Whenthe shiphull issubjectedtoexcessivelongitudinal bendingmoment,bucklingandyielding
of plates and stiffeners take place progressively and the ultimate strengthof the cross-section
isattained.The ultimate longitudinal bendingstrengthisone of the mostfundamental strength
of a ship hull girder.
Inthe sectionof ABS3.2.1the minimumrequiredvaluesof thesectionalmodulewill beobtained
in the midship section, rememberthatvalidfor all
vessels having breadths,B, which do not exceed two
times their depths, D.
Figure 8 MIDSHIP SECTION
P á g i n a 24 | 34
𝑆𝑀 = 𝐶1 𝐶2 𝐿2 𝐵( 𝐶 𝑏 + 0.7) [𝑚 − 𝑐𝑚2]
𝐶1 = 11.35 − 0.11𝐿 35 ≤ 𝐿 < 45
𝐶2 = 0.01
L = length of vessel, as defined in 3-1-1/3, in m (ft)
B = breadth of vessel, as defined in 3-1-1/5, in m (ft)
Cb = block coefficient at design draft, based on the length, L, measured on the design load
waterline. Cb is not to be taken as less than 0.60.
𝐿 = 39.77 [ 𝑚𝑡𝑠]
𝐵 = 8.3 [mts]
𝐶 𝑏 =0.556
𝑆𝑀 = 1150.12 [ 𝑚 − 𝑐𝑚2]
SECTION MODULUS DIRECT METHOD
To determine if a steel section can be curved you need to first determine its section modulus
and thensee if youhave the correctbendingequipment.Sectionmodulusisthe directmeasure
of the strength of the steel. Bending a steel section that has a larger section modulus than
another will be stronger and harder to bend. Section modulus is a geometric property for a
givencross-sectionusedinthedesignofflexuralmembers.Inthe caseforbendingasteel section
itis importanttocalculate ‘S’bytakingthe momentof inertiaof the areaof the cross sectionof
a structural member– dividedbythe distance fromthe neutral axistothe furthestpointof the
steel section.Thisiswhere the steel will bendfirst. The bendingmomentthatit takes to yield
that section equals the section modulus times the yield strength.
y [m] 4,03
Inercia [m2 cm2] 1,591 15913,90
SM deck [m cm2] 0,401 4012,82
SM bottom[mcm2] 0,789 7889,43
D [m] 8,00
[D-y] [m] 3,97
σx [N/mm2] 160,00
σx [N/m2] 1,60E+08
M max [N m] 1,26E+08
P á g i n a 25 | 34
0,208 0,839 1672,496 4,977 0,001
A [m2] Ad [m2] d^2 [m2] Ad^2 Io [m4]
i Descripcion x [m] y [m] d [m] ϴ [°] ϴ [rad] A [m2] Ad [m2] d^2 [m2] Ad^2 Io [m4]
Main Deck 4,060 0,006 3,72 0 0,000 2,4E-02 9,1E-02 13,84 3,37E-01 7,31E-08
Upper Deck 4,060 0,006 6,03 0 0,000 2,4E-02 1,5E-01 36,36 8,86E-01 7,31E-08
Sky Deck 4,060 0,006 8,320 0 0,000 2,4E-02 2,0E-01 69,22 1,69E+00 7,31E-08
Side M. Deck 0,007 3,000 2,160 90 1,571 2,1E-02 4,5E-02 4,67 9,80E-02 8,58E-08
Side U. Deck 0,009 2,310 4,875 90 1,571 2,1E-02 1,0E-01 23,77 4,94E-01 1,40E-07
Side S. Deck 0,006 2,290 7,170 90 1,571 1,4E-02 9,9E-02 51,41 7,06E-01 4,12E-08
Chine 0,250 0,009 0,700 0 0,000 2,3E-03 1,6E-03 0,49 1,10E-03 1,52E-08
Bottom 3,850 0,008 0,410 10 0,175 3,1E-02 1,3E-02 0,17 5,18E-03 1,15E-03
0,008 0,270 0,250 90 1,571 2,2E-03 5,4E-04 0,06 1,35E-04 1,15E-08
0,150 0,008 0,450 0 0,000 1,2E-03 5,4E-04 0,20 2,43E-04 6,40E-09
0,008 0,270 0,570 90 1,571 2,2E-03 1,2E-03 0,32 7,02E-04 1,15E-08
0,150 0,080 0,700 0 0,000 1,2E-02 8,4E-03 0,49 5,88E-03 6,40E-06
0,008 0,100 0,190 90 1,571 8,0E-04 1,5E-04 0,04 2,89E-05 4,27E-09
0,008 0,100 0,280 90 1,571 8,0E-04 2,2E-04 0,08 6,27E-05 4,27E-09
0,008 0,100 0,380 90 1,571 8,0E-04 3,0E-04 0,14 1,16E-04 4,27E-09
0,008 0,100 0,560 90 1,571 8,0E-04 4,5E-04 0,31 2,51E-04 4,27E-09
0,008 0,100 0,660 90 1,571 8,0E-04 5,3E-04 0,44 3,48E-04 4,27E-09
Chine Stiffener I 0,008 0,100 0,760 90 1,571 8,0E-04 6,1E-04 0,58 4,62E-04 4,27E-09
0,180 0,007 1,660 0 0,000 1,3E-03 2,1E-03 2,76 3,47E-03 5,15E-09
0,180 0,007 2,660 0 0,000 1,3E-03 3,4E-03 7,08 8,92E-03 5,15E-09
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10
0,007 0,150 3,660 90 1,571 1,1E-03 3,8E-03 13,40 1,41E-02 4,29E-09
0,150 0,007 3,600 0 0,000 1,1E-03 3,8E-03 12,96 1,36E-02 4,29E-09
0,007 0,150 3,660 90 1,571 1,1E-03 3,8E-03 13,40 1,41E-02 4,29E-09
0,150 0,007 3,600 0 0,000 1,1E-03 3,8E-03 12,96 1,36E-02 4,29E-09
0,110 0,009 4,260 0 0,000 9,9E-04 4,2E-03 18,15 1,80E-02 6,68E-09
0,110 0,009 4,700 0 0,000 9,9E-04 4,7E-03 22,09 2,19E-02 6,68E-09
0,050 0,009 4,640 90 1,571 4,5E-04 2,1E-03 21,53 9,69E-03 9,38E-08
0,110 0,009 5,660 0 0,000 9,9E-04 5,6E-03 32,04 3,17E-02 6,68E-09
0,050 0,009 5,710 90 1,571 4,5E-04 2,6E-03 32,60 1,47E-02 9,38E-08
0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08
0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08
0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08
0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08
0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08
0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08
0,100 0,008 6,030 90 1,571 8,0E-04 4,8E-03 36,36 2,91E-02 6,67E-07
0,008 0,100 5,980 0 0,000 8,0E-04 4,8E-03 35,76 2,86E-02 6,67E-07
0,100 0,008 6,030 90 1,571 8,0E-04 4,8E-03 36,36 2,91E-02 6,67E-07
0,008 0,100 5,980 0 0,000 8,0E-04 4,8E-03 35,76 2,86E-02 6,67E-07
Sky deck - Side -
Stiffeners I
0,100 0,009 6,450 0 0,000 9,0E-04 5,8E-03 41,60 3,74E-02 6,08E-09
0,110 0,009 6,810 0 0,000 9,9E-04 6,7E-03 46,38 4,59E-02 6,68E-09
0,009 0,050 6,780 90 1,571 4,5E-04 3,1E-03 45,97 2,07E-02 3,04E-09
0,110 0,009 8,050 0 0,000 9,9E-04 8,0E-03 64,80 6,42E-02 6,68E-09
0,009 0,050 8,010 90 1,571 4,5E-04 3,6E-03 64,16 2,89E-02 3,04E-09
0,006 0,070 8,320 90 1,571 4,2E-04 3,5E-03 69,22 2,91E-02 1,26E-09
0,006 0,070 8,320 90 1,571 4,2E-04 3,5E-03 69,22 2,91E-02 1,26E-09
0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10
0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10
0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10
0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10
0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10
0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10
Sky deck - Deck
Deck girder L
Upper Deck -Side
Upeer Deck - Deck I
Upper Deck - Girder
Sky deck - Side -
Stiffeners L
Bottom Girder L
Bottom stiffeners I
Deck Stiffeners I
Side Girder
P á g i n a 26 | 34
This analysis was carried out in order to test in the first instance if the scantillating values are
correct, so we see that the sectional module of the direct mode is greater than the norms
required,afterthischeckwe continue to obtain the values of the moments and shear forces.
Althoughthe standarddoesnotask for thisanalysistobe done for vesselslessthan61 meters,
we will perform it.
Wave Bending Moment Amidships.
𝑀 𝑤𝑠 = −𝐾1 𝐶1 𝐿2 𝐵( 𝐶 𝑏 + 0.7) 𝑋10−3 𝑆𝐴𝐺𝐺𝐼𝑁𝐺 𝑀𝑂𝑀𝐸𝑁𝑇
𝑀 𝑤ℎ = +𝐾2 𝐶1 𝐿2 𝐵( 𝐶 𝑏 + 0.7) 𝑋10−3 𝐻𝑂𝐺𝐺𝐼𝑁𝐺 𝑀𝑂𝑀𝐸𝑁𝑇
𝑀 𝑆𝑂 = 52𝐿3 𝐵( 𝐶𝑏 + 0.7) 𝑥10−3 𝑆𝑇𝐼𝐿𝐿 𝑊𝐴𝑇𝐸𝑅
𝐾1 = 110
𝐾2 = 190
𝐶1 = 0.044𝐿 + 3.75 [
𝑆𝐼
𝑀𝐾𝑆
]
𝐿 = 49.77 [𝑚𝑡𝑠]
𝐵 = 8.3 [𝑚𝑡𝑠]
𝐶 𝑏 = 0.556
𝑀 𝑤𝑠 = 9975.27 [𝐾𝑁 − 𝑚]
𝑀 𝑤ℎ = 17230.0 [𝐾𝑁 − 𝑚]
𝑀 𝑆𝑂 = 6688.36 [𝐾𝑁 − 𝑚]
Wave Shear Force.
𝐹𝑤𝑝 = 𝑘𝐹1 𝐶1 𝐿𝐵( 𝐶 𝑏 + 0.7) 𝑋10−2 𝐹𝑂𝑅 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸 𝑆𝐻𝐸𝐴𝑅 𝐹𝑂𝑅𝐶𝐸
𝐹𝑤𝑛 = −𝑘𝐹2 𝐶1 𝐿𝐵( 𝐶 𝑏 + 0.7) 𝑋10−3 𝐻𝑂𝐺𝐺𝐼𝑁𝐺 𝑀𝑂𝑀𝐸𝑁𝑇
𝐹𝑤𝑝 = 600 [ 𝐾𝑁]
𝐹 𝑤𝑁 = 600[ 𝐾𝑁]
CHAPTER 7
LONGITUDINAL STRENGTH
At the outset, it is useful to know the difference between global and local strength of ships.
Longitudinal strengthisalsocalledasglobal strength.Global strengthpertainstoassessingthe
strength of the entire ship when it is floating in still water or in waves. Local strength, on the
otherhand,isaboutassessingthe strengthof alocalizedstructure,likeagirderoralongitudinal
for loads experienced locally
P á g i n a 27 | 34
When talk about ship which is floatingin water. It is loaded with cargo, in this case passenger,
equipment, and its tanks are filled depending on the operational requirements (called the
loading condition,e.g., ballast departure/arrival OR fully loaded departure/arrival etc.). In the
openocean,itwill alsoexperiencewaves.Iwanttoknow whetherthe shiphasenoughstrength
to withstand this loading. What do I calculate? What do I check it against?
For the strength calculation, what is more importantis not the total load on the ship(which is
Total Weight minus Total Buoyancy, and is zero for a ship in equilibrium), but the Load
Distributionalongthe lengthof theship.Toelaborate,thismeanshow theweightandbuoyancy
are distributedalongthe ship’slength.Forexample,if the machineryof the shipis locatedaft,
then the weight distribution will show heavier weights towards aft. Similarly, if the shiphas a
fuller bow, then the forward portion of the ship carries more buoyancy, and so the buoyancy
distribution will show higher buoyancy in the fwd of the ship.
In the following tableswe show the distribution of weightsthat have been typed in MAXSURF
STABILITY.
We present the distribution of tanks, fresh
water, bilges, oil, fuel, sludge tank, saltwater,
gray water, black, ballast.
Once the distributions of all items of
deadweight have been added to the
Lightweight curve, then we will arrive at the
final Weight Distribution Curve. It may look
something like this:
P á g i n a 28 | 34
Deadweight comprisesof cargo, fuel oil, ballast,freshwater etc (i.e.,the variable loads on the
ship).To add a deadweightitem, we justfollow the procedure asdescribedinthe beginningof
thissectionbycreatingthe trapeziumandaddingitto the existingweightcurve.Inmostcases,
the loaddistributionwillbe arectangle (boththe ordinatesof thetrapeziumwillbe same),since
most deadweight items are uniformly distributed along their geometrical length.
LOADCASE
ENGINE ESTRIBOR 1 1.9 1.9 17 15 17.82 -
1.628
1.12
ENGINE BABOR 1 1.9 1.9 16.71 15 17.82 1.628 1.12
EJEbabpor 1 1.6 1.6 8.42 1.67 15.17 1.634 0.64
eje estribor 1 1.6 1.6 8.42 1.67 15.17 -
1.634
0.64
GENERADOR BABOR 1 1.64 1.64 15.67 14.18 16.74 -
3.289
1.49
GENERADOR ESTRIBOR 1 1.64 1.64 15.67 14.18 16.74 3.289 1.49
GENERADOR 500 1 1.85 1.85 18 17 20 0 1.12
GEARBOX BABOR 1 0.482 0.482 14.8 14.8 14.8 -
1.628
1.1
GEARBOX ESTRIBOR 1 0.482 0.482 14.8 14.8 14.8 1.628 1.1
HELICE 1 0.2 0.2 1.662 1.662 1.662 -
1.628
0.64
HELICE 1 0.2 0.2 1.662 1.662 1.662 1.628 0.64
Bahuer compressorbsbsor 1 0.5 0.5 7 6.44 7.6 0 0
Bauer vompressor estribor 1 0.5 0.5 7 6.44 7.6 -1.68 0
kasser 1 1 1 5 4.2 5.8 1.68 0
RUDDER BABOR 1 2.1 2.1 1 0.5 1.7 1.634 0.75
RUDDER ESTRITOR 1 2.1 2.1 1 0.5 1.7 -
1.634
0.75
SUBTOTAL 19.694 10.50
2
0.043 0.9
COCINA 1 0.148 0.148 19.17
6
19.17
6
19.17
6
-
2.821
1.63
4
FREIDORA 1 0.045 0.045 20.38
4
20.38
4
20.38
4
-
3.589
1.79
7
MESA DECOEMDOR 1 0.08 0.08 23.65
8
22.4 25 -
0.815
1.99
COOLEREDE CARNES 1 0.595 0.595 20.74
4
19 22.44 1.7 2.7
REFRI DE VEGETALES 1 0.147 0.147 20.74
4
19 22.44 2.823 2.7
CAMATRIPULA1 1 0.1 0.1 26.38
9
25 27.1 -
3.559
2.7
CAMATRIPULA2 1 0.1 0.1 26.39 25 27.1 -
2.125
2.7
CAMATRIPULA 3 1 0.1 0.1 26.39 25 27.1 -
1.095
2.7
CAMATRIPULA 4 1 0.1 0.1 26.39 25 27.1 -
0.066
2.7
CAMA DEGUIAS 1 0.1 0.1 29.95 29.2 31 -
2.283
2.7
ASIENTO DEPLATAFORMA DE
BUCEO
1 1.68 1.68 4.45 1.95 7 0 3.8
TANNQUES DENBUCEO 1 0.511 0.511 4.45 1.95 7 0 4.15
CAMA DEPASAJEROS1 1 0.1 0.1 16.88 15.6 17.8 -1.7 4.37
2
CAMA DE PASAJEROS2 1 0.1 0.1 21.22
3
20.3 22.5 -1.7 4.37
2
CAMA DEPASAJEROS3 1 0.1 0.1 25.73 25 26.5 -1.7 4.37
2
CAMA DEPASAJEROS4 1 0.1 0.1 31.28
3
30 32.6 -1.7 4.37
2
CAMA DEPASAJEROS5 1 0.1 0.1 16.88 15.6 17.8 1.7 4.37
2
P á g i n a 29 | 34
CAMA DEPASAJEROS6 1 0.1 0.1 21.22
3
20.3 22.5 1.7 4.37
2
CAMA DEPASAJEROS7 1 0.1 0.1 25.73 25 26.5 1.7 4.37
2
camade pasajero 8 1 0.1 0.1 31.28
3
30 32.6 1.7 4.37
2
YACU 1 1.7 1.7 9.35 8.07 10.68 0 9.24
CASCO 1 134 134 20.76 0 41 0 2.46
SUPERESTRUCTURA 1 39 39 19.04
1
9.14 27.27 0 6.9
Plantade tratamiento 1 3.4 3.4 12.14 9.46 12.48 -2.4 1.35
TUBERIAS SISTEMAS 1 44 44 27.6 7.546 25.67
6
0 2.36
7
Tanquesde presion 4 0.023 0.092 11.02 9.46 12.48 0 2.3
Calentador 50 l 1 0.071 0.071 10.5 9.46 12.48 0 1.8
calentador 150l 1 0.196 0.196 10 9.46 12.48 0 1.8
separador sentinas 1 0.68 0.68 10 9.46 12.48 -1 2.6
CO2 (6) 1 0.63 0.63 9.2 9.2 9.2 -3 2
CO2 (3) 1 0.315 0.315 18.6 18.6 18.6 3.5 2
agua dulce 95
%
13.34
1
12.674 13.341 12.674 11.15
7
-
0.086
1.20
7
tanque de sentinas 95
%
1.605 1.525 1.957 1.859 13.34
1
-
0.007
0.75
2
tanque de aceite 95
%
1.981 1.882 2.153 2.045 14.88
1
-
0.006
0.68
8
de lodos 95
%
0.119 0.113 0.131 0.124 17.41
2
0 0.40
5
DIESEL 95
%
25.84
6
24.553 30.769 29.23 21.10
6
-
0.069
0.79
4
AGUA SALADA 95
%
26.79
5
25.455 26.141 24.834 26.99
9
-
0.072
0.80
1
GRISES NEGRAS 95
%
7.2 6.84 7.886 7.492 31.19
6
-
1.133
0.82
7
GRISES NEGRAS 95
%
7.2 6.84 7.886 7.492 31.20
5
1.096 0.82
7
SUMINERO 30
%
62.54
6
18.764 61.02 18.306 36.03
1
-0.02 1.10
9
diesel daily 95
%
0.932 0.886 1.11 1.054 13.28
2
2.799 2.08
5
Diesel daily 95
%
0.932 0.886 1.11 1.055 13.28
2
-
2.811
2.08
5
INODORO/lavamanos 30 0.024 0.72 30 30 30 0 3.8
EQUIPAJE 27 0.03 0.81 24.35 24.35 24.35 0 3.9
EQUIPOS DENAVEGACION 1 10 10 20 0 41 0 6
PESO PARA EL ASENTAMIENTO 1 12 12 5 5 5 0 2.5
Total Loadcase 372.23
2
153.50
3
106.16
5
21.25
9
-
0.038
2.55
4
-20
-15
-10
-5
0
5
10
15
20
25
30
-5 0 5 10 15 20 25 30 35 40 45
Mass[t/m]
Buoyancy[t/m]
Position longitudinal [m]
P á g i n a 30 | 34
Once we have the Weightdistribution,thenextstepistocreate thebuoyancydistributioncurve.
The basicideais same – to plotthe loaddue to buoyancyat each pointalongthe lengthof the
ship.
The buoyancy force is determinedby the shape of the underwater hull, and it is the weight of
the water displaced by the underwater hull. With this understanding, we can see that the
buoyancydistributionissame as the volume distributionof the underwaterportionof the hull.
If the underwatervolumeisdividedintosectionsof unitlengthalongitslength,thenthe volume
of the underwaterhullisnothingbutanintegration(orsum)of the areasof thesesectionsalong
the ship’slength.Thus,the buoyancydistributionisaplotof the sectionareasof sectionsalong
the length of the underwater body of the hull.
Draft Amidships m 2.498
Displacement t 372.2
Heel deg -0.9
Draft at FPm 2.749
Draft at AP m 2.248
Draft at LCF m 2.488
Trim (+ve by stern) m -0.501
WL Length m 40.955
Beam max extents on WL m 7.886
Wetted Area m^2 399.967
Waterpl. Area m^2 297.296
Prismatic coeff. (Cp) 0.608
Block coeff. (Cb) 0.277
Max Sect. area coeff. (Cm) 0.661
Waterpl. area coeff. (Cwp) 0.921
LCB from zero pt. (+ve fwd) m 21.28
LCF from zero pt. (+ve fwd) m 19.553
KB m 1.844
KG m 4.12
BMt m 3.796
BML m 103.689
GMt m 1.52
GML m 101.412
KMt m 5.64
KML m 105.513
Immersion (TPc) tonne/cm 3.047
MTc tonne.m 9.24
RMat 1deg = GMt.Disp.sin(1) tonne.m 9.876
Max deck inclination deg 1.1324
Trim angle (+ve by stern) deg -0.7024
-800
-600
-400
-200
0
200
400
600
-5 0 5 10 15 20 25 30 35 40 45
MOMENT[tonm]
Shearforce[ton]
POSITION LONGITUDINAL [m]
P á g i n a 31 | 34
Integration of the Load Curve to get Shear Force Curve
Nowthat we have the load curve, we needtointegrate itto getthe ShearForce Curve.What is
this integration, and how is it carried out?
The Shear Force at any point along the length can be found out by adding the area under the
loadcurve up to that point.Forexample,if we wantto findoutthe ShearForce on the vessel at
a locationx =L/4 alongitslength(where Listhe total lengthof the vessel),thenwe needtoadd-
up the area under the load curve from x = 0 (aft end) to x = L/4. This process is called the
integration of load curve to obtain Shear Force, and is shown below.
The above processof findingthe shearforce isdone at differentlocations(usuallythe stations)
alongthe lengthof the vessel.Thisgivesusthe ShearForce valuesat these locations.If we plot
all these Shearforce valuesalongthelengthof the vessel,thenwe obtainthe ShearForce Curve,
which looks like the green curve in the above picture
Integration of the Shear Force Curve to get Bending Moment Curve
In a similarfashionasdone withthe loadcurve,we use the ShearForce curve toobtainthe
ordinatesof the BendingMomentatdifferentlocationsalongthe ship’slength,andplotthese
pointstoobtainthe BendingMomentCurve of the ship.It lookssomethinglike this:
P á g i n a 32 | 34
CHAPTER 8
VALIDATION OF STRUCTURAL ELEMENTS BY ANSYS
The maindeck structure ispresentedinamiddle section,the edgeswere taken,butthe tertiary
reinforcements are taken free only the secondary reinforcements and the helmet is taken as
empoted
𝑃𝑚𝑎𝑖𝑛 𝑑𝑒𝑐𝑘 = 0.02𝐿 + 0.45 [ 𝑚𝑡𝑠]
ℎ = 1.4[ 𝑚𝑡𝑠]
𝑃 = 𝑁 ∗ ℎ
𝑃 = 13.72 [
𝐾𝑁
𝑚2
]
In the first graph we show a panel of the main deck which we have as border conditions
embedded edges since the section was taken from bulkhead to bulkhead the panel we are
analyzing is the longest of the ship has a length of 6.24 meters,
It showsthe numberof elements,nodesandaverage accuracyaccordingto the mesh.A 10 mm
mesh was used for large elements and 1 mm for small items
According to ABS 3.2.12 / 9.1, the maximum deflection to reach a panel is 0.0044 times the
greater spacing, in this case you have 0.0044 * 1.56m = 0.0069m, that is to say it can be flected
up to 7mm, compared with the structure you have a deformation of 3.5 mm. Therefore,it satisfies
the deflection range.
P á g i n a 33 | 34
Inthe followinggraphwe realize the differentvaluesof the effortandwe realizethatinthe part
that we put thatis embedded,the greatesteffortisgenerated,soitwasdecidedtoanalyze the
same section with a section of the lining with the respective structural arrangements.
The valuesinthe recessededgeswiththe structural arrangementsdecreased,thatis,the hard
pointswere dissipatedwithasquare,itshouldbe rememberedthatthe creepeffortof the
steel is235 N / mm ^ 2. You have a safetyfactorof 0.64
Anotherareaanalyzedwasthe divingplatformwithanintermediatebulkheadwhich,as
expected,increasedresistance isgreaterdue tothe structural elementsthatmake themup.
P á g i n a 34 | 34
CONCLUSIONS
 When analyzing the distribution of weights and with that obtaining the values of the
bending moment we verify that its maximum value is 778,325 [ton-m], in the worst
conditionwithTROCOIDALwave and using the formulaz = M / 175 10 ^ 3 [cm ^ 3] we
obtainthatthe sectional moduleis4447.57 cm ^ 3 andthe one obtainedis7889.43 cm^
3
 Inansys the scantlingof the middlesectionof theboatwasvalidatedbymeansofAnsys,
verifying that the deformation and equivalent stress are within the allowed range.
References
A. American Bureau of Shipping, STEEL VESSELS UNDER 90 METERS (295 FEET)
IN LENGTH, 2017.
B. GUIDE FOR BUILDINGAND CLASSINGYACHTS JANUARY 2019 HULL
CONSTRUCTION AND EQUIPMENT

More Related Content

What's hot

Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...
Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...
Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...
Fiorella58v
 
Student Book Module 2
Student Book Module 2Student Book Module 2
Student Book Module 2
Laos Australia Institute
 
Excel - Formula Bible
Excel - Formula BibleExcel - Formula Bible
Excel - Formula Bible
Movis 2769
 
Gate brouchre
Gate brouchreGate brouchre
Gate brouchre
debabratrath
 
Winter Internship at WSS Ahmedabad
Winter Internship at WSS Ahmedabad Winter Internship at WSS Ahmedabad
Winter Internship at WSS Ahmedabad
RonakPandya10
 
Mi manual fisica 2
Mi manual fisica 2Mi manual fisica 2
Mi manual fisica 2
americo alvarez
 
SUA-DEST carpentry workshop training manual-kahimba
SUA-DEST carpentry workshop training manual-kahimbaSUA-DEST carpentry workshop training manual-kahimba
SUA-DEST carpentry workshop training manual-kahimba
jumanne joseph
 
User-guide Tool Book 11
User-guide Tool Book 11User-guide Tool Book 11
User-guide Tool Book 11
William Finol
 
Violation of Human Rights at Workplace
Violation of Human Rights at Workplace Violation of Human Rights at Workplace
Violation of Human Rights at Workplace
Marya Kumari
 
55591
5559155591
55591
Mick Duck
 
1.what is a paragraph
1.what is a paragraph1.what is a paragraph
1.what is a paragraph
En Chomrong
 
Resource-Based Internationalisation of Professional Business Services: Case ...
Resource-Based Internationalisation of Professional Business Services:  Case ...Resource-Based Internationalisation of Professional Business Services:  Case ...
Resource-Based Internationalisation of Professional Business Services: Case ...
Tommi Pelkonen
 
Gheorghe M. T. Radulescu
Gheorghe M. T. RadulescuGheorghe M. T. Radulescu
Gheorghe M. T. Radulescu
Gheorghe Radulescu
 
Phrasalverb
PhrasalverbPhrasalverb
Phrasalverb
itu
 
Research Project Kamanja
Research Project KamanjaResearch Project Kamanja
Research Project Kamanja
Ian Kamanja
 
QC 03 Tajweed for Everyone by TIS
QC 03 Tajweed for Everyone by TISQC 03 Tajweed for Everyone by TIS
QC 03 Tajweed for Everyone by TIS
Muhammad Tahir Bashir
 
Income tax law_2009__english__provisional_translation[1]
Income tax law_2009__english__provisional_translation[1]Income tax law_2009__english__provisional_translation[1]
Income tax law_2009__english__provisional_translation[1]
gasemmehrban
 
Contract Administration Services Study
Contract Administration Services StudyContract Administration Services Study
Contract Administration Services Study
Thomas F. Kaplan and Associates
 

What's hot (18)

Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...
Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...
Water-Wise Landscaping: Guide for Water Management Planning - Utah State Univ...
 
Student Book Module 2
Student Book Module 2Student Book Module 2
Student Book Module 2
 
Excel - Formula Bible
Excel - Formula BibleExcel - Formula Bible
Excel - Formula Bible
 
Gate brouchre
Gate brouchreGate brouchre
Gate brouchre
 
Winter Internship at WSS Ahmedabad
Winter Internship at WSS Ahmedabad Winter Internship at WSS Ahmedabad
Winter Internship at WSS Ahmedabad
 
Mi manual fisica 2
Mi manual fisica 2Mi manual fisica 2
Mi manual fisica 2
 
SUA-DEST carpentry workshop training manual-kahimba
SUA-DEST carpentry workshop training manual-kahimbaSUA-DEST carpentry workshop training manual-kahimba
SUA-DEST carpentry workshop training manual-kahimba
 
User-guide Tool Book 11
User-guide Tool Book 11User-guide Tool Book 11
User-guide Tool Book 11
 
Violation of Human Rights at Workplace
Violation of Human Rights at Workplace Violation of Human Rights at Workplace
Violation of Human Rights at Workplace
 
55591
5559155591
55591
 
1.what is a paragraph
1.what is a paragraph1.what is a paragraph
1.what is a paragraph
 
Resource-Based Internationalisation of Professional Business Services: Case ...
Resource-Based Internationalisation of Professional Business Services:  Case ...Resource-Based Internationalisation of Professional Business Services:  Case ...
Resource-Based Internationalisation of Professional Business Services: Case ...
 
Gheorghe M. T. Radulescu
Gheorghe M. T. RadulescuGheorghe M. T. Radulescu
Gheorghe M. T. Radulescu
 
Phrasalverb
PhrasalverbPhrasalverb
Phrasalverb
 
Research Project Kamanja
Research Project KamanjaResearch Project Kamanja
Research Project Kamanja
 
QC 03 Tajweed for Everyone by TIS
QC 03 Tajweed for Everyone by TISQC 03 Tajweed for Everyone by TIS
QC 03 Tajweed for Everyone by TIS
 
Income tax law_2009__english__provisional_translation[1]
Income tax law_2009__english__provisional_translation[1]Income tax law_2009__english__provisional_translation[1]
Income tax law_2009__english__provisional_translation[1]
 
Contract Administration Services Study
Contract Administration Services StudyContract Administration Services Study
Contract Administration Services Study
 

Similar to Estre

Water-Wise Landscaping guide for water management planning - Utah State Unive...
Water-Wise Landscaping guide for water management planning - Utah State Unive...Water-Wise Landscaping guide for water management planning - Utah State Unive...
Water-Wise Landscaping guide for water management planning - Utah State Unive...
Kaila694m
 
Joomla! 3 newbie's_guide
Joomla! 3 newbie's_guideJoomla! 3 newbie's_guide
Joomla! 3 newbie's_guide
Chandan Kumar
 
SRS of software project lab 1
SRS of software project lab 1SRS of software project lab 1
SRS of software project lab 1
Arafat Zaman Anik
 
Aircraft Design Report
Aircraft Design ReportAircraft Design Report
Aircraft Design Report
Jill Brown
 
final print
final printfinal print
final print
Vishal Shah
 
Derivatives
DerivativesDerivatives
Derivatives
Gorani & Associates
 
Volunteer Manual
Volunteer ManualVolunteer Manual
Volunteer Manual
Bertrand Bhikarry
 
Estrategias para el desarrollo sostenible OCDE CAD
Estrategias para el desarrollo sostenible OCDE CADEstrategias para el desarrollo sostenible OCDE CAD
Estrategias para el desarrollo sostenible OCDE CAD
Anibal Aguilar
 
Report jaku analysis_of_botnet_campaign_en_0
Report jaku analysis_of_botnet_campaign_en_0Report jaku analysis_of_botnet_campaign_en_0
Report jaku analysis_of_botnet_campaign_en_0
Andrey Apuhtin
 
Oracle_Fusion_Intercompany_test_cases_01.pdf
Oracle_Fusion_Intercompany_test_cases_01.pdfOracle_Fusion_Intercompany_test_cases_01.pdf
Oracle_Fusion_Intercompany_test_cases_01.pdf
Ahmed Hendawy
 
Final Project - COMBINATION
Final Project - COMBINATIONFinal Project - COMBINATION
Final Project - COMBINATION
Felicity Phillips
 
Dissertation Final
Dissertation FinalDissertation Final
Dissertation Final
studiolight27
 
Odesa report
Odesa report Odesa report
Odesa report
Misha Roshinets
 
Doctrine Manual 1.2
Doctrine Manual 1.2Doctrine Manual 1.2
Doctrine Manual 1.2
guest9e8c7a
 
A Guide to style research performance attribution
A Guide to style research performance attributionA Guide to style research performance attribution
A Guide to style research performance attribution
indexcalculation
 
ezMaster User manual
ezMaster User manualezMaster User manual
ezMaster User manual
EnGenius Europe
 
Survey on corporate governance | Excellence Enablers
Survey on corporate governance | Excellence EnablersSurvey on corporate governance | Excellence Enablers
Survey on corporate governance | Excellence Enablers
SwatiDobriyal
 
Instruction Manual | Celestron NexStar 4SE Telescopes | Optics Trade
Instruction Manual | Celestron NexStar 4SE Telescopes | Optics TradeInstruction Manual | Celestron NexStar 4SE Telescopes | Optics Trade
Instruction Manual | Celestron NexStar 4SE Telescopes | Optics Trade
Optics-Trade
 
The Honohan Report
The Honohan ReportThe Honohan Report
The Honohan Report
ExSite
 
211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...
211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...
211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...
Wasiq Rauf
 

Similar to Estre (20)

Water-Wise Landscaping guide for water management planning - Utah State Unive...
Water-Wise Landscaping guide for water management planning - Utah State Unive...Water-Wise Landscaping guide for water management planning - Utah State Unive...
Water-Wise Landscaping guide for water management planning - Utah State Unive...
 
Joomla! 3 newbie's_guide
Joomla! 3 newbie's_guideJoomla! 3 newbie's_guide
Joomla! 3 newbie's_guide
 
SRS of software project lab 1
SRS of software project lab 1SRS of software project lab 1
SRS of software project lab 1
 
Aircraft Design Report
Aircraft Design ReportAircraft Design Report
Aircraft Design Report
 
final print
final printfinal print
final print
 
Derivatives
DerivativesDerivatives
Derivatives
 
Volunteer Manual
Volunteer ManualVolunteer Manual
Volunteer Manual
 
Estrategias para el desarrollo sostenible OCDE CAD
Estrategias para el desarrollo sostenible OCDE CADEstrategias para el desarrollo sostenible OCDE CAD
Estrategias para el desarrollo sostenible OCDE CAD
 
Report jaku analysis_of_botnet_campaign_en_0
Report jaku analysis_of_botnet_campaign_en_0Report jaku analysis_of_botnet_campaign_en_0
Report jaku analysis_of_botnet_campaign_en_0
 
Oracle_Fusion_Intercompany_test_cases_01.pdf
Oracle_Fusion_Intercompany_test_cases_01.pdfOracle_Fusion_Intercompany_test_cases_01.pdf
Oracle_Fusion_Intercompany_test_cases_01.pdf
 
Final Project - COMBINATION
Final Project - COMBINATIONFinal Project - COMBINATION
Final Project - COMBINATION
 
Dissertation Final
Dissertation FinalDissertation Final
Dissertation Final
 
Odesa report
Odesa report Odesa report
Odesa report
 
Doctrine Manual 1.2
Doctrine Manual 1.2Doctrine Manual 1.2
Doctrine Manual 1.2
 
A Guide to style research performance attribution
A Guide to style research performance attributionA Guide to style research performance attribution
A Guide to style research performance attribution
 
ezMaster User manual
ezMaster User manualezMaster User manual
ezMaster User manual
 
Survey on corporate governance | Excellence Enablers
Survey on corporate governance | Excellence EnablersSurvey on corporate governance | Excellence Enablers
Survey on corporate governance | Excellence Enablers
 
Instruction Manual | Celestron NexStar 4SE Telescopes | Optics Trade
Instruction Manual | Celestron NexStar 4SE Telescopes | Optics TradeInstruction Manual | Celestron NexStar 4SE Telescopes | Optics Trade
Instruction Manual | Celestron NexStar 4SE Telescopes | Optics Trade
 
The Honohan Report
The Honohan ReportThe Honohan Report
The Honohan Report
 
211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...
211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...
211466929-E-book-Impact-of-organization-justice-to-reduce-conflict-between-em...
 

Recently uploaded

哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样
哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样
哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样
a0pr7yf1
 
Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9
Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9
Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9
Cottage9 Enterprises
 
哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样
哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样
哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样
tc73868
 
一比一原版(BC毕业证)波士顿学院毕业证如何办理
一比一原版(BC毕业证)波士顿学院毕业证如何办理一比一原版(BC毕业证)波士顿学院毕业证如何办理
一比一原版(BC毕业证)波士顿学院毕业证如何办理
40fortunate
 
哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样
哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样
哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样
19rmjonz
 
ARNAUVALERY RECORD STORE SCAVENGER HUNT.
ARNAUVALERY RECORD STORE SCAVENGER HUNT.ARNAUVALERY RECORD STORE SCAVENGER HUNT.
ARNAUVALERY RECORD STORE SCAVENGER HUNT.
ValeryArnau
 
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Full CAD Project Cardiovascuwhore Debut PDF CAD Meena Pittman
Full CAD Project Cardiovascuwhore Debut PDF CAD Meena PittmanFull CAD Project Cardiovascuwhore Debut PDF CAD Meena Pittman
Full CAD Project Cardiovascuwhore Debut PDF CAD Meena Pittman
meenap32
 
一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理
一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理
一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理
taqyea
 
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
taqyea
 
➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka
➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka
➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
storyboard: Victor and Verlin discussing about top hat
storyboard: Victor and Verlin discussing about top hatstoryboard: Victor and Verlin discussing about top hat
storyboard: Victor and Verlin discussing about top hat
LyneSun
 
Barbie Made To Move Skin Tones Matches.pptx
Barbie Made To Move Skin Tones Matches.pptxBarbie Made To Move Skin Tones Matches.pptx
Barbie Made To Move Skin Tones Matches.pptx
LinaCosta15
 
Cherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintingsCherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintings
sandamichaela *
 
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...
❼❷⓿❺❻❷❽❷❼❽  Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...❼❷⓿❺❻❷❽❷❼❽  Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Kalyan Satta Matka Guessing Matka Result Main Bazar chart
 
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Minor_Michael_PowerPoint-Presentation.pptx
Minor_Michael_PowerPoint-Presentation.pptxMinor_Michael_PowerPoint-Presentation.pptx
Minor_Michael_PowerPoint-Presentation.pptx
MichaelMinor19
 
Portfolio of my work as my passion and skills
Portfolio of my work as my passion and skillsPortfolio of my work as my passion and skills
Portfolio of my work as my passion and skills
waljorylypil626
 
Ealing London Independent Photography meeting - June 2024
Ealing London Independent Photography meeting - June 2024Ealing London Independent Photography meeting - June 2024
Ealing London Independent Photography meeting - June 2024
Sean McDonnell
 

Recently uploaded (20)

哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样
哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样
哪里购买(ucr毕业证书)美国加州大学河滨分校毕业证研究生文凭证书原版一模一样
 
Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9
Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9
Tanjore Painting: Rich Heritage and Intricate Craftsmanship | Cottage9
 
哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样
哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样
哪里购买美国乔治城大学毕业证硕士学位证书原版一模一样
 
一比一原版(BC毕业证)波士顿学院毕业证如何办理
一比一原版(BC毕业证)波士顿学院毕业证如何办理一比一原版(BC毕业证)波士顿学院毕业证如何办理
一比一原版(BC毕业证)波士顿学院毕业证如何办理
 
哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样
哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样
哪里办理(sjsu毕业证书)美国圣何塞州立大学毕业证硕士文凭证书原版一模一样
 
ARNAUVALERY RECORD STORE SCAVENGER HUNT.
ARNAUVALERY RECORD STORE SCAVENGER HUNT.ARNAUVALERY RECORD STORE SCAVENGER HUNT.
ARNAUVALERY RECORD STORE SCAVENGER HUNT.
 
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
 
Full CAD Project Cardiovascuwhore Debut PDF CAD Meena Pittman
Full CAD Project Cardiovascuwhore Debut PDF CAD Meena PittmanFull CAD Project Cardiovascuwhore Debut PDF CAD Meena Pittman
Full CAD Project Cardiovascuwhore Debut PDF CAD Meena Pittman
 
一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理
一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理
一比一原版美国加州大学圣地亚哥分校毕业证(ucsd毕业证书)如何办理
 
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
 
➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka
➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka
➒➌➎➏➑➐➋➑➐➐ Kalyan Matka Satta Matka Dpboss Matka Guessing Indian Matka
 
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
 
storyboard: Victor and Verlin discussing about top hat
storyboard: Victor and Verlin discussing about top hatstoryboard: Victor and Verlin discussing about top hat
storyboard: Victor and Verlin discussing about top hat
 
Barbie Made To Move Skin Tones Matches.pptx
Barbie Made To Move Skin Tones Matches.pptxBarbie Made To Move Skin Tones Matches.pptx
Barbie Made To Move Skin Tones Matches.pptx
 
Cherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintingsCherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintings
 
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...
❼❷⓿❺❻❷❽❷❼❽  Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...❼❷⓿❺❻❷❽❷❼❽  Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...
❼❷⓿❺❻❷❽❷❼❽ Dpboss Matka ! Fix Satta Matka ! Matka Result ! Matka Guessing ! ...
 
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Matka Guessing Satta Matka Kalyan panel Chart Indian Matka ...
 
Minor_Michael_PowerPoint-Presentation.pptx
Minor_Michael_PowerPoint-Presentation.pptxMinor_Michael_PowerPoint-Presentation.pptx
Minor_Michael_PowerPoint-Presentation.pptx
 
Portfolio of my work as my passion and skills
Portfolio of my work as my passion and skillsPortfolio of my work as my passion and skills
Portfolio of my work as my passion and skills
 
Ealing London Independent Photography meeting - June 2024
Ealing London Independent Photography meeting - June 2024Ealing London Independent Photography meeting - June 2024
Ealing London Independent Photography meeting - June 2024
 

Estre

  • 1. P á g i n a 1 | 34 Contenido CHAPTER 1...........................................................................................................................4 INTRODUCTION................................................................................................................4 CHAPTER 2...........................................................................................................................5 OBJECTIVE........................................................................................................................5 CHAPTER 3...........................................................................................................................5 METHODOLOGY ...............................................................................................................5 CHAPTER 4...........................................................................................................................5 DISTRIBUTION STRUCTURAL..............................................................................................5 CHAPTER5............................................................................................................................7 SCANTLING.......................................................................................................................7 BOTTOM..........................................................................................................................8 SHELL PLATING 3.2.2/3.3.1 ............................................................................................8 ....................................................................................................................................8 BAR KEELS 3.2.10/11 .....................................................................................................8 GIRDERS 3.2.4/5.3.1 ......................................................................................................9 TRANSVERSE 3.2.4/5.3.1................................................................................................9 LONGITUDINAL FRAMES 3,2,4/5,3,1...............................................................................9 SIDE...............................................................................................................................10 SHELL PLATING 3,2,2/3,3,1 ..........................................................................................10 SIDE WEB FRAMES 3.2.5/7,1 ........................................................................................11 SIDE STRINGERS 3.2.5/11,1..........................................................................................11 TRANSVERSE FRAMES 3.2.5/11,1 .................................................................................11 DIVING PLATFORM.........................................................................................................12 SHELL PLATING ...........................................................................................................12 BEAMS 3.2.6/1.3 .........................................................................................................13 DECK GIRDERS 3.2.6/3.3 ..............................................................................................13 DECK TRANSVERSES 3.2.6/3.3......................................................................................13 MIDSHIP.........................................................................................................................14 BOTTOM........................................................................................................................14 SHELL PLATING 3.2.2/3.3.1 ..........................................................................................14 ..................................................................................................................................14 BAR KEELS 3.2.10/11 ...................................................................................................14 GIRDERS 3.2.4/5.3.1 ....................................................................................................15 TRANSVERSE 3.2.4/5.3.1..............................................................................................16
  • 2. P á g i n a 2 | 34 LONGITUDINAL FRAMES 3,2,4/5,3,1.............................................................................16 SIDE...............................................................................................................................17 SHELL PLATING 3,2,2/3,3,1 ..........................................................................................17 SIDE WEB FRAMES 3.2.5/7,1 ........................................................................................17 SIDE STRINGERS 3.2.5/11,1..........................................................................................18 TRANSVERSE FRAMES 3.2.5/11,1 .................................................................................18 MAIN DECK ....................................................................................................................18 SHELL PLATING ...........................................................................................................18 BEAMS 3.2.6/1.3 .........................................................................................................19 DECK GIRDERS 3.2.6/3.3 ..............................................................................................19 DECK TRANSVERSES 3.2.6/3.3......................................................................................20 BOW..............................................................................................................................20 BAR STEMS 3.2.10/1.1.................................................................................................20 ..................................................................................................................................20 PLATE STREMS 3.2.10/3.5............................................................................................20 DECK, SUPERSTRUCTURE AND DECK HOUSE.....................................................................21 UPPER DECK EXPOSED....................................................................................................21 SHELL DECK.................................................................................................................21 SHELL FRONT BULKHEADS ...........................................................................................21 SHELL END BULKHEADS ...............................................................................................21 SHELL SIDE..................................................................................................................22 GIRDERS.....................................................................................................................22 WEBS .........................................................................................................................22 LONGITUDINAL...........................................................................................................22 CHAPTER 6.........................................................................................................................23 LONGITUDINAL HULL GIRDER STRENGHT .........................................................................23 SECTION MODULUS DIRECT METHOD..............................................................................24 Wave Bending Moment Amidships...............................................................................26 Wave Shear Force. ......................................................................................................26 CHAPTER 7.........................................................................................................................26 LONGITUDINAL STRENGTH..............................................................................................26 LOADCASE..................................................................................................................28 Integration of the Load Curve to get Shear Force Curve ....................................................31 Integration of the Shear Force Curve to get Bending Moment Curve..................................31 CHAPTER 8.........................................................................................................................32 VALIDATION OF STRUCTURAL ELEMENTS BY ANSYS..........................................................32
  • 3. P á g i n a 3 | 34 CONCLUSIONS....................................................................................................................34 References.........................................................................................................................34
  • 4. P á g i n a 4 | 34 CHAPTER 1 INTRODUCTION This booklet is intended to present the scantling of ship for which followed the rules of classification “ABS RULES for STEEL VESSELS UNDER 90 METERS” For the layout structural is has that consider the distribution structural that more goodness notes for the ship in project; structural configuration tat you can use are as follows: 1. LONGITUDINAL 2. TRANSVERSAL 3. MIXED The final selectionof structural distributionwill dependonthe factors that affectthe designof the project Figure 1 LENGTHS SHIP MAIN DIMENSION ABS L = 39.77 [mts] 3.1.1/3.1 B = 8.3 [mts] 3.1.1/5 D = 5.7 [mts] 3.1.1/7.1 △ = 342.3 [ton] 3.1.1/11.1 d = 2.5 [mts] 3.1.1/9 Cb = 0.556 3.1.1/11.3 s = 520 [mm] Table 1 IMPUT DATA
  • 5. P á g i n a 5 | 34 CHAPTER 2 OBJECTIVE This booklet analyzes the structural strength of the preliminary design of a yacht. For a quick estimate of the bending moment and shear force CHAPTER 3 METHODOLOGY We proceededtocalculate distributive locate eachexistingweightinthe yacht. These weights were divided according to technological groups in order to maintain an order. With these weights distributedin the Hydromsx software,they perform the calculation of the shear and bending moment curves in the trocoid wave which we consider as the most critical condition,Inadditiontothis,the minimumbendingmomentestimate wascalculatedusingthe ABS classification and shear force, these results were compared with those given in the aforementioned program. CHAPTER 4 DISTRIBUTION STRUCTURAL Factor that generally affect the design of a naval structure are as follows:  The structural distribution must be adapted to the type of work or service of a ship  Find the minimum weight for maximum structural strength  The structural distribution should allow easy distribution and easy access  Apply methods of production appropriate  Qualified and experienced workforce For the configuration of the yacht we use a simple bottom to reduce the structural weight representedbythe doublebottom,becausethe regulationsinECUADORdonotrequire thatfor these types of boats it is double bottom, on the decks and bottom the configuration is longitudinal in the sides is transverse, for machine room it is mixed to decrease vibration 𝑠 = 470 + 𝐿 𝑟 0,6 𝑠 = 520 [𝑚𝑚] Once we getthe spacing,we made the structural scratch the planeswere made. Thenwe show the structural configuration plans Figure 2 TYPE OF LINES
  • 6. P á g i n a 6 | 34
  • 7. P á g i n a 7 | 34 ASTMA 131 steel isdesignatedfornaval specificationsandstructural constructionsof ships,this specificationisdesignated by ASTMA 131 / A 131M - 08 in charge of specifyingthe use of this steel fornaval constructionsandrepairs,whichcomprisestwolevelsof resistance,26whichare influenced in the mechanical properties of hardness and elongation. In the case of materials, thisstandardisusedforthemanufacture of sheetssuchasASTMA 131steel fornaval use,which is produced as a medium strength structural sheet, where its major characteristics are weldability and malleability. The mechanical properties of ASTM A 131 steel are presented below. GRADE Composición química (%) C MN≥ Si P S ASTMA131A 0.21 2.5 × C 0.5 0.035 0.035 GRADE mechanical characteristics TENSILE STRENGTH (MPa) PRODUCTION FORCE (MPa) % ELONGATION IN 2 MIN in.(50mm) AFFECTING THE TEST TEMPERATURE ASTMA131A 400-520 235 22 20 Table 2 DETAILS OF STEEL ASTMA131 Figure 3 MECHANICAL PROPERTIES OF THE MATERIAL CHAPTER5 SCANTLING For the scantlingof the resistanthull wedividedtheminthree partsthatare middle section, aft peakand fore peaksection,forthe part of resistanthelmetandmaincoveritis steel the super aluminum structure
  • 8. P á g i n a 8 | 34 BOTTOM SHELL PLATING 3.2.2/3.3.1 BAR KEELS 3.2.10/11 PROPORTION Thicknessesandwidthsother thangivenaboveare acceptable,providedthesectionmoduliand moments of inertiaaboutthe transversehorizontal axisare notlessthangivenabove,norish/t more than 4. 5. t thickness of bottom shell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater l length of vessel, in m (ft), as defined in 3-1-1/3 L lengthof vessel, in m (ft), as defined in 3-1-1/3 depth, in mm (in.) h t thickness, in mm (in.) t = 38 [mm] h1 = 159 [mm] h/t= 4,18 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎] t 7,39 [mm] s= 520 [mm] h= 5,70 [mts] d 2,62 [mts] l= 39,77 [mts] t = 8,00 [mm] 𝒉 = 𝟏, 𝟒𝟔 ∗ 𝑳 + 𝟏𝟎𝟎 𝒎𝒎 𝒕 = 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎 t 1,5 [in] 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎 h 6,5 [in] 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
  • 9. P á g i n a 9 | 34 GIRDERS 3.2.4/5.3.1 l= 4,72 m h= 5,70 m s= 2,11 m c= 0,92 PROPORTION DEPTH The minimumdepthof the girderortransverse istobe notlessthan2.5 timesthe depthof the cutouts for bottom frames, unless effective compensation for cutouts is provided TRANSVERSE 3.2.4/5.3.1 l= 4,22 m h= 5,70 m s= 1,57 m c= 0,92 SM = 1137 cm^3 LONGITUDINAL FRAMES 3,2,4/5,3,1 l= 1,57 m h= 5,70 m h2= 0,55 m h3= 0,46 m s= 0,52 m c= 1,00 m SM = 57 cm^3 c 0,915 h vertical distance, in m (ft), from the center of area supported to the deck at side s spacing, in m (in.) l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein l= 4,72 m h= 5,70 m s= 2,11 m c= 0,92 SM = 1912 cm^3 c 0,915 h vertical distance, in m (ft), from the center of area supported to the deck at side s spacing, in m (in.) l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein C 1.00 for longitudinal frames clear of tanks, and in way of tanks h vertical distance, in m (ft), from the center ofarea supported to the deck at side s spacing, in m (in.) l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein [KG/M^3] KG/M^2 KG/M SHELL 8 [mm] 7850 62,8 BAR KEELS 160X38 [mm] 477,28 GIRDER 270X140X8 [mm] 25,748 TRANSVERSE 270X8 [mm] 16,956 LONGITUDINAL FRAME 10X8 [mm] 6,28 Table 3 DIMENSION OF ELEMENTS BOTTOM 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝒉𝟐 = 𝟎, 𝟎𝟏 ∗ 𝑳 + 𝟎, 𝟏𝟓 𝒎
  • 10. P á g i n a 10 | 34 Figure 4 Longitudinal Frames with Transverse Webs Figure 5 BOTTOM STRUCTURE SIDE SHELL PLATING 3,2,2/3,3,1 t thickness of bottom shell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater l length of vessel, in m (ft), as defined in 3-1-1/3 t 6,58 [mm] s= 520 [mm] h= 3,98 [mts] d 2,62 [mts] l= 39,77 [mts] h3= 2,95 [mts] h1= 2,50 [mts] h2= 3,98 [mts] d1= 2,50 [mts] d2= 2,62 [mts] t center = 7,00 [mm] 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎]
  • 11. P á g i n a 11 | 34 SIDE WEB FRAMES 3.2.5/7,1 c 0.915 aft of the forepeak 1.13 inthe forepeakof vessel 61m (200 ft) or greaterinlength. H on frames having no tween decks above, the vertical distance, in m (ft), from the mid length of the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft). H on frames having tween decks above, the vertical distance, in m (ft), from the middle of l to the load line or 0.5l, whichever is greater, plus bh 1 /45K (bh /150K). 1 h vertical distance, in m (ft), from the center of area supported to the deck at side s spacing, in m (in.) l straight-line unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by decks or inner bottoms, the length, l, may be measured as permitted therein SIDE STRINGERS 3.2.5/11,1 SM = 170 cm^3 TRANSVERSE FRAMES 3.2.5/11,1 l= 1,56 m h= 5,03 m s= 0,52 m c= 0,92 SM = 602 cm^3 SM = 170 cm^3 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 h= 1,26 m h= 1,32 m h= 3,98 m h= 5,03 m l= 2,63 m h= 5,03 m s= 1,57 m c= 1,13 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝒉𝟏 = 𝟎, 𝟎𝟐 ∗ 𝑳 + 𝟎, 𝟒𝟔 𝒎 𝒉𝟑 = 𝟎, 𝟔𝟐 ∗ 𝑳 + 𝟏, 𝟏𝟐𝟐 𝒎 h= 3,98 m h1= 1,26 m h3= 3,59 m h4= 5,03 m l= 1,57 m h= 5,03 m s= 1,56 m c= 1,13 SM = 45 cm^3 c H H h s l 0.915 aft of the forepeak 1.13 in the forepeak of vessel 61 m (200 ft) or greater in length. on frames having no tween decks above, the vertical distance, in m (ft), from the mid length of the frame to the freeboard deck at side, but not less vertical distance, in m (ft), from the center of area supported to the deck at side spacing, in m (in.) straight-line unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by decks or inner bottoms, the length, l, may be measured as permitted therein on frames having tween decks above, the vertical distance, in m (ft), from the middle of l to the load line or 0.5l, whichever is greater, plus bh
  • 12. P á g i n a 12 | 34 [KG/M^3] KG/M^2 KG/M SHELL 7 [mm] 7850 47.1 SIDE WEB FRAMES 250X8 [mm] 15,7 SIDE STRINGERS 180X7 [mm] 9,91 TRANSVERSEFRAME 90X7 [mm] 5,62 Table 4 DIMENSION SIDE DIVING PLATFORM SHELL PLATING t thicknessof bottomshell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, inm (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater t = 6,00 [mm] t thickness of bottom shell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater l length of vessel, in m (ft), as defined in 3-1-1/3 Table 5 SIDE STRUCTURE 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎] 𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎 t 5,53 [mm] s= 520 [mm] h= 2,19 [mts] l= 39,77 [mts]
  • 13. P á g i n a 13 | 34 d draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater l lengthof vessel, in m (ft), as definedin 3- 1-1/3 BEAMS 3.2.6/1.3 l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft) l = 1,56 h = 2,19356 s = 0,52 SM = 21,65 DECK GIRDERS 3.2.6/3.3 l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft) DECK TRANSVERSES 3.2.6/3.3 l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supportedbybulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein h vertical distance, inm (ft), from the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft) [KG/M^3] KG/M^2 KG/M SHELL 6 [mm] 7850 47,1 BEAMS 50X6 [mm] 3,14 DECK GIRDERS 150X150X7 [mm] 16,485 DECK TRANSVERSES 150X8 [mm] 9,42 l= 1,56 m h= 2,19 m s= 0,52 m c= 1,00 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎 SM = 21,65 cm^3 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐 l= 4,68 m h= 2,19 m b= 3,71 m c= 0,60 l = 4,68 h = 2,1936 s = 3,71 SM = 834,18 SM = 834,18 cm^3 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐 l = 2,08 h = 2,1936 s = 1,56 SM = 69,29 SM = 69,29 cm^3
  • 14. P á g i n a 14 | 34 MIDSHIP BOTTOM SHELL PLATING 3.2.2/3.3.1 BAR KEELS 3.2.10/11 t thickness of bottom shell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater l length of vessel, in m (ft), as defined in 3-1-1/3 L lengthof vessel, in m (ft), as defined in 3-1-1/3 depth, in mm (in.) h t thickness, in mm (in.) 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎] t 7,39 [mm] s= 520 [mm] h= 5,70 [mts] d 2,62 [mts] l= 39,77 [mts] t = 8,00 [mm] 𝒉 = 𝟏, 𝟒𝟔 ∗ 𝑳 + 𝟏𝟎𝟎 𝒎𝒎 𝒕 = 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎
  • 15. P á g i n a 15 | 34 l lengthof vessel, in m (ft), as definedin 3- 1-1/3 depth, in mm (in.) h t thickness, in mm (in.) t = 38 [mm] h1 = 159 [mm] PROPORTION Thicknessesandwidthsotherthangivenaboveare acceptable,providedthesectionmoduliand moments of inertiaaboutthe transversehorizontal axisare notlessthangivenabove,norish/t more than 4. 5. GIRDERS 3.2.4/5.3.1 l= 4,72 m h= 5,70 m s= 2,11 m c= 0,92 t = 38 [mm] h1 = 159 [mm] h/t= 4,18 c 0,915 h vertical distance, in m (ft), from the center of area supported to the deck at side s spacing, in m (in.) l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein l= 6.24 m h= 5,70 m s= 2,11 m c= 0,92 SM = 3342 cm^3 t 1,5 [in] 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎 h 6,5 [in] 𝟎, 𝟔𝟐𝟓 ∗ 𝑳 + 𝟏𝟐, 𝟓 𝒎𝒎 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐
  • 16. P á g i n a 16 | 34 PROPORTION DEPTH The minimumdepthof the girderortransverse istobe notlessthan2.5 timesthe depthof the cutouts for bottom frames, unless effective compensation for cutouts is provided TRANSVERSE 3.2.4/5.3.1 l= 4,22 m h= 5,70 m s= 1,57 m c= 0,92 SM = 1137 cm^3 LONGITUDINAL FRAMES 3,2,4/5,3,1 l= 1,57 m h= 5,70 m h2= 0,55 m h3= 0,46 m s= 0,52 m c= 1,00 m SM = 57 cm^3 Figure 6 Longitudinal Frames with Transverse Webs Figure 7 BOTTOM STRUCTURE c 0,915 h vertical distance, in m (ft), from the center of area supported to the deck at side s spacing, in m (in.) l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein C 1.00 for longitudinal frames clear of tanks, and in way of tanks h vertical distance, in m (ft), from the center ofarea supported to the deck at side s spacing, in m (in.) l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein [KG/M^3] KG/M^2 KG/M SHELL 8 [mm] 7850 62,8 BAR KEELS 160X38 [mm] 477,28 GIRDER 300X150X8 [mm] 28.26 TRANSVERSE 300X8 [mm] 18,84 LONGITUDINAL FRAME 10X8 [mm] 6,28 Table 6 DIMENSION OF ELEMENTS BOTTOM 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝒉𝟐 = 𝟎, 𝟎𝟏 ∗ 𝑳 + 𝟎, 𝟏𝟓 𝒎
  • 17. P á g i n a 17 | 34 SIDE SHELL PLATING 3,2,2/3,3,1 SIDE WEB FRAMES 3.2.5/7,1 c 0.915 aft of the forepeak 1.13 inthe forepeakof vessel 61m (200 ft) or greaterinlength. H on frameshavingnotweendecksabove,the vertical distance, in m (ft), from the mid length of the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft). H on frameshavingtweendecksabove,the vertical distance,in m (ft), from the middle of l to the load line or 0.5l, whichever is greater, plus bh 1 /45K (bh /150K). 1 h vertical distance, in m (ft), from the center of area supported to the deck at side s spacing, in m (in.) l straight-lineunsupportedspan,inm(ft).Where bracketsare fittedinaccordance with 3-1-2/5.5 and are supported by decks or inner bottoms, the length, l, may be measured as permitted therein SM = 783 cm^3 t thickness of bottom shell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater l length of vessel, in m (ft), as defined in 3-1-1/3 t 6,58 [mm] s= 520 [mm] h= 3,98 [mts] d 2,62 [mts] l= 39,77 [mts] h3= 2,95 [mts] h1= 2,50 [mts] h2= 3,98 [mts] d1= 2,50 [mts] d2= 2,62 [mts] t center = 7,00 [mm] 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎] 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 h= 1,26 m h= 1,32 m h= 3,98 m h= 5,03 m l= 3,00 m h= 5,03 m s= 1,57 m c= 1,13
  • 18. P á g i n a 18 | 34 SIDE STRINGERS 3.2.5/11,1 SM = 170 cm^3 TRANSVERSE FRAMES 3.2.5/11,1 l= 1,56 m h= 5,03 m s= 0,52 m c= 0,92 [KG/M^3] KG/M^2 KG/M SHELL 7 [mm] 7850 54.95 SIDE WEB FRAMES 250X8 [mm] 15,7 SIDE STRINGERS 180X7 [mm] 11.304 TRANSVERSEFRAME 90X7 [mm] 5,62 Table 8 DIMENSION SIDE MAIN DECK SHELL PLATING SM = 170 cm^3 t = 6,00 [mm] 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝒉𝟏 = 𝟎, 𝟎𝟐 ∗ 𝑳 + 𝟎, 𝟒𝟔 𝒎 𝒉𝟑 = 𝟎, 𝟔𝟐 ∗ 𝑳 + 𝟏, 𝟏𝟐𝟐 𝒎 h= 3,98 m h1= 1,26 m h3= 3,59 m h4= 5,03 m l= 1,57 m h= 5,03 m s= 1,56 m c= 1,13 SM = 45 cm^3 c H H h s l 0.915 aft of the forepeak 1.13 in the forepeak of vessel 61 m (200 ft) or greater in length. on frames having no tween decks above, the vertical distance, in m (ft), from the mid length of the frame to the freeboard deck at side, but not less vertical distance, in m (ft), from the center of area supported to the deck at side spacing, in m (in.) straight-line unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by decks or inner bottoms, the length, l, may be measured as permitted therein on frames having tween decks above, the vertical distance, in m (ft), from the middle of l to the load line or 0.5l, whichever is greater, plus bh Table 7 SIDE STRUCTURE 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎] 𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎 t 5,53 [mm] s= 520 [mm] h= 2,19 [mts] l= 39,77 [mts]
  • 19. P á g i n a 19 | 34 t thicknessof bottomshell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, inm (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater l lengthof vessel, in m (ft), as definedin 3- 1-1/3 BEAMS 3.2.6/1.3 l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft) l = 1,56 h = 2,19356 s = 0,52 SM = 21,65 DECK GIRDERS 3.2.6/3.3 l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supported by bulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein h vertical distance, in m (ft), from the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft) t thickness of bottom shell plating, in mm (in.) s frame spacing, in mm (in.) h depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater d draft for scantlings, as defined in3-1-1/9, or 0.066L, whichever is greater l length of vessel, in m (ft), as defined in 3-1-1/3 l= 1,56 m h= 2,19 m s= 0,52 m c= 1,00 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒔𝒍 𝟐 𝒉 = 𝟎, 𝟎𝟐𝟖∗ 𝑳 + 𝟏, 𝟎𝟖 𝒎 SM = 21,65 cm^3 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
  • 20. P á g i n a 20 | 34 DECK TRANSVERSES 3.2.6/3.3 l unsupported span, in m (ft). Where brackets are fitted in accordance with 3-1-2/5.5 and are supportedbybulkheads, inner bottom or side shell, the length, l, may be measured as permitted therein h vertical distance, inm (ft), from the frame to the freeboard deck at side, but not less than 0.02L + 0.46 m (0.02L + 1.5 ft) [KG/M^3] KG/M^2 KG/M SHELL 6 [mm] 7850 47,1 BEAMS 50X6 [mm] 3,14 DECK GIRDERS 150X150X7 [mm] 16,485 DECK TRANSVERSES 150X8 [mm] 9,42 BOW BAR STEMS 3.2.10/1.1 PLATE STREMS 3.2.10/3.5 SM = 871,41 cm^3 l length of vessel, in m (ft), as defined in 3-1-1/3 t = 32 [mm] w = 140 [mm] l= 4,68 m h= 2,19 m b= 3,71 m c= 0,60 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐 l = 2,08 h = 2,1936 s = 1,56 SM = 69,29 SM = 69,29 cm^3 l = 6,24 h = 2,19356 s = 2,18 SM = 871,41 𝑡 = 0,625 ∗ 𝐿 + 6,35 𝑚𝑚 𝑤 = 1,25 ∗ 𝐿 + 90 𝑚𝑚 𝑡 = 𝒔√ 𝒉 𝟐𝟓𝟒 + 𝟐, 𝟓 [𝒎𝒎] s h d l depth, D, in m (ft), as defined in 3-1-1/7.1, but not less than 0.1L or 1.18d, whichever is greater draft for scantlings, as defined in 3-1-1/9, or 0.066L, whichever is greater length of vessel, in m (ft), as defined in 3-1- 1/3 frame spacing, in mm (in.) ]
  • 21. P á g i n a 21 | 34 WEIGHT 70.65[KG/M^2] DECK, SUPERSTRUCTURE AND DECK HOUSE UPPER DECK EXPOSED SHELL DECK 𝑡 = 6 [𝑚𝑚] SHELL FRONT BULKHEADS tsele 8,00 mm SHELL END BULKHEADS tsele 7,00 mm L= 39,77 h= 0,99 s= 520,00 q= 1,81 σΥ= 130,00 t 4,55 tmin= 4,00 t= 6,00 s = 610 [mm] h1 = 5,7 [mts] h2 = 3,977 [mts] h3 = 3,10 [mts] h = 5,7 [mts] d1 = 2,5 [mts] d2 = 0 [mts] d = 2,50 [mts] L = 39,77 [mts] t = 9,00 [mm] 𝑡 = 𝑠 ∗ √ 𝑞ℎ 272 + 2 𝑡 = ( 𝑠√ 𝑞 0,6 ) (6 + 0,02 ∗ 𝐿) 𝑡 = ( 𝑠√ 𝑞 0,6 ) (5 + 0,02 ∗ 𝐿)
  • 22. P á g i n a 22 | 34 SHELL SIDE tsele 9,00 mm KG/M^2 FRONT BULKHEADS 8,00 7850 62,8 END BULKHEADS 7,00 54,95 SIDE 9,00 70,65 GIRDERS q 1,81 l= 1,56 b= 8,38 h 0,99 c 0,60 SM= 170,25 SM25%= 212,81 WEBS q 1,81 l= 8,21 s 1,56 h 0,99 c 0,60 SM= 485,60 SM25%= 607,00 LONGITUDINAL q 1,81 l= 1,56 s 0,52 h 0,99 c 0,70 SM= 6,82 SM25%= 8,52 Belowwe presentthe summaryof the structural elementsof the superstructure withthe weightperunit length. DECKHOUSE SIDE [KG/M^3] KG/M GIRDER 150X100X9 2700 6,075 FRAME 50X9 1,215 WEB 110X9 2,673 BULKHEADS NO EXPOSED GIRDER 120X70X8 2700 4,104 WEB 60X7 1,134 BULKHEADS EXPOSED GIRDER 160X100X8 2700 5,616 WEB 80X80X8 3,456 KG/M^3 KG/M GIRDERS 100X70X6 2,754 WEBS 100X9 2,43 LONGITUDINALS 50X6 0,81 2700 𝑡 = ( 𝐶1 + 0,045 ∗ 𝐿) ∗ √ 𝑞 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐 𝑺𝑴 = 𝟕, 𝟖𝒄𝒉𝒃𝒍 𝟐
  • 23. P á g i n a 23 | 34 SECONDDECK [KG/M^3] KG/M^2 KG/M SHELL 6 [mm] 7850 47,1 BEAMS 50X10 [mm] 3,925 DECK GIRDERS 100X70X10 [mm] 13,345 DECK TRANSVERSES 150X70X10 [mm] 17,27 DECKHOUSE SIDE GIRDER 90X9 2700 2,187 FRAME 100X70X9 4,131 WEB 50X6 0,81 BULKHEADS NO EXPOSED GIRDER 120X60X6 2700 2,916 WEB 60X7 1,134 BULKHEADS EXPOSED GIRDER 100X50X9 2700 3,645 WEB 60X7 1,134 CHAPTER 6 LONGITUDINAL HULL GIRDER STRENGHT Whenthe shiphull issubjectedtoexcessivelongitudinal bendingmoment,bucklingandyielding of plates and stiffeners take place progressively and the ultimate strengthof the cross-section isattained.The ultimate longitudinal bendingstrengthisone of the mostfundamental strength of a ship hull girder. Inthe sectionof ABS3.2.1the minimumrequiredvaluesof thesectionalmodulewill beobtained in the midship section, rememberthatvalidfor all vessels having breadths,B, which do not exceed two times their depths, D. Figure 8 MIDSHIP SECTION
  • 24. P á g i n a 24 | 34 𝑆𝑀 = 𝐶1 𝐶2 𝐿2 𝐵( 𝐶 𝑏 + 0.7) [𝑚 − 𝑐𝑚2] 𝐶1 = 11.35 − 0.11𝐿 35 ≤ 𝐿 < 45 𝐶2 = 0.01 L = length of vessel, as defined in 3-1-1/3, in m (ft) B = breadth of vessel, as defined in 3-1-1/5, in m (ft) Cb = block coefficient at design draft, based on the length, L, measured on the design load waterline. Cb is not to be taken as less than 0.60. 𝐿 = 39.77 [ 𝑚𝑡𝑠] 𝐵 = 8.3 [mts] 𝐶 𝑏 =0.556 𝑆𝑀 = 1150.12 [ 𝑚 − 𝑐𝑚2] SECTION MODULUS DIRECT METHOD To determine if a steel section can be curved you need to first determine its section modulus and thensee if youhave the correctbendingequipment.Sectionmodulusisthe directmeasure of the strength of the steel. Bending a steel section that has a larger section modulus than another will be stronger and harder to bend. Section modulus is a geometric property for a givencross-sectionusedinthedesignofflexuralmembers.Inthe caseforbendingasteel section itis importanttocalculate ‘S’bytakingthe momentof inertiaof the areaof the cross sectionof a structural member– dividedbythe distance fromthe neutral axistothe furthestpointof the steel section.Thisiswhere the steel will bendfirst. The bendingmomentthatit takes to yield that section equals the section modulus times the yield strength. y [m] 4,03 Inercia [m2 cm2] 1,591 15913,90 SM deck [m cm2] 0,401 4012,82 SM bottom[mcm2] 0,789 7889,43 D [m] 8,00 [D-y] [m] 3,97 σx [N/mm2] 160,00 σx [N/m2] 1,60E+08 M max [N m] 1,26E+08
  • 25. P á g i n a 25 | 34 0,208 0,839 1672,496 4,977 0,001 A [m2] Ad [m2] d^2 [m2] Ad^2 Io [m4] i Descripcion x [m] y [m] d [m] ϴ [°] ϴ [rad] A [m2] Ad [m2] d^2 [m2] Ad^2 Io [m4] Main Deck 4,060 0,006 3,72 0 0,000 2,4E-02 9,1E-02 13,84 3,37E-01 7,31E-08 Upper Deck 4,060 0,006 6,03 0 0,000 2,4E-02 1,5E-01 36,36 8,86E-01 7,31E-08 Sky Deck 4,060 0,006 8,320 0 0,000 2,4E-02 2,0E-01 69,22 1,69E+00 7,31E-08 Side M. Deck 0,007 3,000 2,160 90 1,571 2,1E-02 4,5E-02 4,67 9,80E-02 8,58E-08 Side U. Deck 0,009 2,310 4,875 90 1,571 2,1E-02 1,0E-01 23,77 4,94E-01 1,40E-07 Side S. Deck 0,006 2,290 7,170 90 1,571 1,4E-02 9,9E-02 51,41 7,06E-01 4,12E-08 Chine 0,250 0,009 0,700 0 0,000 2,3E-03 1,6E-03 0,49 1,10E-03 1,52E-08 Bottom 3,850 0,008 0,410 10 0,175 3,1E-02 1,3E-02 0,17 5,18E-03 1,15E-03 0,008 0,270 0,250 90 1,571 2,2E-03 5,4E-04 0,06 1,35E-04 1,15E-08 0,150 0,008 0,450 0 0,000 1,2E-03 5,4E-04 0,20 2,43E-04 6,40E-09 0,008 0,270 0,570 90 1,571 2,2E-03 1,2E-03 0,32 7,02E-04 1,15E-08 0,150 0,080 0,700 0 0,000 1,2E-02 8,4E-03 0,49 5,88E-03 6,40E-06 0,008 0,100 0,190 90 1,571 8,0E-04 1,5E-04 0,04 2,89E-05 4,27E-09 0,008 0,100 0,280 90 1,571 8,0E-04 2,2E-04 0,08 6,27E-05 4,27E-09 0,008 0,100 0,380 90 1,571 8,0E-04 3,0E-04 0,14 1,16E-04 4,27E-09 0,008 0,100 0,560 90 1,571 8,0E-04 4,5E-04 0,31 2,51E-04 4,27E-09 0,008 0,100 0,660 90 1,571 8,0E-04 5,3E-04 0,44 3,48E-04 4,27E-09 Chine Stiffener I 0,008 0,100 0,760 90 1,571 8,0E-04 6,1E-04 0,58 4,62E-04 4,27E-09 0,180 0,007 1,660 0 0,000 1,3E-03 2,1E-03 2,76 3,47E-03 5,15E-09 0,180 0,007 2,660 0 0,000 1,3E-03 3,4E-03 7,08 8,92E-03 5,15E-09 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,006 0,050 3,660 90 1,571 3,0E-04 1,1E-03 13,40 4,02E-03 9,00E-10 0,007 0,150 3,660 90 1,571 1,1E-03 3,8E-03 13,40 1,41E-02 4,29E-09 0,150 0,007 3,600 0 0,000 1,1E-03 3,8E-03 12,96 1,36E-02 4,29E-09 0,007 0,150 3,660 90 1,571 1,1E-03 3,8E-03 13,40 1,41E-02 4,29E-09 0,150 0,007 3,600 0 0,000 1,1E-03 3,8E-03 12,96 1,36E-02 4,29E-09 0,110 0,009 4,260 0 0,000 9,9E-04 4,2E-03 18,15 1,80E-02 6,68E-09 0,110 0,009 4,700 0 0,000 9,9E-04 4,7E-03 22,09 2,19E-02 6,68E-09 0,050 0,009 4,640 90 1,571 4,5E-04 2,1E-03 21,53 9,69E-03 9,38E-08 0,110 0,009 5,660 0 0,000 9,9E-04 5,6E-03 32,04 3,17E-02 6,68E-09 0,050 0,009 5,710 90 1,571 4,5E-04 2,6E-03 32,60 1,47E-02 9,38E-08 0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08 0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08 0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08 0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08 0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08 0,050 0,006 6,100 90 1,571 3,0E-04 1,8E-03 37,21 1,12E-02 6,25E-08 0,100 0,008 6,030 90 1,571 8,0E-04 4,8E-03 36,36 2,91E-02 6,67E-07 0,008 0,100 5,980 0 0,000 8,0E-04 4,8E-03 35,76 2,86E-02 6,67E-07 0,100 0,008 6,030 90 1,571 8,0E-04 4,8E-03 36,36 2,91E-02 6,67E-07 0,008 0,100 5,980 0 0,000 8,0E-04 4,8E-03 35,76 2,86E-02 6,67E-07 Sky deck - Side - Stiffeners I 0,100 0,009 6,450 0 0,000 9,0E-04 5,8E-03 41,60 3,74E-02 6,08E-09 0,110 0,009 6,810 0 0,000 9,9E-04 6,7E-03 46,38 4,59E-02 6,68E-09 0,009 0,050 6,780 90 1,571 4,5E-04 3,1E-03 45,97 2,07E-02 3,04E-09 0,110 0,009 8,050 0 0,000 9,9E-04 8,0E-03 64,80 6,42E-02 6,68E-09 0,009 0,050 8,010 90 1,571 4,5E-04 3,6E-03 64,16 2,89E-02 3,04E-09 0,006 0,070 8,320 90 1,571 4,2E-04 3,5E-03 69,22 2,91E-02 1,26E-09 0,006 0,070 8,320 90 1,571 4,2E-04 3,5E-03 69,22 2,91E-02 1,26E-09 0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10 0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10 0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10 0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10 0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10 0,006 0,050 8,350 90 1,571 3,0E-04 2,5E-03 69,72 2,09E-02 9,00E-10 Sky deck - Deck Deck girder L Upper Deck -Side Upeer Deck - Deck I Upper Deck - Girder Sky deck - Side - Stiffeners L Bottom Girder L Bottom stiffeners I Deck Stiffeners I Side Girder
  • 26. P á g i n a 26 | 34 This analysis was carried out in order to test in the first instance if the scantillating values are correct, so we see that the sectional module of the direct mode is greater than the norms required,afterthischeckwe continue to obtain the values of the moments and shear forces. Althoughthe standarddoesnotask for thisanalysistobe done for vesselslessthan61 meters, we will perform it. Wave Bending Moment Amidships. 𝑀 𝑤𝑠 = −𝐾1 𝐶1 𝐿2 𝐵( 𝐶 𝑏 + 0.7) 𝑋10−3 𝑆𝐴𝐺𝐺𝐼𝑁𝐺 𝑀𝑂𝑀𝐸𝑁𝑇 𝑀 𝑤ℎ = +𝐾2 𝐶1 𝐿2 𝐵( 𝐶 𝑏 + 0.7) 𝑋10−3 𝐻𝑂𝐺𝐺𝐼𝑁𝐺 𝑀𝑂𝑀𝐸𝑁𝑇 𝑀 𝑆𝑂 = 52𝐿3 𝐵( 𝐶𝑏 + 0.7) 𝑥10−3 𝑆𝑇𝐼𝐿𝐿 𝑊𝐴𝑇𝐸𝑅 𝐾1 = 110 𝐾2 = 190 𝐶1 = 0.044𝐿 + 3.75 [ 𝑆𝐼 𝑀𝐾𝑆 ] 𝐿 = 49.77 [𝑚𝑡𝑠] 𝐵 = 8.3 [𝑚𝑡𝑠] 𝐶 𝑏 = 0.556 𝑀 𝑤𝑠 = 9975.27 [𝐾𝑁 − 𝑚] 𝑀 𝑤ℎ = 17230.0 [𝐾𝑁 − 𝑚] 𝑀 𝑆𝑂 = 6688.36 [𝐾𝑁 − 𝑚] Wave Shear Force. 𝐹𝑤𝑝 = 𝑘𝐹1 𝐶1 𝐿𝐵( 𝐶 𝑏 + 0.7) 𝑋10−2 𝐹𝑂𝑅 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸 𝑆𝐻𝐸𝐴𝑅 𝐹𝑂𝑅𝐶𝐸 𝐹𝑤𝑛 = −𝑘𝐹2 𝐶1 𝐿𝐵( 𝐶 𝑏 + 0.7) 𝑋10−3 𝐻𝑂𝐺𝐺𝐼𝑁𝐺 𝑀𝑂𝑀𝐸𝑁𝑇 𝐹𝑤𝑝 = 600 [ 𝐾𝑁] 𝐹 𝑤𝑁 = 600[ 𝐾𝑁] CHAPTER 7 LONGITUDINAL STRENGTH At the outset, it is useful to know the difference between global and local strength of ships. Longitudinal strengthisalsocalledasglobal strength.Global strengthpertainstoassessingthe strength of the entire ship when it is floating in still water or in waves. Local strength, on the otherhand,isaboutassessingthe strengthof alocalizedstructure,likeagirderoralongitudinal for loads experienced locally
  • 27. P á g i n a 27 | 34 When talk about ship which is floatingin water. It is loaded with cargo, in this case passenger, equipment, and its tanks are filled depending on the operational requirements (called the loading condition,e.g., ballast departure/arrival OR fully loaded departure/arrival etc.). In the openocean,itwill alsoexperiencewaves.Iwanttoknow whetherthe shiphasenoughstrength to withstand this loading. What do I calculate? What do I check it against? For the strength calculation, what is more importantis not the total load on the ship(which is Total Weight minus Total Buoyancy, and is zero for a ship in equilibrium), but the Load Distributionalongthe lengthof theship.Toelaborate,thismeanshow theweightandbuoyancy are distributedalongthe ship’slength.Forexample,if the machineryof the shipis locatedaft, then the weight distribution will show heavier weights towards aft. Similarly, if the shiphas a fuller bow, then the forward portion of the ship carries more buoyancy, and so the buoyancy distribution will show higher buoyancy in the fwd of the ship. In the following tableswe show the distribution of weightsthat have been typed in MAXSURF STABILITY. We present the distribution of tanks, fresh water, bilges, oil, fuel, sludge tank, saltwater, gray water, black, ballast. Once the distributions of all items of deadweight have been added to the Lightweight curve, then we will arrive at the final Weight Distribution Curve. It may look something like this:
  • 28. P á g i n a 28 | 34 Deadweight comprisesof cargo, fuel oil, ballast,freshwater etc (i.e.,the variable loads on the ship).To add a deadweightitem, we justfollow the procedure asdescribedinthe beginningof thissectionbycreatingthe trapeziumandaddingitto the existingweightcurve.Inmostcases, the loaddistributionwillbe arectangle (boththe ordinatesof thetrapeziumwillbe same),since most deadweight items are uniformly distributed along their geometrical length. LOADCASE ENGINE ESTRIBOR 1 1.9 1.9 17 15 17.82 - 1.628 1.12 ENGINE BABOR 1 1.9 1.9 16.71 15 17.82 1.628 1.12 EJEbabpor 1 1.6 1.6 8.42 1.67 15.17 1.634 0.64 eje estribor 1 1.6 1.6 8.42 1.67 15.17 - 1.634 0.64 GENERADOR BABOR 1 1.64 1.64 15.67 14.18 16.74 - 3.289 1.49 GENERADOR ESTRIBOR 1 1.64 1.64 15.67 14.18 16.74 3.289 1.49 GENERADOR 500 1 1.85 1.85 18 17 20 0 1.12 GEARBOX BABOR 1 0.482 0.482 14.8 14.8 14.8 - 1.628 1.1 GEARBOX ESTRIBOR 1 0.482 0.482 14.8 14.8 14.8 1.628 1.1 HELICE 1 0.2 0.2 1.662 1.662 1.662 - 1.628 0.64 HELICE 1 0.2 0.2 1.662 1.662 1.662 1.628 0.64 Bahuer compressorbsbsor 1 0.5 0.5 7 6.44 7.6 0 0 Bauer vompressor estribor 1 0.5 0.5 7 6.44 7.6 -1.68 0 kasser 1 1 1 5 4.2 5.8 1.68 0 RUDDER BABOR 1 2.1 2.1 1 0.5 1.7 1.634 0.75 RUDDER ESTRITOR 1 2.1 2.1 1 0.5 1.7 - 1.634 0.75 SUBTOTAL 19.694 10.50 2 0.043 0.9 COCINA 1 0.148 0.148 19.17 6 19.17 6 19.17 6 - 2.821 1.63 4 FREIDORA 1 0.045 0.045 20.38 4 20.38 4 20.38 4 - 3.589 1.79 7 MESA DECOEMDOR 1 0.08 0.08 23.65 8 22.4 25 - 0.815 1.99 COOLEREDE CARNES 1 0.595 0.595 20.74 4 19 22.44 1.7 2.7 REFRI DE VEGETALES 1 0.147 0.147 20.74 4 19 22.44 2.823 2.7 CAMATRIPULA1 1 0.1 0.1 26.38 9 25 27.1 - 3.559 2.7 CAMATRIPULA2 1 0.1 0.1 26.39 25 27.1 - 2.125 2.7 CAMATRIPULA 3 1 0.1 0.1 26.39 25 27.1 - 1.095 2.7 CAMATRIPULA 4 1 0.1 0.1 26.39 25 27.1 - 0.066 2.7 CAMA DEGUIAS 1 0.1 0.1 29.95 29.2 31 - 2.283 2.7 ASIENTO DEPLATAFORMA DE BUCEO 1 1.68 1.68 4.45 1.95 7 0 3.8 TANNQUES DENBUCEO 1 0.511 0.511 4.45 1.95 7 0 4.15 CAMA DEPASAJEROS1 1 0.1 0.1 16.88 15.6 17.8 -1.7 4.37 2 CAMA DE PASAJEROS2 1 0.1 0.1 21.22 3 20.3 22.5 -1.7 4.37 2 CAMA DEPASAJEROS3 1 0.1 0.1 25.73 25 26.5 -1.7 4.37 2 CAMA DEPASAJEROS4 1 0.1 0.1 31.28 3 30 32.6 -1.7 4.37 2 CAMA DEPASAJEROS5 1 0.1 0.1 16.88 15.6 17.8 1.7 4.37 2
  • 29. P á g i n a 29 | 34 CAMA DEPASAJEROS6 1 0.1 0.1 21.22 3 20.3 22.5 1.7 4.37 2 CAMA DEPASAJEROS7 1 0.1 0.1 25.73 25 26.5 1.7 4.37 2 camade pasajero 8 1 0.1 0.1 31.28 3 30 32.6 1.7 4.37 2 YACU 1 1.7 1.7 9.35 8.07 10.68 0 9.24 CASCO 1 134 134 20.76 0 41 0 2.46 SUPERESTRUCTURA 1 39 39 19.04 1 9.14 27.27 0 6.9 Plantade tratamiento 1 3.4 3.4 12.14 9.46 12.48 -2.4 1.35 TUBERIAS SISTEMAS 1 44 44 27.6 7.546 25.67 6 0 2.36 7 Tanquesde presion 4 0.023 0.092 11.02 9.46 12.48 0 2.3 Calentador 50 l 1 0.071 0.071 10.5 9.46 12.48 0 1.8 calentador 150l 1 0.196 0.196 10 9.46 12.48 0 1.8 separador sentinas 1 0.68 0.68 10 9.46 12.48 -1 2.6 CO2 (6) 1 0.63 0.63 9.2 9.2 9.2 -3 2 CO2 (3) 1 0.315 0.315 18.6 18.6 18.6 3.5 2 agua dulce 95 % 13.34 1 12.674 13.341 12.674 11.15 7 - 0.086 1.20 7 tanque de sentinas 95 % 1.605 1.525 1.957 1.859 13.34 1 - 0.007 0.75 2 tanque de aceite 95 % 1.981 1.882 2.153 2.045 14.88 1 - 0.006 0.68 8 de lodos 95 % 0.119 0.113 0.131 0.124 17.41 2 0 0.40 5 DIESEL 95 % 25.84 6 24.553 30.769 29.23 21.10 6 - 0.069 0.79 4 AGUA SALADA 95 % 26.79 5 25.455 26.141 24.834 26.99 9 - 0.072 0.80 1 GRISES NEGRAS 95 % 7.2 6.84 7.886 7.492 31.19 6 - 1.133 0.82 7 GRISES NEGRAS 95 % 7.2 6.84 7.886 7.492 31.20 5 1.096 0.82 7 SUMINERO 30 % 62.54 6 18.764 61.02 18.306 36.03 1 -0.02 1.10 9 diesel daily 95 % 0.932 0.886 1.11 1.054 13.28 2 2.799 2.08 5 Diesel daily 95 % 0.932 0.886 1.11 1.055 13.28 2 - 2.811 2.08 5 INODORO/lavamanos 30 0.024 0.72 30 30 30 0 3.8 EQUIPAJE 27 0.03 0.81 24.35 24.35 24.35 0 3.9 EQUIPOS DENAVEGACION 1 10 10 20 0 41 0 6 PESO PARA EL ASENTAMIENTO 1 12 12 5 5 5 0 2.5 Total Loadcase 372.23 2 153.50 3 106.16 5 21.25 9 - 0.038 2.55 4 -20 -15 -10 -5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30 35 40 45 Mass[t/m] Buoyancy[t/m] Position longitudinal [m]
  • 30. P á g i n a 30 | 34 Once we have the Weightdistribution,thenextstepistocreate thebuoyancydistributioncurve. The basicideais same – to plotthe loaddue to buoyancyat each pointalongthe lengthof the ship. The buoyancy force is determinedby the shape of the underwater hull, and it is the weight of the water displaced by the underwater hull. With this understanding, we can see that the buoyancydistributionissame as the volume distributionof the underwaterportionof the hull. If the underwatervolumeisdividedintosectionsof unitlengthalongitslength,thenthe volume of the underwaterhullisnothingbutanintegration(orsum)of the areasof thesesectionsalong the ship’slength.Thus,the buoyancydistributionisaplotof the sectionareasof sectionsalong the length of the underwater body of the hull. Draft Amidships m 2.498 Displacement t 372.2 Heel deg -0.9 Draft at FPm 2.749 Draft at AP m 2.248 Draft at LCF m 2.488 Trim (+ve by stern) m -0.501 WL Length m 40.955 Beam max extents on WL m 7.886 Wetted Area m^2 399.967 Waterpl. Area m^2 297.296 Prismatic coeff. (Cp) 0.608 Block coeff. (Cb) 0.277 Max Sect. area coeff. (Cm) 0.661 Waterpl. area coeff. (Cwp) 0.921 LCB from zero pt. (+ve fwd) m 21.28 LCF from zero pt. (+ve fwd) m 19.553 KB m 1.844 KG m 4.12 BMt m 3.796 BML m 103.689 GMt m 1.52 GML m 101.412 KMt m 5.64 KML m 105.513 Immersion (TPc) tonne/cm 3.047 MTc tonne.m 9.24 RMat 1deg = GMt.Disp.sin(1) tonne.m 9.876 Max deck inclination deg 1.1324 Trim angle (+ve by stern) deg -0.7024 -800 -600 -400 -200 0 200 400 600 -5 0 5 10 15 20 25 30 35 40 45 MOMENT[tonm] Shearforce[ton] POSITION LONGITUDINAL [m]
  • 31. P á g i n a 31 | 34 Integration of the Load Curve to get Shear Force Curve Nowthat we have the load curve, we needtointegrate itto getthe ShearForce Curve.What is this integration, and how is it carried out? The Shear Force at any point along the length can be found out by adding the area under the loadcurve up to that point.Forexample,if we wantto findoutthe ShearForce on the vessel at a locationx =L/4 alongitslength(where Listhe total lengthof the vessel),thenwe needtoadd- up the area under the load curve from x = 0 (aft end) to x = L/4. This process is called the integration of load curve to obtain Shear Force, and is shown below. The above processof findingthe shearforce isdone at differentlocations(usuallythe stations) alongthe lengthof the vessel.Thisgivesusthe ShearForce valuesat these locations.If we plot all these Shearforce valuesalongthelengthof the vessel,thenwe obtainthe ShearForce Curve, which looks like the green curve in the above picture Integration of the Shear Force Curve to get Bending Moment Curve In a similarfashionasdone withthe loadcurve,we use the ShearForce curve toobtainthe ordinatesof the BendingMomentatdifferentlocationsalongthe ship’slength,andplotthese pointstoobtainthe BendingMomentCurve of the ship.It lookssomethinglike this:
  • 32. P á g i n a 32 | 34 CHAPTER 8 VALIDATION OF STRUCTURAL ELEMENTS BY ANSYS The maindeck structure ispresentedinamiddle section,the edgeswere taken,butthe tertiary reinforcements are taken free only the secondary reinforcements and the helmet is taken as empoted 𝑃𝑚𝑎𝑖𝑛 𝑑𝑒𝑐𝑘 = 0.02𝐿 + 0.45 [ 𝑚𝑡𝑠] ℎ = 1.4[ 𝑚𝑡𝑠] 𝑃 = 𝑁 ∗ ℎ 𝑃 = 13.72 [ 𝐾𝑁 𝑚2 ] In the first graph we show a panel of the main deck which we have as border conditions embedded edges since the section was taken from bulkhead to bulkhead the panel we are analyzing is the longest of the ship has a length of 6.24 meters, It showsthe numberof elements,nodesandaverage accuracyaccordingto the mesh.A 10 mm mesh was used for large elements and 1 mm for small items According to ABS 3.2.12 / 9.1, the maximum deflection to reach a panel is 0.0044 times the greater spacing, in this case you have 0.0044 * 1.56m = 0.0069m, that is to say it can be flected up to 7mm, compared with the structure you have a deformation of 3.5 mm. Therefore,it satisfies the deflection range.
  • 33. P á g i n a 33 | 34 Inthe followinggraphwe realize the differentvaluesof the effortandwe realizethatinthe part that we put thatis embedded,the greatesteffortisgenerated,soitwasdecidedtoanalyze the same section with a section of the lining with the respective structural arrangements. The valuesinthe recessededgeswiththe structural arrangementsdecreased,thatis,the hard pointswere dissipatedwithasquare,itshouldbe rememberedthatthe creepeffortof the steel is235 N / mm ^ 2. You have a safetyfactorof 0.64 Anotherareaanalyzedwasthe divingplatformwithanintermediatebulkheadwhich,as expected,increasedresistance isgreaterdue tothe structural elementsthatmake themup.
  • 34. P á g i n a 34 | 34 CONCLUSIONS  When analyzing the distribution of weights and with that obtaining the values of the bending moment we verify that its maximum value is 778,325 [ton-m], in the worst conditionwithTROCOIDALwave and using the formulaz = M / 175 10 ^ 3 [cm ^ 3] we obtainthatthe sectional moduleis4447.57 cm ^ 3 andthe one obtainedis7889.43 cm^ 3  Inansys the scantlingof the middlesectionof theboatwasvalidatedbymeansofAnsys, verifying that the deformation and equivalent stress are within the allowed range. References A. American Bureau of Shipping, STEEL VESSELS UNDER 90 METERS (295 FEET) IN LENGTH, 2017. B. GUIDE FOR BUILDINGAND CLASSINGYACHTS JANUARY 2019 HULL CONSTRUCTION AND EQUIPMENT