SlideShare a Scribd company logo
1 of 39
Fluid
Mechanics
Group
University of
Zaragoza
Large Eddy Simulation of the flow
past a square cylinder
J. S. Ochoa, N. Fueyo
Fluid Mechanics Group
University of Zaragoza
Spain
Norberto.Fueyo@unizar.es
2
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Contents
 Aim
 Turbulence Modelling
 Case considered
 Modelling
 Numerical details
 Implementation in PHOENICS
 Results
 Conclusions
3
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Aim
4
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Turbulence modelling
 Simulation of turbulent flows
 Reynolds Averaged Navier-Stokes equations
 Large Eddy Simulation
 Direct Numerical Simulation
 LES: Filtering
Simulated
Modellled
   

 '
'
'
, dx
x
u
x
x
G
u i
i
5
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Case considered
y
x
U
H
Square cylinder side
Inlet velocity
Reynolds number
Channel width
Channel height
Flow
H = 40 mm
U = 535 mm/s
Re = UD/n = 21400
W = 400 mm
H = 560 mm
Water
 Experiment of Lyn & Rodi
 Square rod in water flow
 Flow parameters
Inlet
Outlet
Fluid
Mechanics
Group
University of
Zaragoza
Modelling
7
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Equations
 Governing equations
 Continuity
 Momentum
  0
· 




u
t


  '
·
·
)
(











p
u
u
t
u
 Filtered equations
 Continuity
 Momentum
0



i
i
x
u

































 s
ij
i
j
j
i
j
i
j
j
i
i
x
u
x
u
x
x
p
x
u
u
t
u



 )
(
)
(
8
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Closure (Smagorinsky)
 Sub-grid Reynolds stresses
 Turbulent viscosity
ij
t
i
j
j
i
t
ij
s
kk
s
ij S
x
u
x
u
n
n


 2
3
1


















  S
Cs
t
2


n
 3
1
z
y
x 




Turbulence
generation
function
2
0 1













A
y
s
s e
C
C  2
1
2 ij
ij S
S
S 
n

yu
y 

YPLS
25


A Constant
Filter size
Smagorinsky
constant
Fluid
Mechanics
Group
University of
Zaragoza
Numerical details
10
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Domain
 Dimensions
H 15H
14H
4.5H
H
4H
y
z
z
x
H = 40 mm
Flow
Inlet
Flow
Outlet
y
z x
11
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Grid
 3D grid:120x102x20
y
z
x
z
y
z x
12
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Discretisation details
 Convective term
 Temporal term
 Timestep calculation using CFL limit as guidance
Van Leer scheme
 
W
P
P
e r 



 

 )
(
 
 
2
,
5
.
0
5
.
0
,
2
min
,
0
max
)
( r
r
r 


     
 
2
2
1
1
1
,
,
8
,
5
12









 n
n
n
n
n
n
n
n
t
f
t
f
t
f
t





Implicit 3rd order
Adam-Moulton scheme
   
 
2
2
1
1
1
,
,
3
2








 n
n
n
n
n
n
t
f
t
f
t




Explicit 2nd order
Adam-Bashforth scheme
CFL Condition 










 





 





 


w
z
v
y
u
x
tCFL
,
,
min
13
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Solving
0

f
1

f
(blue)
(red)
 Diferential equations solved
 Continuity (Pressure)
 Momentum (Velocities)
 Scalar marker f
 Auxiliary variables
 Density
 Viscosity
 Eddy-viscosity
14
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Boundary conditions
 Flow
 Square-cylinder walls
 No-slip condition
 Logarithmic functions for filtered velocity
Velocities
Mass flux
Outflow
(fixed
pressure)
Simmetry wall
(Free-slip)
Simmetry wall
(Free-slip)
15
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Calculation of integral parameters
 Strouhal number
 f – vortex-shedding frequency
 Drag & lift coefficients
U
fD
St 
2
2
1
U
F
C horizontal
D


2
2
1
U
F
C vertical
L

 ds
n
F
s

 
·
16
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Implementation in PHOENICS, 1
 Time and spatial definitions
Q1 file
Major PIL settings
• Time
STEADY=T
TLAST=GRND
• Domain
GRDPWR(X,..
GROUND User
Module
Y
• CFL Condition
 
H
CON
N
CON
E
CON
MASS
DT licit
1
,
1
,
1
max
1
exp 
Group
2.
Z
Groups
3,4
and 5.
• Spatial discretisation
SCHEME(VANL1,U1,V1,W1)
Group
8.
• Time discretisation
PATCH(TDIS,CELL,...
COVAL(TDIS,U1,FIXFLU,GRND)
Group
13.
V1
W1
• High order time scheme
Adam-Moulton Scheme
Adam-Bashforth Scheme
 
     
2
1
1
12
7
3
2
12
7
,









n
n
n
n
n
n
n
RHS
RHS
RHS
t
f
t



 
   
2
1
1
1
1
2
1
2
1
,










n
n
n
n
n
n
RHS
RHS
t
f
t



Common formulation
of PHOENICS
Sources
added
Common formulation
of PHOENICS
Sources
added
17
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Implementation in PHOENICS, 2
 Properties and LES model
Q1 file
Major PIL settings
Group
8.
• Turbulence model
ENUT=GRND
Group
9.
• Variables solved
P1,U1,V1,W1,MIXF
GROUND User
Module
• Variables stored
RHO1,CON1E,CON1N,CON1H
YPLS
GENK=T
Velocity gradients, GEN1
• Smagorinsky model
   
1
*
*
2
GEN
SQRT
DELTA
C
VIST filter
S

 
 
A
YPLS
EXP
C
C S
S /
1
*
0 

 3
1
*
* DZ
DY
DX
DELTAfilter 
Switching
Special
grounds
• Dump data
• Integral parameters
RG( ),IG( ),LG( )
18
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Computing
 Parallel cluster
 Boadicea: Beowulf-Oriented Architecture for Distributed,
Intensive Computing in Engineering Applications
 Installed at Fluid Mechanics Group (University of Zaragoza,
Spain)
 66 CPU’s (33 dual nodes)
 Pentium III, 550 MHz
 256 Mb memory/node
 10Gb disk space/node
 Linux
 PHOENICS V3.5
Fluid
Mechanics
Group
University of
Zaragoza
Results
 2D analysis
 3D simulation
20
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
2D: Influences Van Leer scheme
 Vertical velocity V1 Sampling
Point
2H
Van Leer
No scheme
t (s)
V1
(m/s)
21
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
2D: Influences of Adam-Moulton scheme
 Vertical velocity V1 Sampling
Point
2H
Adam Moulton
No scheme
V1
(m/s)
t (s)
22
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
2D: Influences of Smagorisnky model
 Vertical velocity V1 Sampling
Point
2H
Combined effect
Smagorinsky
No model
V1
(m/s)
t (s)
23
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Smagorinsky model
2D: Combined effect
 Vertical velocity V1 Sampling
Point
2H
Combined effect
All models and schemes
No model
V1
(m/s)
t (s)
24
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
 Mean axial velocity along the centreline
2D: Grid influence
120x84 grid
240x168 grid
360x252 grid
120x102 grid
Uaxial
(m/s)
Domain length
H
120x102
240x186
120x84
360x252
25
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Animation of results
 Mixture-fraction contours
26
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D Results
 Integral parameters
Work: Label St
Numerical data:
Verstappen and Veldman [23] GRO 0.005 1.45 2.09 0.178 0.133
Porquie et. al. [13]
- Simulation 1 UK1 -0.02 1.01 2.2 0.14 0.13
- Simulation 2 UK2 -0.04 1.12 2.3 0.14 0.13
- Simulation 3 UK3 -0.05 1.02 2.23 0.13 0.13
Murakami et. Al. [29] NT -0.05 1.39 2.05 0.12 0.131
Wang and Vanka [4] UOI 0.04 1.29 2.03 0.18 0.13
Nozawa and Tamura [10] TIT 0.0093 1.39 2.62 0.23 0.131
Kawashima and Kawamura [14]
- Simulation 1 ST2 0.01 1.26 2.72 0.28 0.16
- Simulation 2 ST5 0.009 1.38 2.78 0.28 0.161
Experimental data: Lyn et. al. [2] [3] EXP - - 2.1 - 0.132
This work S8A 0.03 1.4 2.01 0.22 0.139
L
C
rms
L
C D
C
rms
D
C
27
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Comparison among data, 1
 Experimental and this work data
Domain length
H
Uaxial
(m/s)
28
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Comparison among data, 2
 Numerical, experimental and this work data
Uaxial
(m/s)
Domain length
H
29
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Streamlines
 Comparison between experimental and numerical
streamlines
Experimental This work
30
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Iso-vorticity contours
Vorticity
]
[ 1

s
Vorticity
]
[ 1

s
 Streamwise
 Spanwise
Vorticity
]
[ 1

s
31
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Turbulence viscosity (ENUT)
 Streamwise
ENUT
]
[ 2
2
s
m
ENUT
]
[ 2
2
s
m
32
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Comparison between LES & RANS, 1
 Vertical velocity V1 Sampling
Point
2H
Uaxial
(m/s)
LES
K-epsilon
t (s)
33
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
3D: Comparison between LES & RANS, 2
 Mean axial velocity on the center plane
Uaxial
(m/s)
Domain length
H
LES
LES
K-epsilon
34
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Animation: mixf
35
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Animation: spanwise vorticity
36
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Speedup
Grid 120x102x20 24 min/dt
1 processor
12 processors 3 min/dt
30 sweeps/dt
(implicit time)
Ideal
This work
Processors used (n)
Speedup
]
[
1
proc
n
proc
t
t
• Computing time: approx 11 hr (on 12 processors)
Domain split along z direction
37
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Conclusions
 LES implemented to PHOENICS
 Agreement with both numerical and experimental data
 High order schemes increase accuracy
 Flow well predicted
 Superiority of LES over RANS
 Reasonable time using parallel PHOENICS v3.5
38
Turbulence
modelling
Case considered
Modelling
 Equations
Numerical details
 Domain & grid
 Solving
 BC
 Discretisation
 Int. parameters
 Computing
Iimplementation in
PHOENICS
Results
Conclusions
Further work
Further work
 Large Eddy Simulation of
Turbulent flames
Fluid
Mechanics
Group
University of
Zaragoza
End of presentation
Thank you

More Related Content

Similar to EQUATION + LES Presentation_Fueyo.pptx

[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...
[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...
[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...
d00a7ece
 
Marius Verscheure Presentation Ecmor
Marius Verscheure Presentation EcmorMarius Verscheure Presentation Ecmor
Marius Verscheure Presentation Ecmor
mrius
 
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
ijcsit
 

Similar to EQUATION + LES Presentation_Fueyo.pptx (20)

DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)
DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)
DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)
 
M.sc. m kamel
M.sc. m kamelM.sc. m kamel
M.sc. m kamel
 
[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...
[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...
[Numerical Heat Transfer Part B Fundamentals 2001-sep vol. 40 iss. 3] C. Wan,...
 
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
 
Avinash_PPT
Avinash_PPTAvinash_PPT
Avinash_PPT
 
Marius Verscheure Presentation Ecmor
Marius Verscheure Presentation EcmorMarius Verscheure Presentation Ecmor
Marius Verscheure Presentation Ecmor
 
Nowak NVSMW-ICMTD'08
Nowak NVSMW-ICMTD'08Nowak NVSMW-ICMTD'08
Nowak NVSMW-ICMTD'08
 
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
Automated Piecewise-Linear Fitting of S-Parameters step-response (PWLFIT) for...
 
Cycle’s topological optimizations and the iterative decoding problem on gener...
Cycle’s topological optimizations and the iterative decoding problem on gener...Cycle’s topological optimizations and the iterative decoding problem on gener...
Cycle’s topological optimizations and the iterative decoding problem on gener...
 
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
 
CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...
CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...
CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...
 
CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...
CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...
CONCURRENT TERNARY GALOIS-BASED COMPUTATION USING NANO-APEX MULTIPLEXING NIBS...
 
Real-time Implementation of Sphere Decoder-based MIMO Wireless System (EUSIPC...
Real-time Implementation of Sphere Decoder-based MIMO Wireless System (EUSIPC...Real-time Implementation of Sphere Decoder-based MIMO Wireless System (EUSIPC...
Real-time Implementation of Sphere Decoder-based MIMO Wireless System (EUSIPC...
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Understanding and predicting CO2 properties - Presentation by Richard Graham ...
Understanding and predicting CO2 properties - Presentation by Richard Graham ...Understanding and predicting CO2 properties - Presentation by Richard Graham ...
Understanding and predicting CO2 properties - Presentation by Richard Graham ...
 
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
A Novel Technique in Software Engineering for Building Scalable Large Paralle...A Novel Technique in Software Engineering for Building Scalable Large Paralle...
A Novel Technique in Software Engineering for Building Scalable Large Paralle...
 
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
Frequency domain behavior of S-parameters piecewise-linear fitting in a digit...
 
Cycle’s topological optimizations and the iterative decoding problem on gener...
Cycle’s topological optimizations and the iterative decoding problem on gener...Cycle’s topological optimizations and the iterative decoding problem on gener...
Cycle’s topological optimizations and the iterative decoding problem on gener...
 
05725150
0572515005725150
05725150
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 

EQUATION + LES Presentation_Fueyo.pptx

  • 1. Fluid Mechanics Group University of Zaragoza Large Eddy Simulation of the flow past a square cylinder J. S. Ochoa, N. Fueyo Fluid Mechanics Group University of Zaragoza Spain Norberto.Fueyo@unizar.es
  • 2. 2 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Contents  Aim  Turbulence Modelling  Case considered  Modelling  Numerical details  Implementation in PHOENICS  Results  Conclusions
  • 3. 3 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Aim
  • 4. 4 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Turbulence modelling  Simulation of turbulent flows  Reynolds Averaged Navier-Stokes equations  Large Eddy Simulation  Direct Numerical Simulation  LES: Filtering Simulated Modellled       ' ' ' , dx x u x x G u i i
  • 5. 5 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Case considered y x U H Square cylinder side Inlet velocity Reynolds number Channel width Channel height Flow H = 40 mm U = 535 mm/s Re = UD/n = 21400 W = 400 mm H = 560 mm Water  Experiment of Lyn & Rodi  Square rod in water flow  Flow parameters Inlet Outlet
  • 7. 7 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Equations  Governing equations  Continuity  Momentum   0 ·      u t     ' · · ) (            p u u t u  Filtered equations  Continuity  Momentum 0    i i x u                                   s ij i j j i j i j j i i x u x u x x p x u u t u     ) ( ) (
  • 8. 8 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Closure (Smagorinsky)  Sub-grid Reynolds stresses  Turbulent viscosity ij t i j j i t ij s kk s ij S x u x u n n    2 3 1                     S Cs t 2   n  3 1 z y x      Turbulence generation function 2 0 1              A y s s e C C  2 1 2 ij ij S S S  n  yu y   YPLS 25   A Constant Filter size Smagorinsky constant
  • 10. 10 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Domain  Dimensions H 15H 14H 4.5H H 4H y z z x H = 40 mm Flow Inlet Flow Outlet y z x
  • 11. 11 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Grid  3D grid:120x102x20 y z x z y z x
  • 12. 12 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Discretisation details  Convective term  Temporal term  Timestep calculation using CFL limit as guidance Van Leer scheme   W P P e r         ) (     2 , 5 . 0 5 . 0 , 2 min , 0 max ) ( r r r            2 2 1 1 1 , , 8 , 5 12           n n n n n n n n t f t f t f t      Implicit 3rd order Adam-Moulton scheme       2 2 1 1 1 , , 3 2          n n n n n n t f t f t     Explicit 2nd order Adam-Bashforth scheme CFL Condition                              w z v y u x tCFL , , min
  • 13. 13 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Solving 0  f 1  f (blue) (red)  Diferential equations solved  Continuity (Pressure)  Momentum (Velocities)  Scalar marker f  Auxiliary variables  Density  Viscosity  Eddy-viscosity
  • 14. 14 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Boundary conditions  Flow  Square-cylinder walls  No-slip condition  Logarithmic functions for filtered velocity Velocities Mass flux Outflow (fixed pressure) Simmetry wall (Free-slip) Simmetry wall (Free-slip)
  • 15. 15 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Calculation of integral parameters  Strouhal number  f – vortex-shedding frequency  Drag & lift coefficients U fD St  2 2 1 U F C horizontal D   2 2 1 U F C vertical L   ds n F s    ·
  • 16. 16 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Implementation in PHOENICS, 1  Time and spatial definitions Q1 file Major PIL settings • Time STEADY=T TLAST=GRND • Domain GRDPWR(X,.. GROUND User Module Y • CFL Condition   H CON N CON E CON MASS DT licit 1 , 1 , 1 max 1 exp  Group 2. Z Groups 3,4 and 5. • Spatial discretisation SCHEME(VANL1,U1,V1,W1) Group 8. • Time discretisation PATCH(TDIS,CELL,... COVAL(TDIS,U1,FIXFLU,GRND) Group 13. V1 W1 • High order time scheme Adam-Moulton Scheme Adam-Bashforth Scheme         2 1 1 12 7 3 2 12 7 ,          n n n n n n n RHS RHS RHS t f t          2 1 1 1 1 2 1 2 1 ,           n n n n n n RHS RHS t f t    Common formulation of PHOENICS Sources added Common formulation of PHOENICS Sources added
  • 17. 17 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Implementation in PHOENICS, 2  Properties and LES model Q1 file Major PIL settings Group 8. • Turbulence model ENUT=GRND Group 9. • Variables solved P1,U1,V1,W1,MIXF GROUND User Module • Variables stored RHO1,CON1E,CON1N,CON1H YPLS GENK=T Velocity gradients, GEN1 • Smagorinsky model     1 * * 2 GEN SQRT DELTA C VIST filter S      A YPLS EXP C C S S / 1 * 0    3 1 * * DZ DY DX DELTAfilter  Switching Special grounds • Dump data • Integral parameters RG( ),IG( ),LG( )
  • 18. 18 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Computing  Parallel cluster  Boadicea: Beowulf-Oriented Architecture for Distributed, Intensive Computing in Engineering Applications  Installed at Fluid Mechanics Group (University of Zaragoza, Spain)  66 CPU’s (33 dual nodes)  Pentium III, 550 MHz  256 Mb memory/node  10Gb disk space/node  Linux  PHOENICS V3.5
  • 20. 20 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 2D: Influences Van Leer scheme  Vertical velocity V1 Sampling Point 2H Van Leer No scheme t (s) V1 (m/s)
  • 21. 21 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 2D: Influences of Adam-Moulton scheme  Vertical velocity V1 Sampling Point 2H Adam Moulton No scheme V1 (m/s) t (s)
  • 22. 22 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 2D: Influences of Smagorisnky model  Vertical velocity V1 Sampling Point 2H Combined effect Smagorinsky No model V1 (m/s) t (s)
  • 23. 23 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Smagorinsky model 2D: Combined effect  Vertical velocity V1 Sampling Point 2H Combined effect All models and schemes No model V1 (m/s) t (s)
  • 24. 24 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work  Mean axial velocity along the centreline 2D: Grid influence 120x84 grid 240x168 grid 360x252 grid 120x102 grid Uaxial (m/s) Domain length H 120x102 240x186 120x84 360x252
  • 25. 25 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Animation of results  Mixture-fraction contours
  • 26. 26 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D Results  Integral parameters Work: Label St Numerical data: Verstappen and Veldman [23] GRO 0.005 1.45 2.09 0.178 0.133 Porquie et. al. [13] - Simulation 1 UK1 -0.02 1.01 2.2 0.14 0.13 - Simulation 2 UK2 -0.04 1.12 2.3 0.14 0.13 - Simulation 3 UK3 -0.05 1.02 2.23 0.13 0.13 Murakami et. Al. [29] NT -0.05 1.39 2.05 0.12 0.131 Wang and Vanka [4] UOI 0.04 1.29 2.03 0.18 0.13 Nozawa and Tamura [10] TIT 0.0093 1.39 2.62 0.23 0.131 Kawashima and Kawamura [14] - Simulation 1 ST2 0.01 1.26 2.72 0.28 0.16 - Simulation 2 ST5 0.009 1.38 2.78 0.28 0.161 Experimental data: Lyn et. al. [2] [3] EXP - - 2.1 - 0.132 This work S8A 0.03 1.4 2.01 0.22 0.139 L C rms L C D C rms D C
  • 27. 27 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison among data, 1  Experimental and this work data Domain length H Uaxial (m/s)
  • 28. 28 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison among data, 2  Numerical, experimental and this work data Uaxial (m/s) Domain length H
  • 29. 29 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Streamlines  Comparison between experimental and numerical streamlines Experimental This work
  • 30. 30 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Iso-vorticity contours Vorticity ] [ 1  s Vorticity ] [ 1  s  Streamwise  Spanwise Vorticity ] [ 1  s
  • 31. 31 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Turbulence viscosity (ENUT)  Streamwise ENUT ] [ 2 2 s m ENUT ] [ 2 2 s m
  • 32. 32 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison between LES & RANS, 1  Vertical velocity V1 Sampling Point 2H Uaxial (m/s) LES K-epsilon t (s)
  • 33. 33 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison between LES & RANS, 2  Mean axial velocity on the center plane Uaxial (m/s) Domain length H LES LES K-epsilon
  • 34. 34 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Animation: mixf
  • 35. 35 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Animation: spanwise vorticity
  • 36. 36 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Speedup Grid 120x102x20 24 min/dt 1 processor 12 processors 3 min/dt 30 sweeps/dt (implicit time) Ideal This work Processors used (n) Speedup ] [ 1 proc n proc t t • Computing time: approx 11 hr (on 12 processors) Domain split along z direction
  • 37. 37 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Conclusions  LES implemented to PHOENICS  Agreement with both numerical and experimental data  High order schemes increase accuracy  Flow well predicted  Superiority of LES over RANS  Reasonable time using parallel PHOENICS v3.5
  • 38. 38 Turbulence modelling Case considered Modelling  Equations Numerical details  Domain & grid  Solving  BC  Discretisation  Int. parameters  Computing Iimplementation in PHOENICS Results Conclusions Further work Further work  Large Eddy Simulation of Turbulent flames