SlideShare a Scribd company logo
Enhancing genetically engineered
Escherichia coli bioreporters for
the detection of buried TNT-based
landmines
Eden Amiel
Supervised by: Dr. Sharon Yagur-Kroll & Prof. Shimshon Belkin
The Department of Plant and Environmental Sciences
The Institute of Life Sciences
This Lecture:
• 1. Introduction
• Project overview and objectives
• Landmines- background
• Implications of landmines
• Explosives trace signatures and detection techniques
• Biosensors
• Remote detection of buried landmines
• 2. Methods
• Directed Evolution
• Random Mutagenesis
• Cloning + Ligation
• Transformation
• Screening + Isolation
• 3. Results
• 4. Conclusions
• 5. Further Research
Project Overview
• Interdisciplinary R&D of a highly sensitive detection system
capable of covering large areas of land for the
remote detection of buried TNT-based landmines.
• ‘munitions placed under, or near the ground or other surface area
and designed to be exploded by the presence, or proximity of a
person or vehicle'.
Landmines - background
AT’s: pressure > 150kg
AP’s: pressure > 5kg
2,4,6-Trinitrotoluene (TNT)
-International Committee of the Red Cross, 1996
Implications of landmines
• Impacts on civilians safety:
1. Landmines remain dangerous after the conflict in which they were
deployed has ended, killing and injuring civilians
2. 20,000 injuries/deaths worldwide each year
3. Over half a million victims suffering from injuries caused by mines
• Impacts on the whole ecological system:
1. Access denial
2. Loss of biodiversity
3. Chemical contamination
4. Loss of productivity in arable lands
These make landmines a global problem; but despite efforts towards
landmine eradication, mines clearance remains a challenge.
1 Mine = 3$-30$ to produce, 300$-1000$ to find and clear
Explosives trace signatures
• Approximately 80% of all landmines are TNT-based
• These contain manufacturing impurities and degradation products
• Leakage occurs through cracks in the mine casing and vapors
diffuse through the plastic housing of the mine.
• The 3 most important vapors include:
(1) 2,4,6-TNT (2) 2,4-DNT (3) 1,3-DNB
TNT-based landmine
TNT
2,4 DNT
1,3 DNB
Surface
Gas phase
Solid phase
Underground
water
Liquid phase
Why 2,4-DNT sensor?
1. Present in the vapor phase
2. Environmentally more stable
3. Easier to work with
The main detection techniques
1. Metal detector
2. Chemical detection
3. Biological detection
• Dogs
• Rats
• Bees
• Plants
• Bacteria
Escherichia coli bioreporters
DNT-sensing element GFP-reporting element
Landmines and explosives biosensors
Optical
system +
detector
Immobilized sensor bacteria on soil
Beam expander
Chopper
Shutter
Laser
Mobile optical system detector
Remote detection of landmines
Optical systemdetector
Detection limits
Improvement of the sensitivity is required in order to consider
this method as applicable
‫היום‬ ‫גילוי‬ ‫טווח‬
‫רצוי‬ ‫גילוי‬ ‫טווח‬
How do we do it ??
Directed evolution
• Based on Darwinian evolution – in Nature: the survival of the fittest.
• In the lab: we generate genetic diversity in the gene of interest and
perform a powerful screening or selection assay to isolate improved
protein variants.
• Insertion of random mutations along the gene of interest (yqjF)
using non optimal PCR conditions (Error prone PCR)
• No prior knowledge of structure or function is required.
How do wegenerate genetic diversity?
The process
yqjF cloned up-stream
to the luxCDABE genes
1. Construct a library of
variants by error-prone PCR
2. Insert fragments into an
expression vector
3. Transform into bacteria host
4. Screen colonies with 2,4-DNT
5. Isolate improved performances
yqjF promoter
yqjF gene
KpnI SacI
KpnI SacI ‫לעמידות‬ ‫גן‬
‫לאנטיביוטיקה‬
‫הכנסת‬
‫פרומוטר‬KpnI
SacI
2
3
4
5
DH5α E.coli
Screen colonies with 2,4-DNT
- DNT + DNT
Divide culture into 2 plates
Grow
bacteria
over-night
Incubation, 37°C
OD & RLU measures every 20 min
Isolate improved promoters
• An algorithm was developed in order to find and isolate the best variants
‫האלגוריתם‬:
.1‫ערכי‬ ‫את‬ ‫שולף‬‫הלומיניסציה‬(RLU)
‫העכירות‬ ‫וערכי‬(O.D)‫קבצי‬ ‫מתוך‬
‫הגולמיות‬ ‫התוצאות‬.
.2‫ה‬ ‫מערכי‬ ‫בלאנק‬ ‫מחסר‬-O.D.
.3‫ה‬ ‫ערכי‬ ‫של‬ ‫נרמול‬ ‫מבצע‬-RLU‫ידי‬ ‫על‬
‫ה‬ ‫בערכי‬ ‫חלוקה‬-O.D.
.4‫ידי‬ ‫על‬ ‫התוצאות‬ ‫של‬ ‫אנליזה‬ ‫מבצע‬
‫והפרש‬ ‫יחס‬ ‫ערכי‬ ‫חישוב‬:
𝑰𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑹𝒂𝒕𝒊𝒐 =
𝑹𝑳𝑼 𝑫𝑵𝑻
𝑹𝑳𝑼 𝒄𝒐𝒏𝒕𝒓𝒐𝒍
𝑰𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑫𝒆𝒍𝒕𝒂 = 𝑹𝑳𝑼 𝑫𝑵𝑻 − 𝑹𝑳𝑼 𝒄𝒐𝒏𝒕𝒓𝒐𝒍
.5‫משני‬ ‫אחד‬ ‫לכל‬ ‫קינטיקה‬ ‫גרף‬ ‫בונה‬
‫אלו‬ ‫מחושבים‬ ‫ערכים‬,‫כל‬ ‫עבור‬
‫ווריאנט‬.‫כן‬ ‫כמו‬,‫כל‬ ‫עבור‬ ‫מחשב‬
‫גרף‬,‫מתאים‬ ‫לינארי‬ ‫קו‬.
Ratio
Time
Delta
Time
6.‫הלינארית‬ ‫המשוואה‬ ‫מתוך‬
‫לקו‬ ‫המתאימה‬,‫השיפוע‬ ‫את‬ ‫שולף‬.
7.‫השיפועים‬ ‫ערכי‬ ‫את‬ ‫מסדר‬
‫לקטן‬ ‫מהגדול‬.
8.‫עם‬ ‫הווריאנטים‬ ‫את‬ ‫כפלט‬ ‫מציג‬
‫ביותר‬ ‫הגדולים‬ ‫השיפועים‬ ‫ערכי‬
‫המדדים‬ ‫בשני‬.‫גם‬ ‫מציג‬ ‫כן‬ ‫כמו‬
‫להם‬ ‫הווריאנטים‬ ‫חמשת‬ ‫את‬
‫ה‬ ‫שיפוע‬-delta‫ביותר‬ ‫הגדול‬ ‫הינו‬
‫שני‬ ‫בחיתוך‬ ‫מופיעים‬ ‫לא‬ ‫אשר‬
‫המדדים‬.
𝑹𝑳𝑼 𝑫𝑵𝑻 < 𝑹𝑳𝑼 𝒄𝒐𝒏𝒕𝒓𝒐𝒍
?
Delta
Time
A10 + C5
Dose-dependent screening
Choosing colonies
with the best results
No DNT + DNT
1 2 3 4 5 6 7 8 9 10 11 12
A 100 50 25 0 100 50 25 0 100 50 25 0
B
C
D
E
F
G
H
Picking the colonies that
showed best results
Performing a dose
dependent experiment
to a select few
Results
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
0 50 100 150 200 250
Luminescence(RLU)
Time (min)
100ppm
Fwt
1st
2nd
3rd
4th-A10
4th-C5
Delta RLU = Ratio RLU =
RLU DNT
RLU control
RLU DNT − RLU control
0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
0 50 100 150 200 250
Luminescence(RLU)
Time (min)
Fwt
1st
0
100,000
200,000
300,000
400,000
500,000
600,000
0 50 100 150 200 250
Luminescence(RLU)
Time (min)
Fwt
1st
2nd
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
0 50 100 150 200 250
Luminescence(RLU)
Time (min)
Fwt
1st
2nd
3rd
‫ערכי‬RLU‫אינפורמטיביים‬ ‫לא‬
0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
0 50 100 150 200
Luminescence(RLU)
50ppm
Time (min)
Fwt::lux
+DNT
"-DNT"
0
5,000
10,000
15,000
20,000
0 50 100 150 200
Time (min)
FB1::lux - 1st
0
100,000
200,000
300,000
400,000
500,000
600,000
0 50 100 150 200
Time (min)
FB2A1:lux - 2nd
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
0 50 100 150 200
Time (min)
FB2A1#14::lux - 3rd
0
500,000
1,000,000
1,500,000
0 50 100 150 200
Time (min)
F-A10::lux - 4th
0
500,000
1,000,000
1,500,000
2,000,000
0 50 100 150 200
Time (min)
F-C5::lux - 4th
0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
0 50 100 150 200
Luminescence(RLU)
50ppm
Time (min)
FB2A1#14::lux - 3rd
ΔRLU
0
100
200
300
400
500
600
700
800
0 20 40 60 80 100
MaxRatioover300min
DNT mg/l
MG/Fwt
1st
2nd
3rd
4th-A10
4th-C5
Ratio RLU
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
0 20 40 60 80 100
Max∆RLUover300min
DNT mg/l
MG/Fwt
1st
2nd
3rd
4th-A10
4th-C5
ΔRLU and Ratio at 25ppm
0
50
100
150
200
250
300
350
400
0 50 100 150 200 250 300 350
Ratio
25ppm
Time (min)
Fwt
1st
2nd
3rd
4th-A10
4th-C5
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
0 50 100 150 200 250 300 350
∆RLU
25ppm
Time (min)
Fwt
1st
2nd
3rd
4th-A10
4th-C5
Detection threshold
0
5
10
15
20
25
30
Fwt 1st 2nd 3rd 4th-A10 4th-C5
Sensitivitymg/l(EC200)
EC200 = the concentration which induces a response (Ratio = 2)
Transfer to a system suitable
for field measuring
• Luminescence: Using luxCDABE genes,
stronger responses, simpler to use,
less background noise.
• Fluorescence: Using GFP gene, a more
specific response suitable for the field
detection system
DNT-sensing element GFP-reporting elementluxCDABE-reporting element
0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000
0 20 40 60 80 100
Max∆RFUover300min
DNT mg/l
MG/Fwt
1st
2nd
3rd
4th-A10
4th-C5
0
1
2
3
4
5
6
0 20 40 60 80 100
MaxRatioover300min
DNT mg/l
MG/Fwt
1st
2nd
3rd
4th-A10
4th-C5
ΔRFU and Ratio RFU
ΔRFU and Ratio at 25ppm
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 50 100 150 200 250 300 350
Ratio
25ppm
Time
Fwt
1st
2nd
3rd
4th-A10
4th-C5
0
1000
2000
3000
4000
5000
6000
7000
8000
0 50 100 150 200 250 300 350
ΔRFU
25ppm
Time
Fwt
1st
2nd
3rd
4th-A10
4th-C5
0
20
40
60
80
100
120
Fwt 1st 2nd 3rd 4th-A10 4th-C5
Sensitivitymg/l(EC200)
Detection threshold
EC200 = the concentration which induces a response (Ratio = 2)
WT CGGTTTTGGCGTATGGAGCGCCTGGCGTCTGGTTAAAACGACCCTCAAGCAGCAACAGCTTCGCGGTTAA
FB2 ..........................A...........................................
FB2A1 ..........................A...........................................
FB2A1#14 ..........................A...............T..........................G
4th-A10 ..........................A...............T..........................G
4th-C5 ..........................A...............T.................C........G
WT CTTCCCTCTGGCCGGAGCCATTCCGGCCTTATCCCTCAAATTTTTTGAAGATTTTTGACAGTTTTCCTTG
FB2 ............................................................A.........
FB2A1 ....................................................C.......A.........
FB2A1#14 ...............................................G....C....T..A.........
4th-A10 ...............................................G....C....T..A.........
4th-C5 ...............................................G....C....T..A.........
WT CTAACAATCATCATTCACCACGTTTATGATTCTCTCCATCGACAGCAACGACGCTAATACCGCGCCATTG
FB2 ......................................................................
FB2A1 ..................................................................T...
FB2A1#14 ..................................................................T...
4th-A10 ..................................................................TC..
4th-C5 .....................A......................A.........C...........T...
-35
-10
+1
F26 F36
F49
F48F3
F124F128F133F138
F186
F195
F213F230
yqjF promoter
Point Mutations – Individual effects
0
200
400
600
800
1,000
1,200
1,400
1,600
1,800
2,000
0 20 40 60 80 100 120
MaxRatioover240'
2,4-DNT mg/l
MG/Fwt::lux
MG/F48::lux
MG/F49::lux
MG/F36:lux
MG/F26::lux
MG/F3::lux
MG/F124::lux
MG/F128:lux
MG/F133::lux
MG/F138::lux
MG/F186::lux
MG/F195::lux
MG/F213::lux
MG/F230::lux
MG/F138:lux
Point Mutations – Individual
-35 region of σ70
115.1
611.9
1612.0
1774.8
14.5 22.9 40.2 49.4
100.7
0.0
200.0
400.0
600.0
800.0
1000.0
1200.0
1400.0
1600.0
1800.0
2000.0
Fwt::lux F124 F128 F133 F138 F3 F26 F48 F49
ratioat100mg/l
‫ב‬ ‫שנכנסה‬ ‫היחידה‬ ‫המוטציה‬-A10
‫לבד‬:‫אפקט‬ ‫אין‬
‫נוספות‬ ‫מוטציות‬ ‫עם‬ ‫בשילוב‬:‫שיפור‬ ‫יש‬
Point Mutations – Multiple
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000
4,500,000
0 20 40 60 80 100 120
MaxDeltaRLUover240'
2,4-DNT mg/l
MG/Fwt::lux
MG/FB2::lux
MG/FB2A1::lux
MG/FB2A1::lux#14
MG/F124-133:lux
MG/F124-138:lux
MG/F124,128::lux
MG/F124,133::lux
MG/F128,133::lux
MG/F213::lux
MG/F230::lux
MG/F138:lux
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000
4,500,000
0 20 40 60 80 100 120
MaxDeltaRLUover240'
2,4-DNT mg/l
MG/Fwt::lux
MG/FB2A1::lux#14
MG/F124-133:lux
MG/F124-138:lux
MG/F213::lux
MG/F138:lux
0
5,000
10,000
15,000
20,000
25,000
30,000
0 20 40 60 80 100 120
MaxDeltaRLUover240'
2,4-DNT mg/l
MG/Fwt::lux
MG/F213::lux
MG/F138:lux
13
𝑘
=
13!
𝑘! 13−𝑘 !
13
7
=
13!
7! 13−7 !
1716 Possible combinations
Very low Ratio = 2
504 535
3,103
15,636
6,634
3,219 2,054
124,008
770 420 528
1
10
100
1,000
10,000
100,000
1,000,000
RLU
‫פי‬ ‫גבוה‬ ‫רקע‬250‫מה‬-WT!
Detection threshold
EC200 = the concentration which induces a response (Ratio = 2)
0
5
10
15
20
25
30
35
40
MG/Fwt::lux FB2 FB2A1 FB2A1#14 F124-133 F124-138
Sensitivitymg/l(EC200)
‫המוטציה‬F138‫הלומינסנציה‬ ‫פעילות‬ ‫את‬ ‫מורידה‬ ‫אמנם‬
‫המערכת‬ ‫של‬ ‫הרגישות‬ ‫סף‬ ‫את‬ ‫מעלה‬ ‫אך‬
Conclusions
• A10 + C5 have both high Ratio and high Delta
whereas FB2A1#14 has high Delta but low Ratio and
FB2A1 has high Ratio but low Delta
• Some specific mutations lower the performance of
the system but might increase performance when
combined with other mutations.
Further Research
• Performing RM to a specific area in the promoter,
such as the -35 domain
• Searching for TF binding sites and planning
mutations accordingly
• Applying different approaches to further lower the
detection threshold
• Using mutant strains of several membrane proteins as hosts
for the genetic fusion
• Increasing the influx levels of the substance through the
fusion of the membrane protein OmpF porin gene to an IPTG-
inducible lacZ gene promoter.
Different approaches to lower the
detection threshold
Δ
2,4-DNT
• Increasing the influx levels of the substance through the
fusion of the membrane protein OmpF porin gene to an IPTG-
inducible lacZ gene promoter.
Different approaches to lower the
detection threshold
2,4-DNT
ompF
OmpF porin
Thanks
• Prof. Shimshon Belkin
• Dr. Sharon Yagur-Kroll
• Lab Team:
• Dr. Rachel Rosen
• Dr. Tal Elad
• Dr. Keren Harel-Dasa
• Omri Finkel
• Neta Bachar
• Bini Shemer
• Noa Palevski
• Adi Fainshtain
• Yaara Moskovitz
Enhancing genetically engineered Escherichia coli

More Related Content

Viewers also liked

Viewers also liked (9)

Donny suryo p, hapzi ali, forum diskusi ii minggu 2 metode penelitian bisnis ...
Donny suryo p, hapzi ali, forum diskusi ii minggu 2 metode penelitian bisnis ...Donny suryo p, hapzi ali, forum diskusi ii minggu 2 metode penelitian bisnis ...
Donny suryo p, hapzi ali, forum diskusi ii minggu 2 metode penelitian bisnis ...
 
Donny suryo p, hapzi ali, tugas i sistem informasi manajemen penggunaan siste...
Donny suryo p, hapzi ali, tugas i sistem informasi manajemen penggunaan siste...Donny suryo p, hapzi ali, tugas i sistem informasi manajemen penggunaan siste...
Donny suryo p, hapzi ali, tugas i sistem informasi manajemen penggunaan siste...
 
Seasons,Crops and Loo - Class 9 PPT
Seasons,Crops and Loo - Class 9 PPTSeasons,Crops and Loo - Class 9 PPT
Seasons,Crops and Loo - Class 9 PPT
 
Social work in uganda
Social work in ugandaSocial work in uganda
Social work in uganda
 
Corrientes del pensamiento
Corrientes del pensamientoCorrientes del pensamiento
Corrientes del pensamiento
 
Oportunidades de mercado para las PYME dominicanas: una mirada de futuro
Oportunidades de mercado para las PYME dominicanas: una mirada de futuroOportunidades de mercado para las PYME dominicanas: una mirada de futuro
Oportunidades de mercado para las PYME dominicanas: una mirada de futuro
 
Power point
Power pointPower point
Power point
 
Diabetes
DiabetesDiabetes
Diabetes
 
Lapbook São Francisco
Lapbook São FranciscoLapbook São Francisco
Lapbook São Francisco
 

Similar to Enhancing genetically engineered Escherichia coli

1st Detect Presentation - Apr 2012 - TEDW
1st Detect Presentation - Apr 2012 - TEDW1st Detect Presentation - Apr 2012 - TEDW
1st Detect Presentation - Apr 2012 - TEDW
jwylde
 
Minesweeper plants final
Minesweeper plants finalMinesweeper plants final
Minesweeper plants final
Ahmad Yusuf
 
FT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharm
FT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharmFT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharm
FT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharm
Anubhav Singh
 

Similar to Enhancing genetically engineered Escherichia coli (20)

111
111111
111
 
1st Detect Presentation - Apr 2012 - TEDW
1st Detect Presentation - Apr 2012 - TEDW1st Detect Presentation - Apr 2012 - TEDW
1st Detect Presentation - Apr 2012 - TEDW
 
Cytation 5 single sheet english version
Cytation 5 single sheet   english versionCytation 5 single sheet   english version
Cytation 5 single sheet english version
 
Cytation 5 single sheet english version
Cytation 5 single sheet   english versionCytation 5 single sheet   english version
Cytation 5 single sheet english version
 
Ir spectroscopy
Ir spectroscopyIr spectroscopy
Ir spectroscopy
 
151 performance of a localized fiber optic
151 performance of a localized fiber optic151 performance of a localized fiber optic
151 performance of a localized fiber optic
 
Nirs
NirsNirs
Nirs
 
151 performance of a localized fiber optic
151 performance of a localized fiber optic151 performance of a localized fiber optic
151 performance of a localized fiber optic
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
أيات
أياتأيات
أيات
 
W T Lopes da Silva soil carbon analysis methods july 2010
W T Lopes da Silva soil carbon analysis methods july 2010W T Lopes da Silva soil carbon analysis methods july 2010
W T Lopes da Silva soil carbon analysis methods july 2010
 
IR SPECTROCOPY, Instrumentation of IR spectroscopy, Application of IR spectro...
IR SPECTROCOPY, Instrumentation of IR spectroscopy, Application of IR spectro...IR SPECTROCOPY, Instrumentation of IR spectroscopy, Application of IR spectro...
IR SPECTROCOPY, Instrumentation of IR spectroscopy, Application of IR spectro...
 
Ftir
FtirFtir
Ftir
 
Ion torrent and SOLiD Sequencing Techniques
Ion torrent and SOLiD Sequencing Techniques Ion torrent and SOLiD Sequencing Techniques
Ion torrent and SOLiD Sequencing Techniques
 
Piezoelectric Plate Sensor
Piezoelectric Plate SensorPiezoelectric Plate Sensor
Piezoelectric Plate Sensor
 
Minesweeper plants final
Minesweeper plants finalMinesweeper plants final
Minesweeper plants final
 
Webinar jenck id_sustancias
Webinar jenck id_sustanciasWebinar jenck id_sustancias
Webinar jenck id_sustancias
 
First Biology on SANS2d
First Biology on SANS2dFirst Biology on SANS2d
First Biology on SANS2d
 
Anna-Maria Hogan
Anna-Maria HoganAnna-Maria Hogan
Anna-Maria Hogan
 
FT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharm
FT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharmFT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharm
FT-IR spectroscopy Instrumentation and Application, By- Anubhav singh, M.pharm
 

Enhancing genetically engineered Escherichia coli

  • 1. Enhancing genetically engineered Escherichia coli bioreporters for the detection of buried TNT-based landmines Eden Amiel Supervised by: Dr. Sharon Yagur-Kroll & Prof. Shimshon Belkin The Department of Plant and Environmental Sciences The Institute of Life Sciences
  • 2. This Lecture: • 1. Introduction • Project overview and objectives • Landmines- background • Implications of landmines • Explosives trace signatures and detection techniques • Biosensors • Remote detection of buried landmines • 2. Methods • Directed Evolution • Random Mutagenesis • Cloning + Ligation • Transformation • Screening + Isolation • 3. Results • 4. Conclusions • 5. Further Research
  • 3. Project Overview • Interdisciplinary R&D of a highly sensitive detection system capable of covering large areas of land for the remote detection of buried TNT-based landmines.
  • 4. • ‘munitions placed under, or near the ground or other surface area and designed to be exploded by the presence, or proximity of a person or vehicle'. Landmines - background AT’s: pressure > 150kg AP’s: pressure > 5kg 2,4,6-Trinitrotoluene (TNT) -International Committee of the Red Cross, 1996
  • 5. Implications of landmines • Impacts on civilians safety: 1. Landmines remain dangerous after the conflict in which they were deployed has ended, killing and injuring civilians 2. 20,000 injuries/deaths worldwide each year 3. Over half a million victims suffering from injuries caused by mines • Impacts on the whole ecological system: 1. Access denial 2. Loss of biodiversity 3. Chemical contamination 4. Loss of productivity in arable lands These make landmines a global problem; but despite efforts towards landmine eradication, mines clearance remains a challenge. 1 Mine = 3$-30$ to produce, 300$-1000$ to find and clear
  • 6.
  • 7. Explosives trace signatures • Approximately 80% of all landmines are TNT-based • These contain manufacturing impurities and degradation products • Leakage occurs through cracks in the mine casing and vapors diffuse through the plastic housing of the mine. • The 3 most important vapors include: (1) 2,4,6-TNT (2) 2,4-DNT (3) 1,3-DNB TNT-based landmine TNT 2,4 DNT 1,3 DNB Surface Gas phase Solid phase Underground water Liquid phase Why 2,4-DNT sensor? 1. Present in the vapor phase 2. Environmentally more stable 3. Easier to work with
  • 8. The main detection techniques 1. Metal detector 2. Chemical detection 3. Biological detection • Dogs • Rats • Bees • Plants • Bacteria
  • 9. Escherichia coli bioreporters DNT-sensing element GFP-reporting element
  • 10. Landmines and explosives biosensors Optical system + detector Immobilized sensor bacteria on soil Beam expander Chopper Shutter Laser Mobile optical system detector
  • 11. Remote detection of landmines Optical systemdetector
  • 12.
  • 13. Detection limits Improvement of the sensitivity is required in order to consider this method as applicable ‫היום‬ ‫גילוי‬ ‫טווח‬ ‫רצוי‬ ‫גילוי‬ ‫טווח‬
  • 14. How do we do it ??
  • 15. Directed evolution • Based on Darwinian evolution – in Nature: the survival of the fittest. • In the lab: we generate genetic diversity in the gene of interest and perform a powerful screening or selection assay to isolate improved protein variants. • Insertion of random mutations along the gene of interest (yqjF) using non optimal PCR conditions (Error prone PCR) • No prior knowledge of structure or function is required. How do wegenerate genetic diversity?
  • 16. The process yqjF cloned up-stream to the luxCDABE genes 1. Construct a library of variants by error-prone PCR 2. Insert fragments into an expression vector 3. Transform into bacteria host 4. Screen colonies with 2,4-DNT 5. Isolate improved performances yqjF promoter yqjF gene KpnI SacI KpnI SacI ‫לעמידות‬ ‫גן‬ ‫לאנטיביוטיקה‬ ‫הכנסת‬ ‫פרומוטר‬KpnI SacI 2 3 4 5 DH5α E.coli
  • 17. Screen colonies with 2,4-DNT - DNT + DNT Divide culture into 2 plates Grow bacteria over-night Incubation, 37°C OD & RLU measures every 20 min
  • 18. Isolate improved promoters • An algorithm was developed in order to find and isolate the best variants ‫האלגוריתם‬: .1‫ערכי‬ ‫את‬ ‫שולף‬‫הלומיניסציה‬(RLU) ‫העכירות‬ ‫וערכי‬(O.D)‫קבצי‬ ‫מתוך‬ ‫הגולמיות‬ ‫התוצאות‬. .2‫ה‬ ‫מערכי‬ ‫בלאנק‬ ‫מחסר‬-O.D. .3‫ה‬ ‫ערכי‬ ‫של‬ ‫נרמול‬ ‫מבצע‬-RLU‫ידי‬ ‫על‬ ‫ה‬ ‫בערכי‬ ‫חלוקה‬-O.D. .4‫ידי‬ ‫על‬ ‫התוצאות‬ ‫של‬ ‫אנליזה‬ ‫מבצע‬ ‫והפרש‬ ‫יחס‬ ‫ערכי‬ ‫חישוב‬: 𝑰𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑹𝒂𝒕𝒊𝒐 = 𝑹𝑳𝑼 𝑫𝑵𝑻 𝑹𝑳𝑼 𝒄𝒐𝒏𝒕𝒓𝒐𝒍 𝑰𝒏𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑫𝒆𝒍𝒕𝒂 = 𝑹𝑳𝑼 𝑫𝑵𝑻 − 𝑹𝑳𝑼 𝒄𝒐𝒏𝒕𝒓𝒐𝒍 .5‫משני‬ ‫אחד‬ ‫לכל‬ ‫קינטיקה‬ ‫גרף‬ ‫בונה‬ ‫אלו‬ ‫מחושבים‬ ‫ערכים‬,‫כל‬ ‫עבור‬ ‫ווריאנט‬.‫כן‬ ‫כמו‬,‫כל‬ ‫עבור‬ ‫מחשב‬ ‫גרף‬,‫מתאים‬ ‫לינארי‬ ‫קו‬. Ratio Time Delta Time 6.‫הלינארית‬ ‫המשוואה‬ ‫מתוך‬ ‫לקו‬ ‫המתאימה‬,‫השיפוע‬ ‫את‬ ‫שולף‬. 7.‫השיפועים‬ ‫ערכי‬ ‫את‬ ‫מסדר‬ ‫לקטן‬ ‫מהגדול‬. 8.‫עם‬ ‫הווריאנטים‬ ‫את‬ ‫כפלט‬ ‫מציג‬ ‫ביותר‬ ‫הגדולים‬ ‫השיפועים‬ ‫ערכי‬ ‫המדדים‬ ‫בשני‬.‫גם‬ ‫מציג‬ ‫כן‬ ‫כמו‬ ‫להם‬ ‫הווריאנטים‬ ‫חמשת‬ ‫את‬ ‫ה‬ ‫שיפוע‬-delta‫ביותר‬ ‫הגדול‬ ‫הינו‬ ‫שני‬ ‫בחיתוך‬ ‫מופיעים‬ ‫לא‬ ‫אשר‬ ‫המדדים‬. 𝑹𝑳𝑼 𝑫𝑵𝑻 < 𝑹𝑳𝑼 𝒄𝒐𝒏𝒕𝒓𝒐𝒍 ? Delta Time A10 + C5
  • 19. Dose-dependent screening Choosing colonies with the best results No DNT + DNT 1 2 3 4 5 6 7 8 9 10 11 12 A 100 50 25 0 100 50 25 0 100 50 25 0 B C D E F G H Picking the colonies that showed best results Performing a dose dependent experiment to a select few
  • 20. Results 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 0 50 100 150 200 250 Luminescence(RLU) Time (min) 100ppm Fwt 1st 2nd 3rd 4th-A10 4th-C5 Delta RLU = Ratio RLU = RLU DNT RLU control RLU DNT − RLU control 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 0 50 100 150 200 250 Luminescence(RLU) Time (min) Fwt 1st 0 100,000 200,000 300,000 400,000 500,000 600,000 0 50 100 150 200 250 Luminescence(RLU) Time (min) Fwt 1st 2nd 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 0 50 100 150 200 250 Luminescence(RLU) Time (min) Fwt 1st 2nd 3rd ‫ערכי‬RLU‫אינפורמטיביים‬ ‫לא‬
  • 21. 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 0 50 100 150 200 Luminescence(RLU) 50ppm Time (min) Fwt::lux +DNT "-DNT" 0 5,000 10,000 15,000 20,000 0 50 100 150 200 Time (min) FB1::lux - 1st 0 100,000 200,000 300,000 400,000 500,000 600,000 0 50 100 150 200 Time (min) FB2A1:lux - 2nd 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 0 50 100 150 200 Time (min) FB2A1#14::lux - 3rd 0 500,000 1,000,000 1,500,000 0 50 100 150 200 Time (min) F-A10::lux - 4th 0 500,000 1,000,000 1,500,000 2,000,000 0 50 100 150 200 Time (min) F-C5::lux - 4th 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 0 50 100 150 200 Luminescence(RLU) 50ppm Time (min) FB2A1#14::lux - 3rd
  • 22. ΔRLU 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 MaxRatioover300min DNT mg/l MG/Fwt 1st 2nd 3rd 4th-A10 4th-C5 Ratio RLU 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 0 20 40 60 80 100 Max∆RLUover300min DNT mg/l MG/Fwt 1st 2nd 3rd 4th-A10 4th-C5
  • 23. ΔRLU and Ratio at 25ppm 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 Ratio 25ppm Time (min) Fwt 1st 2nd 3rd 4th-A10 4th-C5 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 0 50 100 150 200 250 300 350 ∆RLU 25ppm Time (min) Fwt 1st 2nd 3rd 4th-A10 4th-C5
  • 24. Detection threshold 0 5 10 15 20 25 30 Fwt 1st 2nd 3rd 4th-A10 4th-C5 Sensitivitymg/l(EC200) EC200 = the concentration which induces a response (Ratio = 2)
  • 25. Transfer to a system suitable for field measuring • Luminescence: Using luxCDABE genes, stronger responses, simpler to use, less background noise. • Fluorescence: Using GFP gene, a more specific response suitable for the field detection system DNT-sensing element GFP-reporting elementluxCDABE-reporting element
  • 26. 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 0 20 40 60 80 100 Max∆RFUover300min DNT mg/l MG/Fwt 1st 2nd 3rd 4th-A10 4th-C5 0 1 2 3 4 5 6 0 20 40 60 80 100 MaxRatioover300min DNT mg/l MG/Fwt 1st 2nd 3rd 4th-A10 4th-C5 ΔRFU and Ratio RFU
  • 27. ΔRFU and Ratio at 25ppm 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 50 100 150 200 250 300 350 Ratio 25ppm Time Fwt 1st 2nd 3rd 4th-A10 4th-C5 0 1000 2000 3000 4000 5000 6000 7000 8000 0 50 100 150 200 250 300 350 ΔRFU 25ppm Time Fwt 1st 2nd 3rd 4th-A10 4th-C5
  • 28. 0 20 40 60 80 100 120 Fwt 1st 2nd 3rd 4th-A10 4th-C5 Sensitivitymg/l(EC200) Detection threshold EC200 = the concentration which induces a response (Ratio = 2)
  • 29. WT CGGTTTTGGCGTATGGAGCGCCTGGCGTCTGGTTAAAACGACCCTCAAGCAGCAACAGCTTCGCGGTTAA FB2 ..........................A........................................... FB2A1 ..........................A........................................... FB2A1#14 ..........................A...............T..........................G 4th-A10 ..........................A...............T..........................G 4th-C5 ..........................A...............T.................C........G WT CTTCCCTCTGGCCGGAGCCATTCCGGCCTTATCCCTCAAATTTTTTGAAGATTTTTGACAGTTTTCCTTG FB2 ............................................................A......... FB2A1 ....................................................C.......A......... FB2A1#14 ...............................................G....C....T..A......... 4th-A10 ...............................................G....C....T..A......... 4th-C5 ...............................................G....C....T..A......... WT CTAACAATCATCATTCACCACGTTTATGATTCTCTCCATCGACAGCAACGACGCTAATACCGCGCCATTG FB2 ...................................................................... FB2A1 ..................................................................T... FB2A1#14 ..................................................................T... 4th-A10 ..................................................................TC.. 4th-C5 .....................A......................A.........C...........T... -35 -10 +1 F26 F36 F49 F48F3 F124F128F133F138 F186 F195 F213F230 yqjF promoter
  • 30. Point Mutations – Individual effects 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 0 20 40 60 80 100 120 MaxRatioover240' 2,4-DNT mg/l MG/Fwt::lux MG/F48::lux MG/F49::lux MG/F36:lux MG/F26::lux MG/F3::lux MG/F124::lux MG/F128:lux MG/F133::lux MG/F138::lux MG/F186::lux MG/F195::lux MG/F213::lux MG/F230::lux MG/F138:lux
  • 31. Point Mutations – Individual -35 region of σ70 115.1 611.9 1612.0 1774.8 14.5 22.9 40.2 49.4 100.7 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0 2000.0 Fwt::lux F124 F128 F133 F138 F3 F26 F48 F49 ratioat100mg/l ‫ב‬ ‫שנכנסה‬ ‫היחידה‬ ‫המוטציה‬-A10 ‫לבד‬:‫אפקט‬ ‫אין‬ ‫נוספות‬ ‫מוטציות‬ ‫עם‬ ‫בשילוב‬:‫שיפור‬ ‫יש‬
  • 32. Point Mutations – Multiple 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 0 20 40 60 80 100 120 MaxDeltaRLUover240' 2,4-DNT mg/l MG/Fwt::lux MG/FB2::lux MG/FB2A1::lux MG/FB2A1::lux#14 MG/F124-133:lux MG/F124-138:lux MG/F124,128::lux MG/F124,133::lux MG/F128,133::lux MG/F213::lux MG/F230::lux MG/F138:lux 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 0 20 40 60 80 100 120 MaxDeltaRLUover240' 2,4-DNT mg/l MG/Fwt::lux MG/FB2A1::lux#14 MG/F124-133:lux MG/F124-138:lux MG/F213::lux MG/F138:lux 0 5,000 10,000 15,000 20,000 25,000 30,000 0 20 40 60 80 100 120 MaxDeltaRLUover240' 2,4-DNT mg/l MG/Fwt::lux MG/F213::lux MG/F138:lux 13 𝑘 = 13! 𝑘! 13−𝑘 ! 13 7 = 13! 7! 13−7 ! 1716 Possible combinations Very low Ratio = 2 504 535 3,103 15,636 6,634 3,219 2,054 124,008 770 420 528 1 10 100 1,000 10,000 100,000 1,000,000 RLU ‫פי‬ ‫גבוה‬ ‫רקע‬250‫מה‬-WT!
  • 33. Detection threshold EC200 = the concentration which induces a response (Ratio = 2) 0 5 10 15 20 25 30 35 40 MG/Fwt::lux FB2 FB2A1 FB2A1#14 F124-133 F124-138 Sensitivitymg/l(EC200) ‫המוטציה‬F138‫הלומינסנציה‬ ‫פעילות‬ ‫את‬ ‫מורידה‬ ‫אמנם‬ ‫המערכת‬ ‫של‬ ‫הרגישות‬ ‫סף‬ ‫את‬ ‫מעלה‬ ‫אך‬
  • 34. Conclusions • A10 + C5 have both high Ratio and high Delta whereas FB2A1#14 has high Delta but low Ratio and FB2A1 has high Ratio but low Delta • Some specific mutations lower the performance of the system but might increase performance when combined with other mutations.
  • 35. Further Research • Performing RM to a specific area in the promoter, such as the -35 domain • Searching for TF binding sites and planning mutations accordingly • Applying different approaches to further lower the detection threshold
  • 36. • Using mutant strains of several membrane proteins as hosts for the genetic fusion • Increasing the influx levels of the substance through the fusion of the membrane protein OmpF porin gene to an IPTG- inducible lacZ gene promoter. Different approaches to lower the detection threshold Δ 2,4-DNT
  • 37. • Increasing the influx levels of the substance through the fusion of the membrane protein OmpF porin gene to an IPTG- inducible lacZ gene promoter. Different approaches to lower the detection threshold 2,4-DNT ompF OmpF porin
  • 38. Thanks • Prof. Shimshon Belkin • Dr. Sharon Yagur-Kroll • Lab Team: • Dr. Rachel Rosen • Dr. Tal Elad • Dr. Keren Harel-Dasa • Omri Finkel • Neta Bachar • Bini Shemer • Noa Palevski • Adi Fainshtain • Yaara Moskovitz

Editor's Notes

  1. מוקשים משמשים בכדי לפגוע בתנועת כוחות צבאיים בשטח. הם מכוונים בכדי להתפוצץ כאשר דורכים או נוסעים מעליהם. מספר רב של מוקשים תת קרקעיים מבוססים על חומר הנפץ TNT סכנות ממוקשים נובעות בעיקר מסכנת פיצוץ בשטח אשר אינו שטח מלחמה כיום, וגם מהזיהום הנפלט מהם ומהמפעלים בהם יוצרו.
  2. -מספר מחקרים מצביעים על כך כי מוקשים מזהמים את הקרקע ואת מקורות המים שסביבם בשלל חומרים רעילים ומסרטנים -עקב המצאות מוקשים בשטחים אשר היו יכולים לשמש לתעשייה חקלאית, שטחים אלו לא זמינים דבר אשר מוביל לקשיים כלכליים ואיבוד מקורות מזון.
  3. כיום מעריכים כי ישנם 110 מיליון מוקשים מפוזרים ב-70 מדינות שונות. כאשר בישראל כיום טמונים יותר ממיליון מוקשים – יש מקורות שלפיהם מעל 196 דונם (???). לפי הערכות שונות אפילו אם אין יותר הטמנה של מוקשים, המחיר של פינוי מוקשים בטכנולוגיות הקיימות כיום עלותו הינה כ-30 ביליון דולרים ומאות שנות עבודה
  4. מכל המוקשים דולפות כמויות קטנות של חומרים נדיפים. חומרים נדיפים אלו מצטברים באדמה ומעל מוקשים מוטמנים, ועל כן הם משמשים כסמנים פוטנציאלים לנוכחותם. Why 2,4-DNT sensor? Present in the vapor phase Environmentally more stable than 1,3-DNB Easier to work with
  5. Nanofibers Thales cress is inherently sensitive to nitrogen dioxide, a chemical byproduct of land mines. GM so that its leaves would turn from their natural green to bright red in the presence of explosives
  6. ניתן להנדס גנטית חיידקים כך שהם יחושו את הנוכחות של כמעט כל כימיקל, כולל חומרי נפץ, הן בפאזה מסיסה והן בפאזה גזית. ניתן להנדס את החיידקים כך שהם יפלטו סיגנל אופטי מתאים בנוכחות תרכובת כימית מסוימת.
  7. חיידקים מהונדסים גנטית כך שהם מגיבים ל-DNT יהוו את החיישנים. ניתן לחוש בסיגנל מסוג זה מאתרים רחוקים, ובכך לספק את האפשרות למפות את האתרים בהם מצויים מוקשים.
  8. פיזור מעל שטחי המטרה חיישנים מזעריים, המותאמים באופן מיוחד בכדי להגיב בנוכחות ריכוזים נמוכים ביותר של גזי DNT על ידי יצירת סיגנל אופטי. סריקה אופטית מרחוק של השטח הנבדק, תאפשר איתור אזורים בהם יש פלט אופטי מוגבר, דבר זה יעיד על כך שבאזור עשוי להיות מוקש.
  9. יצירת ספריית ווריאנטים על ידי PCR מועד לטעויות החדרת מקטעי ה-PCR לתוך וקטור ביטוי-הפרומוטור (yqjF) מצומד לגן מדווח (ביולומינסנטי) טרנספורמציה של הפלסימדים לתוך תאי E. coli מתאים לטרנספורמציה כי אין לו RecA סריקת המושבות כנגד 2,4-DNT בידוד פרומוטורים משופרים
  10. לשם בחירת הווריאנטים אשר הגיבו בצורה הטובה ביותר בסבב השלישי פותח אלגוריתם ממוחשב אשר סרק את המידע שהתקבל ממדידת העכירות (O.D) וממדידת עוצמת הלומיניסנציה ובחר את הווריאנטים שהגיבו בצורה הטובה ביותר. נכתב script ב-matlab עם הרעיון הבא: (ואז לפרט)
  11. בחירת המושבות אשר הגיבו הרמת המושבות אשר הגיבו ביצוע ניסוי תלוי ריכוז לבדיקת תגובת המוטנט
  12. סף התגובה - תגובה מוגדרת כהגעה ל-ratio השווה 2.
  13. A10 הראה שילוב של delta גבוה וגם ratio גבוה
  14. A10 יותר רגיש לעומת בלומסנטי שC5 יותר רגיש
  15. בריכוזים נמוכים: 124-133 מאוד רגיש