SlideShare a Scribd company logo
1 of 27
Download to read offline
DRIVING VALUE WITH BIG DATA
END TO END SUPPLY CHAIN CONTROL TOWER
Tarun Rana| Henkel | Amsterdam, November 2020
WHO WE ARE
LEADING POSITIONS IN CONSUMER AND INDUSTRIAL BUSINESSES
2
Beauty CareAdhesive Technologies Laundry & Home Care
WHO WE ARE
LAUNDRY AND HOME CARE SUPPLY CHAIN
3
>7,000 colleagues / 33 factories / 47 distribution centers
DIGITAL TRANSFORMATION
CURRENT STATE OF I4.0 PENETRATION
> 4.000
Flight Decks Users with >
28.000 accesses/d
> 50
Smart robots: Always-on
and connected
4.500
Always-on and
connected IoT devices
> 10 Billion
Datapoints processed
per day
> 15 TB
Data volume processed
per day
> 25 MEUR
Savings/a from I4.0
applications in 2020
4
DIGITAL TRANSFORMATION
BROAD TECHNOLOGY / USE-CASE LANDSCAPE…
5
End-to-End Connectivity
Unique Product Identification / Digital S&OP/S&OE / Track & Trace / Master Data
Analytics
Quality goes Digital
Safety goes Digital
Digital Enzyme Monitoring
Demand Sensing
Robotics
Smart Ro-/Cobots
AGV and Drones
WH Automation
Additive Manufacturing
Visualization
Mobility Apps
Digital SIM Boards
Online KPI Tracking
Cost to Serve
Sensorics
Real-time Metering
Next Generation In-line Quality
Real-time Filling Line Efficiency
Predictive Maintenance
DIGITAL TRANSFORMATION
… EMBEDDED INTO COMPREHENSIVE ECOSYSTEM
6
Transparency & Visibility
IT Architecture & Systems
Supplier Plant
Distribution
Center
Customer
Analytics Robotics VisualizationSensorics
Digital Backbone: End-to-End Analytics
Agile Transformation Culture
“Horizontal” + “Vertical” approach
DIGITAL BACKBONE
THE DATA LAKE OF MANUFACTURING
7
2013: Kick-off; first sites connected NOW: ONE!Global Solution
All sites connected worldwide
§ > 4,500 IoT devices deployed
§ > 250 online efficiency systems
§ > 80 quality systems
§ > 10 machines with live streaming
§ > 500 automated real-time reports
§ > 50 ML pipelines running in Cloud
LIVE
SENSORICS
REAL-TIME METERING
8
Backbone of Henkel's success in
Supply Chain sustainability
§ Flexible installation with high data
visibility, easily expandable to
new factories/production areas
§ > 3,500 sensors (> 4,000 by 2020)
§ > 1 million data points per day
§ Scope: Global
Maturity: Full deployment
Smart Sensorics Applied to Benchmark Consumptions Across all Processes
Real-time monitoring and benchmarking resulting in year on year savings
3%
6%
9%
12%
15%
18%
15% 17% 18%1%
6%
7%
9%
9%
12%
14%
16%
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020*
Base Improvement Increment via Digital
Introduction Online
Energy Metering
Energy savings per year (L Energy KPI [kWh/t])
* LBE
SENSORICS
DIGITAL SPRAY TOWER PROCESS
9
Significant lever on further reducing energy KPI and ensuring safe operations
§ Spray Tower as the biggest internal
single energy consumer
§ Process complexity, various impact factors
on efficiency and quality
§ Expert system to identify deviation from
best practice operating point
§ Scope: Global
§ > 85% of all towers (100% by 2020)
§ Scope: Global
Maturity: Roll-out
Process Control Parameter Streaming Building Global Spray Tower Expert System
Ring Channel Temperature
Filter Temperature
SENSORICS
PREDICTIVE MAINTENANCE
10
§ Detection of known fingerprints of failure for
any AC motor
§ Provision of early warnings in case of
detection of anomalous patterns
§ Automated analysis based
on machine learning algorithms
§ 2 factories under implementation in WE
§ Scope: Global
Maturity: PoC
Online Condition High Frequency Monitoring for AC motors
Increase overall equipment efficiency by the avoidance of failure
ANALYTICS
DIGITAL FORMULA FINGERPRINTING
11
§ Improve raw material yield, focus: surfactants
§ Analytical capabilities limit specification precision
§ Future: reduce specification range by factor 3
through smart algorithms
§ Opportunity: Lower target values
§ 3 spectrometers
§ 50 thousand data points per day
§ Scope: Partial
Maturity: Pilot
Product Digitalization with Unique Fingerprint Through IR Technology and Algorithms
Library of products and apps allows to determine origin of products at anytime
ANALYTICS
POUCH MONITORING SYSTEM
12
§ Continuous monitoring of machine parameters
§ Real-time evaluation and improvement of the in-line rejection
mechanism
§ Supporting best-in class fully automated quality control
§ Reduction of scraps and production waste
§ Scope: Partial
Maturity: Roll-out
High resolution camera picture of every pouch for in-line high speed quality control
Next generation in-line quality control increasing equipment efficiency
ANALYTICS
QUALITY GOES DIGITAL
13
§ Online and real-time analytics of Quality
parameters
§ Key quality KPIs (QIB/FTR) online
§ Reduce non-conformities in production
§ Ensure compliance and performance of
suppliers
§ Scope: Global
Maturity: Roll-out
Advanced analytics and real-time KPI tracking to lower Total cost of Quality
One view on harmonized Global Quality lowering customer complaints
ANALYTICS
DEMAND SENSING
14
§ Forecast improved by pattern-recognition
algorithms
§ Technology integrated in legacy planning
environment
§ Processed demand signals predict future
order pattern
§ Point of Sales data ingestion for improved
accuracy
§ Scope: Partial
Maturity: Roll-out
Machine Learning algorithms to better forecast demand signals
Inventory impact of -5 days, significant forecast improvement
VISUALIZATION
END-TO-END KPI FLIGHT DECK
15
§ Raw transactional data taken
from existing ERP system
§ Utilizing drill-down functionalities in
Tableau to quickly identify the root
causes
§ Real-time fully automated KPI tracking
§ >90 reports and dashboards Globally
§ Scope: Global
Maturity: Roll-out
Real-time analysis in the cloud with action-driven insights
Lowest granularity insights on all SC KPI’s (Cash, Cost, Service)
END-TO-END CONNECTIVITY
UNIQUE PRODUCT IDENTIFICATION
16
§ Digital unique product identification
§ Track and trace along the entire supply
chain
§ Technology fulfills EU legal requirements
as of 1.1.21 (Unique Formula Identifier)
§ Technology: in-line label print and scan
§ > 100 currently being installed
§ Scope: Partial
Maturity: Roll-out
Serialization of products for end-to-end Track and Trace
Product serialization cradle to pantry fulfilling full legal compliance
END-TO-END CONNECTIVITY
CAPACITY & PRODUCTION PLANNING INTEGRATION
17
§ Inaccuracies in planning process significantly impact Supply
Chain performance
§ Overstated efficiencies lead to
delivery delays and service level losses
§ Understated efficiencies lead to
high cost and wrong invest decision
§ Closing loop to account for short term but also mid to long
term portfolio effects
§ Positive impact on all key Supply Chain KPIs
§ Scope: Global
Maturity: Pilot
Closed feedback between ERP and MES synchronizes shopfloor and planning online
E2E Supply Chain steering based on facts, not assumptions
END-TO-END CONNECTIVITY
MASTER DATA CONTROL TOWER
18
§ End-to-End process visualization to
improve NPI time-to-market
§ Data integration from several project
management systems
§ Perform continuous runtime analysis,
bottleneck identification, portfolio
complexity analysis and performance
assessments
§ Scope: Global
Maturity: Roll-out
New Product Introduction, Faster Time-to-Market
Improve NPI Time-to-market by 30% from go zero to market launch
END-TO-END CONNECTIVITY
COST TO SERVE
19
§ Fully transparent and digital tracking of customer
ordering patterns
§ Prescriptive analytics on improving supply chain
efficiencies
§ Customer scorecard (including sustainability impact) to
support collaboration and projects alignment with our
customers
§ Scope: Partial
Maturity: Roll-out
Advanced analytics to better understand our customers ordering behaviour and steer L6/L11
Cost improvements on individual cost drivers in outbound supply network
END-TO-END CONNECTIVITY
DIGITAL S&OP / S&OE
20
§ Establish Tableau as data visualization layer to drive S&OP to
the next level
§ Generate online insights to increase agility & responsiveness
to market needs
§ Forward-looking dashboards to support decision making,
identify & close gaps between reality and strategy
§ Scope: Global
Maturity: Roll-out
Effective S&OP drives business success by Actualizing Strategy via Operations
Central tool utilized by cross functional teams to execute S&OP cycle
END-TO-END CONNECTIVITY
CONSUMER BUYING BEHAVIOUR
21
§ Digital solution to support cross-
functional teams, especially during
Covid-19
§ Real-time consumer buying trends
§ Advanced pattern recognition
§ Early signals for us in case of significant
changes
§ Scope: Partial
Maturity: Roll-out
Utilizing POS data from customer to understand our consumers buying behaviour
Utilizing big data capabilities for direct “touch” with consumers!
IT SYSTEMS & INFRASTRUCTURE
HENKEL DATA FOUNDATION AS DATA LAKE
22
Virtual Infrastructure
Continuously developing and connecting physical and virtual infrastructure
Front End Physical Infrastructure
HDF
Azure
Data Lake
Lomazzo
St. Louis
AMS
Ankara
AGILE TRANSFORMATION CULTURE
ORGANIZATION DEVELOPMENT AND TRANSFORMATION STEERING
23
§ Simple governance: Small Int’l team + 50 Local
Digital “SPOCS”, remote meeting every 6 weeks
§ Bottom-up (ideas, pilots, roll-out) and
Top-down (strategy, technologies, standards)
§ Upskilling of organization e.g. 20 webinars,
Global academy, on-the-job, digital capability
framework
Systematic synchronization of technological and organizational development
Leveraging networks in an efficient and agile way
DIGITAL TRANSFORMATION
PARTNERS: BROAD SCREENING AND SMART SELECTION
24
Technology Partners Conference
Long Term Relationship
Universities
Consultants
Service Partner
Analytics Partners
SUMMARY & OUTLOOK
25
§ Applications across SC pillars deliver significant returns
§ Impact areas are supply operations, planning, logistics, inventories, production,
sustainability, safety, quality
§ Increasing integration of “stand-alone” applications accelerating benefits
§ Constant workforce development needed to exploit full benefits of technology
§ Transform talent management and weave it into the fabric of the business
THANK YOU
Feedback
Your feedback is important to us.
Don’t forget to rate
and review the sessions.

More Related Content

What's hot

Retail Industry Enterprise Architecture Review
Retail Industry Enterprise Architecture ReviewRetail Industry Enterprise Architecture Review
Retail Industry Enterprise Architecture ReviewLakshmana Kattula
 
Big Data & Analytics to Improve Supply Chain and Business Performance
Big Data & Analytics to Improve Supply Chain and Business PerformanceBig Data & Analytics to Improve Supply Chain and Business Performance
Big Data & Analytics to Improve Supply Chain and Business PerformanceBristlecone SCC
 
OilGasDigitalTransformationWhitePaper
OilGasDigitalTransformationWhitePaperOilGasDigitalTransformationWhitePaper
OilGasDigitalTransformationWhitePaperAndre Vieira
 
Data Quality Best Practices
Data Quality Best PracticesData Quality Best Practices
Data Quality Best PracticesDATAVERSITY
 
How to Create and Manage a Successful Analytics Organization
How to Create and Manage a Successful Analytics OrganizationHow to Create and Manage a Successful Analytics Organization
How to Create and Manage a Successful Analytics OrganizationDATAVERSITY
 
DataOps: Nine steps to transform your data science impact Strata London May 18
DataOps: Nine steps to transform your data science impact  Strata London May 18DataOps: Nine steps to transform your data science impact  Strata London May 18
DataOps: Nine steps to transform your data science impact Strata London May 18Harvinder Atwal
 
Procure to Pay Transformation Case Study
Procure to Pay Transformation Case StudyProcure to Pay Transformation Case Study
Procure to Pay Transformation Case StudyRajat Dhawan, PhD
 
Implementing Effective Data Governance
Implementing Effective Data GovernanceImplementing Effective Data Governance
Implementing Effective Data GovernanceChristopher Bradley
 
With events to a modern integration architecture
With events to a modern integration architectureWith events to a modern integration architecture
With events to a modern integration architectureconfluent
 
Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...
Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...
Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...Danar Mustafa
 
Data Modeling, Data Governance, & Data Quality
Data Modeling, Data Governance, & Data QualityData Modeling, Data Governance, & Data Quality
Data Modeling, Data Governance, & Data QualityDATAVERSITY
 
How Big Data Shaping The Supply Chain
How Big Data Shaping The Supply ChainHow Big Data Shaping The Supply Chain
How Big Data Shaping The Supply ChainHafizullah Mohd Amin
 
INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...
INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...
INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...Ekonomikas ministrija
 
Data Marketplace and the Role of Data Virtualization
Data Marketplace and the Role of Data VirtualizationData Marketplace and the Role of Data Virtualization
Data Marketplace and the Role of Data VirtualizationDenodo
 
Business Data Lake Best Practices
Business Data Lake Best PracticesBusiness Data Lake Best Practices
Business Data Lake Best PracticesCapgemini
 
Impuls-Vortrag Data Strategy
Impuls-Vortrag Data StrategyImpuls-Vortrag Data Strategy
Impuls-Vortrag Data StrategyMarco Geuer
 
Introduction to Business Intelligence
Introduction to Business IntelligenceIntroduction to Business Intelligence
Introduction to Business IntelligenceRonan Soares
 
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesPutting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesDATAVERSITY
 
Business Intelligence & Data Analytics– An Architected Approach
Business Intelligence & Data Analytics– An Architected ApproachBusiness Intelligence & Data Analytics– An Architected Approach
Business Intelligence & Data Analytics– An Architected ApproachDATAVERSITY
 

What's hot (20)

Retail Industry Enterprise Architecture Review
Retail Industry Enterprise Architecture ReviewRetail Industry Enterprise Architecture Review
Retail Industry Enterprise Architecture Review
 
Big Data & Analytics to Improve Supply Chain and Business Performance
Big Data & Analytics to Improve Supply Chain and Business PerformanceBig Data & Analytics to Improve Supply Chain and Business Performance
Big Data & Analytics to Improve Supply Chain and Business Performance
 
OilGasDigitalTransformationWhitePaper
OilGasDigitalTransformationWhitePaperOilGasDigitalTransformationWhitePaper
OilGasDigitalTransformationWhitePaper
 
Data Quality Best Practices
Data Quality Best PracticesData Quality Best Practices
Data Quality Best Practices
 
How to Create and Manage a Successful Analytics Organization
How to Create and Manage a Successful Analytics OrganizationHow to Create and Manage a Successful Analytics Organization
How to Create and Manage a Successful Analytics Organization
 
DataOps: Nine steps to transform your data science impact Strata London May 18
DataOps: Nine steps to transform your data science impact  Strata London May 18DataOps: Nine steps to transform your data science impact  Strata London May 18
DataOps: Nine steps to transform your data science impact Strata London May 18
 
Procure to Pay Transformation Case Study
Procure to Pay Transformation Case StudyProcure to Pay Transformation Case Study
Procure to Pay Transformation Case Study
 
Implementing Effective Data Governance
Implementing Effective Data GovernanceImplementing Effective Data Governance
Implementing Effective Data Governance
 
With events to a modern integration architecture
With events to a modern integration architectureWith events to a modern integration architecture
With events to a modern integration architecture
 
Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...
Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...
Digital Supply Chain Management - Supply Chain 4.0 - Supply Chain Management ...
 
Data Modeling, Data Governance, & Data Quality
Data Modeling, Data Governance, & Data QualityData Modeling, Data Governance, & Data Quality
Data Modeling, Data Governance, & Data Quality
 
How Big Data Shaping The Supply Chain
How Big Data Shaping The Supply ChainHow Big Data Shaping The Supply Chain
How Big Data Shaping The Supply Chain
 
INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...
INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...
INDUSTRIE 4.0 AND GERMAN ACTIVITIES – Connected Manufacturing from the SAP Pe...
 
Data Marketplace and the Role of Data Virtualization
Data Marketplace and the Role of Data VirtualizationData Marketplace and the Role of Data Virtualization
Data Marketplace and the Role of Data Virtualization
 
Business Data Lake Best Practices
Business Data Lake Best PracticesBusiness Data Lake Best Practices
Business Data Lake Best Practices
 
Business intelligence
Business intelligenceBusiness intelligence
Business intelligence
 
Impuls-Vortrag Data Strategy
Impuls-Vortrag Data StrategyImpuls-Vortrag Data Strategy
Impuls-Vortrag Data Strategy
 
Introduction to Business Intelligence
Introduction to Business IntelligenceIntroduction to Business Intelligence
Introduction to Business Intelligence
 
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesPutting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
 
Business Intelligence & Data Analytics– An Architected Approach
Business Intelligence & Data Analytics– An Architected ApproachBusiness Intelligence & Data Analytics– An Architected Approach
Business Intelligence & Data Analytics– An Architected Approach
 

Similar to End to End Supply Chain Control Tower

OptAIoT - Enterprise Class IoT Solutions
OptAIoT - Enterprise Class IoT SolutionsOptAIoT - Enterprise Class IoT Solutions
OptAIoT - Enterprise Class IoT SolutionsNikhil Thosar
 
Manuel cadenas - SIEMENS
Manuel cadenas - SIEMENSManuel cadenas - SIEMENS
Manuel cadenas - SIEMENSDatAgri1
 
DISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATION
DISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATIONDISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATION
DISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATIONwle-ss
 
NTGapps DTB Platform.pdf
NTGapps DTB Platform.pdfNTGapps DTB Platform.pdf
NTGapps DTB Platform.pdfMustafa Kuğu
 
Subscribed 2015: The Explosion of Smart Connected Things
Subscribed 2015: The Explosion of Smart Connected ThingsSubscribed 2015: The Explosion of Smart Connected Things
Subscribed 2015: The Explosion of Smart Connected ThingsZuora, Inc.
 
Data Con LA 2022 - Practical Solutions to Complex Supply Chain Problems
Data Con LA 2022 - Practical Solutions to Complex Supply Chain ProblemsData Con LA 2022 - Practical Solutions to Complex Supply Chain Problems
Data Con LA 2022 - Practical Solutions to Complex Supply Chain ProblemsData Con LA
 
How to drive real business value from your virtual Supply Chain twin?
How to drive real business value from your virtual Supply Chain twin?How to drive real business value from your virtual Supply Chain twin?
How to drive real business value from your virtual Supply Chain twin?Bluecrux
 
Data Analytics in Digital Transformation
Data Analytics in Digital TransformationData Analytics in Digital Transformation
Data Analytics in Digital TransformationMukund Babbar
 
slides PTC smart factory.pdf
slides PTC smart factory.pdfslides PTC smart factory.pdf
slides PTC smart factory.pdfCarlosLopes408217
 
ScaleFocus DACH Expertise
ScaleFocus DACH ExpertiseScaleFocus DACH Expertise
ScaleFocus DACH ExpertiseScaleFocus
 
DIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIES
DIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIESDIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIES
DIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIESiQHub
 
Brad Hipps: Mastering the Modern Application Lifecycle
Brad Hipps: Mastering the Modern Application LifecycleBrad Hipps: Mastering the Modern Application Lifecycle
Brad Hipps: Mastering the Modern Application LifecycleSoftware Guru
 
redhat-IoT_use_cases-DavidBericat
redhat-IoT_use_cases-DavidBericatredhat-IoT_use_cases-DavidBericat
redhat-IoT_use_cases-DavidBericatDavid Bericat
 
IoT Meetup September 2019
IoT Meetup September 2019IoT Meetup September 2019
IoT Meetup September 2019IoT Academy
 
Role of Connectivity - IoT - Cloud in Industry 4.0
Role of Connectivity - IoT - Cloud in Industry 4.0Role of Connectivity - IoT - Cloud in Industry 4.0
Role of Connectivity - IoT - Cloud in Industry 4.0Gautam Ahuja
 
Digital cement presentation november 2019
Digital cement presentation november 2019Digital cement presentation november 2019
Digital cement presentation november 2019Mikko Marsio
 
Starting up our IoT platform
Starting up our IoT platformStarting up our IoT platform
Starting up our IoT platformCapgemini
 
Kinexions 2014 Breakout_28Oct2014
Kinexions 2014 Breakout_28Oct2014Kinexions 2014 Breakout_28Oct2014
Kinexions 2014 Breakout_28Oct2014Yogesh Amraotkar
 

Similar to End to End Supply Chain Control Tower (20)

OptAIoT - Enterprise Class IoT Solutions
OptAIoT - Enterprise Class IoT SolutionsOptAIoT - Enterprise Class IoT Solutions
OptAIoT - Enterprise Class IoT Solutions
 
Manuel cadenas - SIEMENS
Manuel cadenas - SIEMENSManuel cadenas - SIEMENS
Manuel cadenas - SIEMENS
 
DISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATION
DISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATIONDISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATION
DISCUSSION ON DIGITAL OILFIELD FULL-FIELD OPTIMIZATION
 
3. Camplone 22/06/2015 Fabbrica 4.0 Evento Nazionale | Roma - Confindustria
3. Camplone 22/06/2015 Fabbrica 4.0 Evento Nazionale | Roma - Confindustria3. Camplone 22/06/2015 Fabbrica 4.0 Evento Nazionale | Roma - Confindustria
3. Camplone 22/06/2015 Fabbrica 4.0 Evento Nazionale | Roma - Confindustria
 
NTGapps DTB Platform.pdf
NTGapps DTB Platform.pdfNTGapps DTB Platform.pdf
NTGapps DTB Platform.pdf
 
Subscribed 2015: The Explosion of Smart Connected Things
Subscribed 2015: The Explosion of Smart Connected ThingsSubscribed 2015: The Explosion of Smart Connected Things
Subscribed 2015: The Explosion of Smart Connected Things
 
Data Con LA 2022 - Practical Solutions to Complex Supply Chain Problems
Data Con LA 2022 - Practical Solutions to Complex Supply Chain ProblemsData Con LA 2022 - Practical Solutions to Complex Supply Chain Problems
Data Con LA 2022 - Practical Solutions to Complex Supply Chain Problems
 
How to drive real business value from your virtual Supply Chain twin?
How to drive real business value from your virtual Supply Chain twin?How to drive real business value from your virtual Supply Chain twin?
How to drive real business value from your virtual Supply Chain twin?
 
Data Analytics in Digital Transformation
Data Analytics in Digital TransformationData Analytics in Digital Transformation
Data Analytics in Digital Transformation
 
slides PTC smart factory.pdf
slides PTC smart factory.pdfslides PTC smart factory.pdf
slides PTC smart factory.pdf
 
ScaleFocus DACH Expertise
ScaleFocus DACH ExpertiseScaleFocus DACH Expertise
ScaleFocus DACH Expertise
 
DIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIES
DIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIESDIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIES
DIGITAL TRANSFORMATION FOR SUSTAINABILITY & RESILIENCE IN WATER UTILITIES
 
Brad Hipps: Mastering the Modern Application Lifecycle
Brad Hipps: Mastering the Modern Application LifecycleBrad Hipps: Mastering the Modern Application Lifecycle
Brad Hipps: Mastering the Modern Application Lifecycle
 
redhat-IoT_use_cases-DavidBericat
redhat-IoT_use_cases-DavidBericatredhat-IoT_use_cases-DavidBericat
redhat-IoT_use_cases-DavidBericat
 
Bobs paper
Bobs paperBobs paper
Bobs paper
 
IoT Meetup September 2019
IoT Meetup September 2019IoT Meetup September 2019
IoT Meetup September 2019
 
Role of Connectivity - IoT - Cloud in Industry 4.0
Role of Connectivity - IoT - Cloud in Industry 4.0Role of Connectivity - IoT - Cloud in Industry 4.0
Role of Connectivity - IoT - Cloud in Industry 4.0
 
Digital cement presentation november 2019
Digital cement presentation november 2019Digital cement presentation november 2019
Digital cement presentation november 2019
 
Starting up our IoT platform
Starting up our IoT platformStarting up our IoT platform
Starting up our IoT platform
 
Kinexions 2014 Breakout_28Oct2014
Kinexions 2014 Breakout_28Oct2014Kinexions 2014 Breakout_28Oct2014
Kinexions 2014 Breakout_28Oct2014
 

More from Databricks

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDatabricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDatabricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceDatabricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringDatabricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixDatabricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationDatabricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchDatabricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesDatabricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesDatabricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsDatabricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkDatabricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkDatabricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesDatabricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkDatabricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeDatabricks
 

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
 

Recently uploaded

High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...soniya singh
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样vhwb25kk
 
Top 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In QueensTop 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In Queensdataanalyticsqueen03
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一F sss
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationshipsccctableauusergroup
 
9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home Service9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home ServiceSapana Sha
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一F La
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.natarajan8993
 
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一fhwihughh
 
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理e4aez8ss
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改yuu sss
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfBoston Institute of Analytics
 

Recently uploaded (20)

High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
 
Top 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In QueensTop 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In Queens
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships
 
9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home Service9654467111 Call Girls In Munirka Hotel And Home Service
9654467111 Call Girls In Munirka Hotel And Home Service
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.
 
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
 
Call Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort ServiceCall Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort Service
 
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
科罗拉多大学波尔得分校毕业证学位证成绩单-可办理
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲中央昆士兰大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
 
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdfPredicting Salary Using Data Science: A Comprehensive Analysis.pdf
Predicting Salary Using Data Science: A Comprehensive Analysis.pdf
 

End to End Supply Chain Control Tower

  • 1. DRIVING VALUE WITH BIG DATA END TO END SUPPLY CHAIN CONTROL TOWER Tarun Rana| Henkel | Amsterdam, November 2020
  • 2. WHO WE ARE LEADING POSITIONS IN CONSUMER AND INDUSTRIAL BUSINESSES 2 Beauty CareAdhesive Technologies Laundry & Home Care
  • 3. WHO WE ARE LAUNDRY AND HOME CARE SUPPLY CHAIN 3 >7,000 colleagues / 33 factories / 47 distribution centers
  • 4. DIGITAL TRANSFORMATION CURRENT STATE OF I4.0 PENETRATION > 4.000 Flight Decks Users with > 28.000 accesses/d > 50 Smart robots: Always-on and connected 4.500 Always-on and connected IoT devices > 10 Billion Datapoints processed per day > 15 TB Data volume processed per day > 25 MEUR Savings/a from I4.0 applications in 2020 4
  • 5. DIGITAL TRANSFORMATION BROAD TECHNOLOGY / USE-CASE LANDSCAPE… 5 End-to-End Connectivity Unique Product Identification / Digital S&OP/S&OE / Track & Trace / Master Data Analytics Quality goes Digital Safety goes Digital Digital Enzyme Monitoring Demand Sensing Robotics Smart Ro-/Cobots AGV and Drones WH Automation Additive Manufacturing Visualization Mobility Apps Digital SIM Boards Online KPI Tracking Cost to Serve Sensorics Real-time Metering Next Generation In-line Quality Real-time Filling Line Efficiency Predictive Maintenance
  • 6. DIGITAL TRANSFORMATION … EMBEDDED INTO COMPREHENSIVE ECOSYSTEM 6 Transparency & Visibility IT Architecture & Systems Supplier Plant Distribution Center Customer Analytics Robotics VisualizationSensorics Digital Backbone: End-to-End Analytics Agile Transformation Culture “Horizontal” + “Vertical” approach
  • 7. DIGITAL BACKBONE THE DATA LAKE OF MANUFACTURING 7 2013: Kick-off; first sites connected NOW: ONE!Global Solution All sites connected worldwide § > 4,500 IoT devices deployed § > 250 online efficiency systems § > 80 quality systems § > 10 machines with live streaming § > 500 automated real-time reports § > 50 ML pipelines running in Cloud LIVE
  • 8. SENSORICS REAL-TIME METERING 8 Backbone of Henkel's success in Supply Chain sustainability § Flexible installation with high data visibility, easily expandable to new factories/production areas § > 3,500 sensors (> 4,000 by 2020) § > 1 million data points per day § Scope: Global Maturity: Full deployment Smart Sensorics Applied to Benchmark Consumptions Across all Processes Real-time monitoring and benchmarking resulting in year on year savings 3% 6% 9% 12% 15% 18% 15% 17% 18%1% 6% 7% 9% 9% 12% 14% 16% 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020* Base Improvement Increment via Digital Introduction Online Energy Metering Energy savings per year (L Energy KPI [kWh/t]) * LBE
  • 9. SENSORICS DIGITAL SPRAY TOWER PROCESS 9 Significant lever on further reducing energy KPI and ensuring safe operations § Spray Tower as the biggest internal single energy consumer § Process complexity, various impact factors on efficiency and quality § Expert system to identify deviation from best practice operating point § Scope: Global § > 85% of all towers (100% by 2020) § Scope: Global Maturity: Roll-out Process Control Parameter Streaming Building Global Spray Tower Expert System Ring Channel Temperature Filter Temperature
  • 10. SENSORICS PREDICTIVE MAINTENANCE 10 § Detection of known fingerprints of failure for any AC motor § Provision of early warnings in case of detection of anomalous patterns § Automated analysis based on machine learning algorithms § 2 factories under implementation in WE § Scope: Global Maturity: PoC Online Condition High Frequency Monitoring for AC motors Increase overall equipment efficiency by the avoidance of failure
  • 11. ANALYTICS DIGITAL FORMULA FINGERPRINTING 11 § Improve raw material yield, focus: surfactants § Analytical capabilities limit specification precision § Future: reduce specification range by factor 3 through smart algorithms § Opportunity: Lower target values § 3 spectrometers § 50 thousand data points per day § Scope: Partial Maturity: Pilot Product Digitalization with Unique Fingerprint Through IR Technology and Algorithms Library of products and apps allows to determine origin of products at anytime
  • 12. ANALYTICS POUCH MONITORING SYSTEM 12 § Continuous monitoring of machine parameters § Real-time evaluation and improvement of the in-line rejection mechanism § Supporting best-in class fully automated quality control § Reduction of scraps and production waste § Scope: Partial Maturity: Roll-out High resolution camera picture of every pouch for in-line high speed quality control Next generation in-line quality control increasing equipment efficiency
  • 13. ANALYTICS QUALITY GOES DIGITAL 13 § Online and real-time analytics of Quality parameters § Key quality KPIs (QIB/FTR) online § Reduce non-conformities in production § Ensure compliance and performance of suppliers § Scope: Global Maturity: Roll-out Advanced analytics and real-time KPI tracking to lower Total cost of Quality One view on harmonized Global Quality lowering customer complaints
  • 14. ANALYTICS DEMAND SENSING 14 § Forecast improved by pattern-recognition algorithms § Technology integrated in legacy planning environment § Processed demand signals predict future order pattern § Point of Sales data ingestion for improved accuracy § Scope: Partial Maturity: Roll-out Machine Learning algorithms to better forecast demand signals Inventory impact of -5 days, significant forecast improvement
  • 15. VISUALIZATION END-TO-END KPI FLIGHT DECK 15 § Raw transactional data taken from existing ERP system § Utilizing drill-down functionalities in Tableau to quickly identify the root causes § Real-time fully automated KPI tracking § >90 reports and dashboards Globally § Scope: Global Maturity: Roll-out Real-time analysis in the cloud with action-driven insights Lowest granularity insights on all SC KPI’s (Cash, Cost, Service)
  • 16. END-TO-END CONNECTIVITY UNIQUE PRODUCT IDENTIFICATION 16 § Digital unique product identification § Track and trace along the entire supply chain § Technology fulfills EU legal requirements as of 1.1.21 (Unique Formula Identifier) § Technology: in-line label print and scan § > 100 currently being installed § Scope: Partial Maturity: Roll-out Serialization of products for end-to-end Track and Trace Product serialization cradle to pantry fulfilling full legal compliance
  • 17. END-TO-END CONNECTIVITY CAPACITY & PRODUCTION PLANNING INTEGRATION 17 § Inaccuracies in planning process significantly impact Supply Chain performance § Overstated efficiencies lead to delivery delays and service level losses § Understated efficiencies lead to high cost and wrong invest decision § Closing loop to account for short term but also mid to long term portfolio effects § Positive impact on all key Supply Chain KPIs § Scope: Global Maturity: Pilot Closed feedback between ERP and MES synchronizes shopfloor and planning online E2E Supply Chain steering based on facts, not assumptions
  • 18. END-TO-END CONNECTIVITY MASTER DATA CONTROL TOWER 18 § End-to-End process visualization to improve NPI time-to-market § Data integration from several project management systems § Perform continuous runtime analysis, bottleneck identification, portfolio complexity analysis and performance assessments § Scope: Global Maturity: Roll-out New Product Introduction, Faster Time-to-Market Improve NPI Time-to-market by 30% from go zero to market launch
  • 19. END-TO-END CONNECTIVITY COST TO SERVE 19 § Fully transparent and digital tracking of customer ordering patterns § Prescriptive analytics on improving supply chain efficiencies § Customer scorecard (including sustainability impact) to support collaboration and projects alignment with our customers § Scope: Partial Maturity: Roll-out Advanced analytics to better understand our customers ordering behaviour and steer L6/L11 Cost improvements on individual cost drivers in outbound supply network
  • 20. END-TO-END CONNECTIVITY DIGITAL S&OP / S&OE 20 § Establish Tableau as data visualization layer to drive S&OP to the next level § Generate online insights to increase agility & responsiveness to market needs § Forward-looking dashboards to support decision making, identify & close gaps between reality and strategy § Scope: Global Maturity: Roll-out Effective S&OP drives business success by Actualizing Strategy via Operations Central tool utilized by cross functional teams to execute S&OP cycle
  • 21. END-TO-END CONNECTIVITY CONSUMER BUYING BEHAVIOUR 21 § Digital solution to support cross- functional teams, especially during Covid-19 § Real-time consumer buying trends § Advanced pattern recognition § Early signals for us in case of significant changes § Scope: Partial Maturity: Roll-out Utilizing POS data from customer to understand our consumers buying behaviour Utilizing big data capabilities for direct “touch” with consumers!
  • 22. IT SYSTEMS & INFRASTRUCTURE HENKEL DATA FOUNDATION AS DATA LAKE 22 Virtual Infrastructure Continuously developing and connecting physical and virtual infrastructure Front End Physical Infrastructure HDF Azure Data Lake Lomazzo St. Louis AMS Ankara
  • 23. AGILE TRANSFORMATION CULTURE ORGANIZATION DEVELOPMENT AND TRANSFORMATION STEERING 23 § Simple governance: Small Int’l team + 50 Local Digital “SPOCS”, remote meeting every 6 weeks § Bottom-up (ideas, pilots, roll-out) and Top-down (strategy, technologies, standards) § Upskilling of organization e.g. 20 webinars, Global academy, on-the-job, digital capability framework Systematic synchronization of technological and organizational development Leveraging networks in an efficient and agile way
  • 24. DIGITAL TRANSFORMATION PARTNERS: BROAD SCREENING AND SMART SELECTION 24 Technology Partners Conference Long Term Relationship Universities Consultants Service Partner Analytics Partners
  • 25. SUMMARY & OUTLOOK 25 § Applications across SC pillars deliver significant returns § Impact areas are supply operations, planning, logistics, inventories, production, sustainability, safety, quality § Increasing integration of “stand-alone” applications accelerating benefits § Constant workforce development needed to exploit full benefits of technology § Transform talent management and weave it into the fabric of the business
  • 27. Feedback Your feedback is important to us. Don’t forget to rate and review the sessions.