SlideShare a Scribd company logo
1 of 12
Download to read offline
Energy Fuels 2010, 24, 3173–3178   : DOI:10.1021/ef9015872
Published on Web 04/02/2010


   Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel
Gemma Vicente,† L. Fernando Bautista,† Francisco J. Gutirrez,† Rosalı´ a Rodrı´ guez,† Virginia Martı´ nez,†
                                                        e
Rosa A. Rodrı´ guez-Frmeta,‡ Rosa M. Ruiz-Vzquez,‡ Santiago Torres-Martı´ nez,‡ and Victoriano Garre*,‡
                      o                     a
       †
        Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipn s/n,
                                                                                                           a
     28933 Mstoles, Madrid, Spain, and ‡Departamento de Gentica y Microbiologı´a (Unidad Asociada al IQFR-CSIC),
            o                                                  e
                            Facultad de Biologı´a, Universidad de Murcia, 30071 Murcia, Spain

                                   Received July 29, 2009. Revised Manuscript Received March 11, 2010



            Diminishing fossil fuel reserves and the increase in their consumption indicate that strategies need to be
            developed to produce biofuels from renewable resources. Biodiesel offers advantages over other petro-
            leum-derived fuel substitutes, because it is comparatively environmentally friendly and an excellent fuel for
            existing diesel engines. Biodiesel, which consists of fatty acid methyl esters (FAMEs), is usually obtained
            from plant oils. However, its extensive production from oil crops is not sustainable because of the impact
            this would have on food supply and the environment. Microbial oils are postulated as an alternative to
            plant oils, but not all oleaginous microorganisms have ideal lipid profiles for biodiesel production. On the
            other hand, lipid profiles could be modified by genetic engineering in some oleaginous microorganisms,
            such as the fungus Mucor circinelloides, which has powerful genetic tools. We show here that the biomass
            from submerged cultures of the oleaginous fungus M. circinelloides can be used to produce biodiesel by
            acid-catalyzed direct transformation, without previous extraction of the lipids. Direct transformation,
            which should mean a cost savings for biodiesel production, increased lipid extraction and demonstrated
            that structural lipids, in addition to energy storage lipids, can be transformed into FAMEs. Moreover, the
            analyzed properties of the M. circinelloides-derived biodiesel using three different catalysts (BF3, H2SO4,
            and HCl) fulfilled the specifications established by the American standards and most of the European
            standard specifications.


                           1. Introduction                                               crop oils should be quickly developed.6 One way to increase
                                                                                         world oil production that would cause a low ecosystem impact
   Society is facing an unprecedented situation with regard
                                                                                         is to use lipids from oleaginous microorganisms (also called
to the fundamental sources of its raw materials and energy.
                                                                                         single-cell oils), which present many significant advanta-
Petroleum, the fuel that has driven modern society for the last
                                                                                         ges over plants. Oleaginous microorganisms, such as yeasts,
century, is showing signs of scarcity.1,2 Many renewable fuel
                                                                                         fungi, bacteria, and microalgae, can accumulate high levels of
alternatives are under study,3 but ethanol and biodiesel are
                                                                                         lipids7-14 (Table 1) and do not require arable land, so that
already available in petrol stations. Biodiesel, which consists
                                                                                         they do not compete with food production. More particularly,
of fatty acid methyl esters (FAMEs), has many advantages,
                                                                                         photosynthetic microalgae have attracted attention and invest-
such as high energy density, great lubricity, fast biodegrada-
                                                                                         ment because they capture carbon dioxide in lipids using sun-
tion rate, and reduced emissions of sulfur, aromatic com-
                                                                                         light. However, their growth in bioreactor systems is proble-
pounds, and particulate matter.4 However, biodiesel adoption
                                                                                         matic because of the light supply requirement.6,15 Oleaginous
is complicated because it competes with the food industry for
                                                                                         yeasts and fungi have also been considered as potential oil
the main raw material input, plant oils, and the worldwide
                                                                                         sources for biodiesel production because they accumulate large
supply of plant oils is limited by land and water availability.4,5
                                                                                         amounts of lipids. Among these microorganisms, particular
Moreover, a rapid expansion in biodiesel production capacity
                                                                                         attention has been dedicated to various oleaginous zygomyce-
is being observed in not only developed countries, e.g., United
                                                                                         tes species, such as Mortierella isabelina and Cunninghamella
States and European Union, but also developing countries.
To meet the demand of this industry, oil sources other than
                                                                                           (7) Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Renewable
                                                                                         Energy 2009, 34, 1–5.
                                                                                           (8) Chisti, Y. Biotechnol. Adv. 2007, 25, 294–306.
   *To whom correspondence should be addressed: Departamento de                            (9) Illman, A. M.; Scragg, A. H.; Shales, S. W. Enzyme Microb.
Gentica y Microbiologı´ a, Facultad de Biologı´ a, Universidad de Murcia,
     e                                                                                   Technol. 2000, 27, 631–635.
30071 Murcia, Spain. Telephone: þ34-868887148. Fax: þ34-868883963.                         (10) Gouda, M. K.; Omar, S. H.; Aouad, L. M. World J. Microbiol.
E-mail: vgarre@um.es.                                                                    Biotechnol. 2008, 24, 1703–1711.
  (1) Grant, L. Science 2005, 309, 52–54.                                                  (11) Papanikolaou, S.; Komaitis, M.; Aggelis, G. Bioresour. Technol.
  (2) Vasudevan, P. T.; Briggs, M. J. Ind. Microbiol. Biotechnol. 2008,                  2004, 95, 287–291.
35, 421–430.                                                                               (12) Fakas, S.; Papanikolaou, S.; Galiotou-Panatoyou, M.; Komaitis,
  (3) Wackett, L. P. Microb. Biotechnol. 2008, 1, 211–225.                               M.; Aggelis, G. J. Appl. Microbiol. 2008, 105, 1062–1070.
  (4) Durrett, T. P.; Benning., C.; Ohlrogge, J. Plant J. 2008, 54, 593–                   (13) Fakas, S.; Papanikolaou, S.; Batsos, A.; Galiotou-Panatoyou,
607.                                                                                     M.; Mallouchos, A.; Aggelis, G. Biomass Bioenergy 2009, 33, 573–580.
  (5) Pinzi, S.; Garcia, I. L.; Lopez-Gimenez, F. J.; Luque de Castro,                     (14) Vicente, G.; Bautista, L. F.; Rodrı´ guez, R.; Gutirrez, F. J.;
                                                                                                                                                      e
M. D.; Dorado, G.; Dorado, M. P. Energy Fuels 2009, 23, 2325–2341.                       Sdaba, I.; Ruiz-Vzquez, R. M.; Torres-Martı´ nez, S.; Garre, V.
                                                                                          a                   a
  (6) Li, Q.; Du, W.; Liu, D. Appl. Microbiol. Biotechnol. 2008, 80, 749–                Biochem. Eng. J. 2009, 48, 22–27.
756.                                                                                       (15) Rittmann, B. E. Biotechnol. Bioeng. 2008, 100, 203–212.

                                               r 2010 American Chemical Society   3173     pubs.acs.org/EF
Energy Fuels 2010, 24, 3173–3178   : DOI:10.1021/ef9015872                                                                                         Vicente et al.

           Table 1. Oleaginous Microorganisms Used for                               by the industry. One way to generate microorganisms with
                    Single-Cell Oil Production                                       ideal lipid composition for biodiesel production could be by
                                                                                     means of genetic manipulation of key genes.4,5 However,
                                                                                     microorganisms considered thus far as a feedstock for biodie-
                                                                                     sel production lack appropriate genetic engineering tech-
                                                                                     niques to improve fatty acid profiles that would produce
                                                                                     high-quality biodiesel.16 Besides, their genomes have not been
                                                                                     sequenced, which makes it even more difficult to improve
                                                                                     strategies based on genetic manipulation.
                                                                                        In contrast, the oleaginous fungus Mucor circinelloides,
                                                                                     which was used for the first commercial production of micro-
                                                                                     bial lipids,21 has its genome sequenced and a large collection of
                                                                                     genetic engineering techniques for its manipulation. These
                                                                                     techniques include the expression of genes using autoreplica-
                                                                                     tive plasmids and inactivation of genes by disruption22 or gene
                                                                                     silencing (RNAi).23 In addition, the regulation of lipid accu-
                                                                                     mulation in this fungus has been extensively studied for
                                                                                     decades,24,25 and key genes have been identified.26 Moreover,
                                                                                     the possibility to manipulate lipid accumulation in M. circi-
                                                                                     nelloides using genetic engineering techniques has been recen-
                                                                                     tly proven. Thus, overexpression of malic enzyme, which has
                                                                                     been postulated to be the rate-limiting step for fatty acid
                                                                                     biosynthesis in M. circinelloides, led to a 2.5-fold increase in
                                                                                     lipid accumulation.27
                                                                                        The M. circinelloides lipids extracted for mycelium grown in a
                                                                                     solid medium have been suggested as a suitable feedstock to
                                                                                     produce biodiesel.14 Biodiesel was produced by acid-catalyzed
                                                                                     transesterification/esterification because of its high free fatty
                                                                                     acid content (31.6 ( 1.3%) following two different app-
                                                                                     roaches: transformation of extracted microbial lipids and
echinulata, which may accumulate up to 86 and 57% of lipids in                       acid-catalyzed direct transformation of microbial dry mass.
dry biomass, respectively.11-13 These fungi are able to grow and                     The FAME yield was significantly higher in the direct transfor-
accumulate large amounts of lipids in cultures containing raw                        mation than in the two-step process, with the FAME purity also
glycerol derived from biodiesel production as a carbon source.                       being higher in the direct method. However, growth in a solid
Glycerol is the major byproduct of the biodiesel production, and                     medium is unfeasible for the industry, which should use biomass
its recycling to produce oleaginous microbial biomass could                          from submerged cultures. Therefore, we describe here the
significantly decrease the cost of biodiesel production.13                           characterization of the lipids accumulated by M. circinelloides
   Biodiesel is conventionally produced by transesterification                       mycelia grown in submerged liquid cultures and the acid-
of extracted triacylglycerides with methanol, but a single-step                      catalyzed direct transformation of the M. circinelloides biomass
method has been developed that transforms lipids present in                          into biodiesel, without previous extraction of those lipids. In
dried microbial biomass into FAMEs, without previous lipid                           addition, we also show that the biodiesel obtained complies with
extraction.16 This method combines the lipid extraction, the                         the current existing standards, the ASTM D6751 standard in the
acid-catalyzed transesterification of the extracted saponifiable                     United States and most of the specifications in the EN 14213
lipids, and the acid-catalyzed esterification of the extracted                       and 14214 standards in the European Union.
free fatty acids in one step and was initially proposed because
of the substantial reduction in both time and solvents that this                                           2. Experimental Section
technique offers for analytical purposes.17 Similar procedures                         2.1. Strains and Growth Conditions. The strain MU241,28
that avoid the lipid extraction step have already been deve-                         derived from R7B29 after replacement of its leuA mutant allele
loped.13,18-20 However, most of them involve a previous                              by a wild-type allele, was used as a wild-type strain to produce
transmethylation step and do not include an acid-catalyzed                           fungal biomass. For biomass production, 1 Â 105 spores/mL
transesterification and esterification.13,18,19
   Biodiesel quality depends upon the fatty acid composition                            (21) Ratledge, C. Biochimie 2004, 86, 807–815.
                                                                                        (22) Navarro, E.; Lorca-Pascual, J. M.; Quiles-Rosillo, M. D.; Nicols,
                                                                                                                                                              a
of raw materials, and consequently, not all microorganisms                           F. E.; Garre, V.; Torres-Martı´ nez, S.; Ruiz-Vzquez, R. M. Mol. Genet.
                                                                                                                                      a
can be used as a feedstock for biodiesel production.4,5 Thus, a                      Genomics 2001, 266, 463–470.
careful characterization of the lipid composition of each                               (23) Nicols, F. E.; Torres-Martı´ nez, S.; Ruiz-Vzquez, R. M. EMBO
                                                                                                   a                                       a
microbial candidate should be carried out before its adoption                        J. 2003, 22, 3983–3991.
                                                                                        (24) Aggelis, G.; Ratomahenina, R.; Arnaud, A.; Galzy, P.; Martin-
                                                                                     Privat, P.; Perraud, J. P.; Pina, M.; Graille, J. Oleagineux 1988, 43, 311–
  (16) Liu, B.; Zhao, Z. B. J. Chem. Technol. Biotechnol. 2007, 82, 775–             317.
780.                                                                                    (25) Aggelis, G.; Pina, M.; Graille, J. Oleagineux 1990, 45, 229–232.
  (17) Lewis, T.; Nichols, P. D.; McMeekin, T. A. J. Microbiol.                         (26) Wynn, J. P.; bin Abdul, H. A.; Ratledge, C. Microbiology 1999,
Methods 2000, 43, 107–116.                                                           145, 1911–1917.
  (18) Rodrı´ guez-Ruiz, J.; Belarbi, E.-H.; Garcı´ a Snchez, J. L.; Lpez
                                                       a               o                (27) Zhang, Y.; Adams, I. P.; Ratledge, C. Microbiology 2007, 153,
Alonso, D. Biotechnol. Technol. 1998, 12, 689–691.                                   2013–2025.
  (19) Weete, J. D.; Shewmaker, F.; Gandhi, S. R. J. Am. Oil Chem. Soc.                 (28) Silva, F.; Navarro, E.; Pe~ aranda, A.; Murcia-Flores, L.; Torres-
                                                                                                                       n
1998, 75, 1367–1372.                                                                 Martı´ nez, S.; Garre, V. Mol. Microbiol. 2008, 70, 1026–1036.
  (20) Johnson, M. B.; Wen, Z. Energy Fuels 2009, 23, 5179–5183.                        (29) Roncero, M. I. G. Carlsberg Res. Commun. 1984, 49, 685–690.
                                                                              3174
Energy Fuels 2010, 24, 3173–3178   : DOI:10.1021/ef9015872                                                                                 Vicente et al.

were inoculated in a 500 mL flask with 100 mL of YNB2XG
liquid medium (20 g/L glucose, 1.5 g/L ammonium sulfate,
1.5 g/L glutamic acid, 0.5 g/L yeast nitrogen base without amino
acids and ammonium sulfate, 1 mg/L nicotinic acid, and 1 mg/L
thiamine at pH 4.5) and incubated in the dark for 24, 48, 72, or
96 h at 26 °C and 250 rpm. Culture pH was measured every 24 h
and manually adjusted by the addition of 1 M NaOH.
   2.2. Analysis of Cell Lipids. Mycelia harvested by filtration
using Whatman Paper No. 1 were dried between paper towels,
frozen in liquid nitrogen, lyophilized, weighed to estimate dry
mass, and ground using a mortar and pestle. Cell lipids were
extracted as previously described.30
   Characterization of cell lipids was performed following stan-
dard methods when possible. Free fatty acids, tri-, di-, and
monoglycerides, FAMEs, carotenoids, sterol esters, sterols and
tocoferols, retinoids and polar lipids in microbial oil were identi-
fied and quantified by TLC analysis. Chromatographic separation                   Figure 1. Kinetics of biomass production (2), lipid biosynthesis (O),
                                                                                  and glucose consumption (b) in M. circinelloides cultures. Data are
was developed in 20 Â 20 cm silica-coated aluminum plates
                                                                                  presented as mean values from duplicate experiments.
(Alugram Sil G/UV, Macherey-Nagel GmbH, D€ren, Germany)
                                                    u
using a solvent mixture of 88% (v) n-hexane, 11% (v/v) diethyl                    weighed to calculate the yield and then analyzed to determine its
ether, and 1% (v/v) glacial acetic acid. Visualization was carried                quality as biodiesel, following standard methods according to
out by staining with iodine. Digital image analyses of staining                   European Union specifications (EN 14214).
plates were performed with Un-Scan-It Gel 6.1 software (Silk
Scientific, Inc., Orem, UT), and the lipid compositions were                                          3. Results and Discussion
quantified by the corresponding calibration curves.
   Free fatty acid content in the lipid fraction extracted from the                  3.1. Biomass Production and Lipid Characterization. To
microorganisms was measured following a colorimetric proce-                       produce biodiesel, M. circinelloides biomass was obtained
dure31 based on the formation of cupric soaps and further quan-                   from the prototrophic strain MU241 grown in a liquid medium
tification of the chromophore complex by absorbance at 715 nm                     (YNB2XG) containing glucose as a carbon source (20 g/L). In
in a Cary 500 spectrophotometer (Varian, Inc., Palo Alto, CA).
                                                                                  our experimental conditions, the fungus grew very quickly
   The phosphorus content in microbial oil was determined by
inductively coupled plasma-optical emission spectrometry                          because it consumed all of the available glucose and stopped
(ICP-OES) using a Vista AX model (Varian, Inc.). The analysis                     growing in the first 48 h after inoculation (Figure 1). Similar
was performed according to EN 14107:2003 standard.                                fast growth has been observed in not only M. circinelloides,26
   Fatty acid profiles of microbial, rapeseed, and sunflower oils                 but also other Mucorales, such as M. isabellina.32 Lipid accu-
were performed by gas chromatography (GC) in a CP-3800                            mulation was high in the first analyzed time (24 h) and only
gas chromatograph (Varian, Inc.) fitted with a flame ioniza-                      increase slightly afterward. Although culture kinetic compar-
tion detector (FID) and TRB-FFAP capillary column (30 m                           isons are difficult, particularly when different strains or culture
length, 0.32 mm internal diameter, and 0.25 μm film thickness,                    conditions are used, similar lipid accumulation kinetics were
Teknokroma, Barcelona, Spain). Prior to GC analysis, the oil                      previously observed in cultures of M. circinelloides.26 In addi-
samples were transformed into their corresponding methyl
                                                                                  tion, the fatty acid profile of the lipid extracted from
esters by saponification in 0.5 M KOH in methanol solution
(30 min at 90 °C) followed by treatment with 14% boron                            M. circinelloides did not change significantly with the fermen-
trifluoride in methanol (10 min at 90 °C) and extraction with                     tation time (data not shown).
n-hexane/water. Finally, 3 μL of the organic phase containing                        After 96 h of growth, the fungus was clearly in stationary
FAMEs was injected into the capillary column, where the                           phase and no further increases in lipids were expected. In that
separation was achieved using a temperature ramp (1 °C/min)                       time, a 4.17 ( 0.25 g/L fungal biomass with a total lipid
from 150 to 240 °C at a flow rate of 1 mL/min (injector tempe-                    content of 22.9 ( 0.9% dry mass was obtained. Nonetheless,
rature, 180 °C; detector temperature, 280 °C; injection mode,                     not all lipids obtained from microbial biomass are suitable
splitless). Identification of chromatographic peaks was per-                      for making biodiesel. Only saponifiable lipids and free fatty
formed by a comparison to a FAME standard mixture (refe-                          acids (also referred to as oils) can be converted into FAMEs,
rence 07131-1AM, Supelco, Bellefonte, PA) and quantification
                                                                                  which can be used as biodiesel if they comply with the current
by means of external standards and their corresponding calibra-
tion curve. The iodine number was calculated as described in EN                   standards (ASTM D6751 in the United States or EN 14213
14214:2003 standard from the free fatty acid profile.                             and 14214 in the European Union). The saponifiable lipids
   2.3. Direct Acid-Catalyzed Transesterification/Esterification                  and free fatty acids (including energy storage and structural
Reactions. M. circinelloides biomass was transesterified/ester-                   lipids) were 98.0 ( 1.3% of the total lipids extracted from
ified by stirring (900 rpm) with a solution of the catalyst                       M. circinelloides biomass, with the main components being
(BF3, H2SO4, or HCl) in a closed container at 65 °C for 8 h. In                   triglycerides, polar lipids (phospholipids, sphingolipids, and
this direct process, a 10:1 methanol/chloroform (v/v) mixture                     saccharolipids), and free fatty acids (Table 2). In particular,
was used as a reagent-solvent system, where the appropriate                       the quantity of sphingolipids and saccharolipids produced
amount of the corresponding acid catalyst was dissolved. The                      by M. circinelloides was very high (around 54% of total
obtained mixture was diluted with water and then extracted with
                                                                                  lipids). The amount of neutral lipids (mono-, di-, and trigly-
hexane and diethyl ether using a centrifuge. The solvents were
removed in a rotary evaporator, and the residue (FAMEs) was                       cerides) accumulated by M. circinelloides was 23.8%. Neu-
                                                                                  tral lipids were comprised of mainly triglycerides (22.6 (
                                                                                  1.3%). In addition, the proportion of phospholipids in this
  (30) Folch, J.; Lees, M.; Stanley, G. H. S. J. Biol. Chem. 1957, 226,
497–509.
  (31) Lowry, R. R.; Tinsley, I. J. J. Am. Oil Chem. Soc. 1976, 53, 470–           (32) Papanikolaou, S.; Galiotou-Panatoyou, M.; Fakas, S.; Komaitis,
472.                                                                              M.; Aggelis, G. Eur. J. Lipid Sci. Technol. 2007, 109, 1060–1070.
                                                                           3175
Energy Fuels 2010, 24, 3173–3178   : DOI:10.1021/ef9015872                                                                                         Vicente et al.
                                                                                                                                           35-38
         Table 2. Composition of the Lipids Extracted from                          esterification or transesterification reactions.     Operating
               M. circinelloides after 96 h of Growth                               conditions (temperature, time, and solvent ratio) were pre-
                                                                                    viously optimized using M. circinelloides biomass from solid
                                                                                    medium.14 Using optimal reaction conditions (8 h at 65 °C),
                                                                                    biodiesel yields were 18.9, 18.9, and 18.4% relative to the dry
                                                                                    mass of M. circinelloides, using H2SO4, HCl, and BF3,
                                                                                    respectively. These yields were even slightly higher than the
                                                                                    corresponding theoretical yield calculated for this micro-
                                                                                    organism (18.1%), indicating that acid-catalyzed direct tran-
                                                                                    sesterification/esterification of fungal biomass can be app-
                                                                                    lied to M. circinelloides biomass from submerged cultures
                                                                                    because it improves the amount of total lipids extracted in
                                                                                    comparison to the conventional methods for lipid extraction
                                                                                    from microorganisms.30,39 This observation is supported
                                                                                    by previous works describing increased recovery of fatty
                                                                                    acids from microorganisms by direct transterification tech-
                                                                                    niques.17,40 Interestingly, these results also indicate that
                                                                                    saponifiable lipids other than triglycerides, such as phospho-
fungus was 16%. Significantly lower proportions of struc-                           lipids, sphingolipids, and saccharolipids (Table 2), are trans-
tural lipids (sphingolipids, saccharolipids, and phospho-                           formed into FAMEs by this method and should be consi-
lipids) were observed in the biomass from stationary cultures                       dered as substrates for FAME obtention.
of other oleaginous fungi, such as Cunninghamella echinulata,33                        At the end of the procedure, methanol and chloro-
whereas the amount of neutral lipids (storage lipids) was                           form were recovered and recirculated through the process
higher at this stage. The level of neutral lipids (storage lipids)                  (Figure 2).
increased with time during the cultivation of this fungus,                             3.3. Quality Analysis of the Biodiesel. The quality of the
which means a decrease in the relative proportion of all of                         biodiesel produced in the one-step procedure was deter-
the structural lipids with this variable. In fact, the amount of                    mined according to the EN 14214 specifications, and the
structural lipids in a microorganism is concrete, and there-                        results were compared to the corresponding specified bio-
fore, it has to keep constant with time. In contrast, lipid                         diesel limits in standards EN 14213 (European Union), EN
accumulation in M. circinelloides was 18.9% at 24 h, increas-                       14214 (European Union), and ASTM D6751 (United
ing only slightly after this time (Figure 1). In this case, the                     States). Dependent upon the catalyst, the ester content
quantity of neutral lipids did not change significantly with                        ranged between 99.0 and 99.2% (Table 3), which is signifi-
the fermentation time, which justifies the relative high pro-                       cantly higher than the corresponding specified minimum
portion of phospholipids, sphingolipids, and saccharolipids                         value in the European Union standard (96.5%). These values
at the stationary stage. Although free fatty acid levels were                       were higher and the reaction was faster than those repor-
still high (3.6 ( 0.6%), they were substantially reduced in                         ted for other oleaginous microorganisms, in which an acid-
comparison to those observed in biomass from solid medium                           catalyzed direct transformation method was also used.16
(31.6 ( 1.3%).14 The non-saponifiable lipid fraction, which                         Futhermore, the amounts of all byproduct analyzed were
consisted of small amounts of carotenoids, sterols, tocopher-                       below the maximum allowed values for American and
ols, and retinoids (Table 2), was also reduced in these culture                     European standards. Thus, the contents of individual glyce-
conditions (1.96%) in comparison to the solid medium                                rides (mono-, di-, and triglycerides) were within the biodiesel
(13.5%), probably because of the absence of light.22 These                          specifications, indicating that the transesterification and
results suggest that the fungal biomass from liquid cultures in                     esterification reactions were complete. The free glycerol
the dark shows better characteristics for biodiesel produc-                         content was lower than the two standard limits, indicating
tion than that from solid cultures.                                                 that the glycerol residues were eliminated during the purifi-
   3.2. Biodiesel Production. The high concentration of free                        cation treatment. Besides, the individual glyceride and free
fatty acids (3.6 ( 0.6%) in M. circinelloides determines that                       glycerol levels were below the established limits. The total
an acid-catalyzed process is more suitable for producing                            glycerol content also met all of the standards. The acid
biodiesel than an alkali one to avoid yield losses from free                        values, which depend upon the free fatty acid content,
fatty acid neutralization.34 Methods for simultaneous lipid                         were also within the specifications in all reactions. In addi-
extraction and transesterification involving a previous trans-                      tion, non-saponifiable lipids were not detected in the
methylation step have been previously used with zygomy-                             M. circinelloides-derived biodiesel, which means that these
cetes fungi, but they were avoided because of their low                             types of lipids were also eliminated during the purification
yields.13 Therefore, the acid-catalyzed direct transformation                       stage. Nonetheless, the biodiesel obtained had small quan-
method16,17 (Figure 2) was applied to dried mycelial biomass                        tities of polar lipids, which were lower than 0.9% in all cases
using methanol and chloroform as solvents and H2SO4, HCl,                           (Table 3). These compounds are residuals of nonconverted
and BF3 as acid catalysts, all of which are commonly used in                        polar lipids, and they are not considered in the biodiesel
                                                                                    specifications established thus far.
  (33) Fakas, S.; Papanikolaou, S.; Galiotou-Panatoyou, M.; Komaitis,
M.; Aggelis, G. Appl. Microbiol. Biotechnol. 2006, 73, 676–683.                       (37)   Canakci, M.; Van Gerpen, J. Trans. ASAE 1999, 42, 1203–1210.
  (34) Vicente, G.; Martı´ nez, M.; Aracil, J. Energy Fuels 2006, 20, 394–            (38)   Canakci, M.; Van Gerpen, J. Trans ASAE 2003, 46, 945–954.
398.                                                                                  (39)   Bligh, E. G.; Dyer, W. J. Can. J. Biochem. Physiol. 1959, 37, 911–
  (35) Formo, M. W. J. Am. Oil Chem. Soc. 1954, 31, 548–559.                        917.
  (36) Freedman, B.; Pryde, E. H.; Mounts, T. L. J. Am. Oil Chem. Soc.                (40)   Dionisi, F.; Golay, P. A.; Elli, M.; Fay, L. B. Lipids 1999, 34,
1984, 61, 1638–1643.                                                                1107.
                                                                             3176
Energy Fuels 2010, 24, 3173–3178     : DOI:10.1021/ef9015872                                                                               Vicente et al.




Figure 2. Schematic diagram of the process for biodiesel production from fungal biomass.

                                               Table 3. Quality Control of M. circinelloides-Derived Biodiesela
                                                              catalyst
             property                          BF3            H2SO4            HCl             EU standard EN 14214        U.S. standard ASTM D6751
monoglyceride content (wt %)                nd                nd              nd               0.8 maximum                 ns
diglyceride content (wt %)                  nd                nd              nd               0.2 maximum                 ns
triglyceride content (wt %)                 nd                nd              nd               0.2 maximum                 ns
free glycerol (wt %)                        0.0020            0.0032          0.0030           0.02 maximum                0.02 maximum
total glycerol (wt %)                       0.0020            0.0032          0.0030           0.25 maximum                0.24 maximum
acid value (mg of KOH/g)                    nd                0.40            nd               0.5 maximum                 0.5 maximum
non-saponifiable lipids (wt %)              nd                nd              nd               ns                          ns
polar lipids (wt %)                         0.8               0.8             0.9              ns                          ns
ester content (wt %)                        99.2              99.0            99.1             96.5 minimum                ns
  a
      nd, not detected; ns, not a specified limit.

                    Table 4. Fatty Acid Composition in Biodiesel from M. circinelloides, Rapeseed, Sunflower, Palm, and Soy Oils
                                                                                             content (wt %)

           fatty acid                                 M. circinelloides oil          rapeseed oil         sunflower oil     palm oil41         soy oil41
lauric acid                             12:0          nd                             nd                   nd                0.1                nd
myristic acid                           14:0          1.6                            0.1                  nd                0.7                nd
myristoleic acid                        14:1          0.6                            nd                   nd                nd                 nd
pentadecanoic acid                      15:0          2.5                            nd                   nd                nd                 nd
palmı´ tic acid                         16:0          20.7                           5.0                  6.3               36.7               11.3
palmitoleic acid                        16:1          1.1                            nd                   0.2               0.1                0.1
stearic acid                            18:0          7.0                            1.6                  2.2               6.6                3.6
oleic acid                              18:1          28.0                           36.3                 20.6              46.1               24.9
linoleic acid                           18:2          12.7                           19.8                 52.8              8.6                53.0
linolenic acid                          18:3          22.5a                          7.8b                 3.5b              0.3b               6.1b
arachidic acid                          20:0          0.3                            0.1                  1.6               0.4                0.3
gadoleic acid                           20:1          nd                             9.1                  0.3               0.2                0.3
behenic acid                            22:0          0.4                            nd                   7.2               0.1                nd
erucic acid                             22:1          0.07                           20.2                 5.1               nd                 0.3
lignoceric acid                         24:0          1.2                            nd                   0.2               0.1                0.1
nervonic acid                           24:1          nd                             nd                   nd                nd                 nd
other                                                 1.3                            nd                   nd                nd                 nd
iodine value (g of I2/100 g)                          106.0                          107.7                122.4             55.6               129.7
  a
      The γ-linolenic acid isomer was obtained. b The R-linolenic acid isomer was obtained.

   The fatty acid profile for the FAMEs obtained from                                biodiesel obtained from M. circinelloides was within the
M. circinelloides was compared to those produced for rapeseed,                       European Union specifications because the specified limit
sunflower, palm,41 and soy41 oils (Table 4), which are the most                      (1%) only includes polyunsaturated fatty acids with four or
commonly used raw materials by the biodiesel industry in                             more double bonds, which are absent in M. circinelloides-
Europe and the United States. Microbial oils usually differ from                     derived biodiesel. FAMEs from M. circinelloides contained
most vegetable oils in being quite rich in polyunsaturated                           12.7 and 22.5% of linoleic (two double bonds) and linolenic
fatty acids.8 However, the content of these fatty acids in the                       (three double bonds) acids, respectively, which would have
                                                                                     low oxidative stability. In fact, the linolenic acid methyl ester
  (41) Ramos, M. J.; Fernndez, C. M.; Casas, A.; Rodrı´ guez, L.; Prez,
                          a                                         e                content in the M. circinelloides-derived biodiesel was above
A. Bioresour. Technol. 2008, 100, 261–268.                                           the specified limit, 12%, in the European standards. On the
                                                                              3177
Energy Fuels 2010, 24, 3173–3178   : DOI:10.1021/ef9015872                                                                                Vicente et al.

other hand, the high degree of unsaturation inherent to                               cations established by the current existing standards, ASTM
methyl esters from these fatty acids would evidence excellent                         D6751 in the United States and EN 14213 and 14214 in
fuel properties at low temperatures, which is an advantage in                         the European Union. In addition, efficient biodiesel produc-
winter operation.42 Moreover, all of these fatty acids are                            tion by direct transformation of fungal biomass without lipid
common in industrial vegetable oils, and in particular, sun-                          extraction is technically feasible in M. circinelloides, which
flower and soy oils are also very rich in polyunsaturated fatty                       represents a starting point for developing this process on an
acids. Thus, the calculated iodine value, which is a measure                          industrial scale. However, biodiesel yields should be increased
of the total unsaturation level, for the M. circinelloides-                           to make the industrial process economical, which could be
derived biodiesel (106.0 mg of I2/g) was far below the speci-                         attained by the genetic manipulation of this fungus. In this
fied limit (120 mg of I2/g) in the European Union standards                           sense, efforts are now dedicated to overexpress genes that code
and also met the United States standards because these                                for enzymes postulated to be rate-limiting steps for fatty
specifications do not include the iodine value as a quality                           acid biosynthesis in oleaginous fungi.26 Other strategies are
parameter. In comparison to the vegetable oils, the iodine                            focused on the generation of strains with enhanced ability to
value was very similar to the one obtained in biodiesel from                          use crop residues or industrial byproduct, avoiding competi-
rapeseed oil (107.7 mg of I2/g), which is the preferred raw                           tion with the food supply, with low linolenic acid levels or
material for biodiesel production in Europe.                                          overexpressing genes involved in saponifiable lipid biosynthe-
                                                                                      sis. Particularly interesting is the generation of strains with
                            4. Conclusions                                            low free fatty acid levels because they could be used for
                                                                                      biodiesel production by using a base-catalyzed technology,
  The results shown here indicate that M. circinelloides                              which is the common way to produce biodiesel on an indus-
biomass from submerged cultures may be a suitable feedstock                           trial scale.
for biodiesel production. Moreover, the analyzed properties
of the M. circinelloides-derived biodiesel fulfilled the specifi-                       Acknowledgment. We thank J. A. Madrid for technical assis-
                                                                                      tance. This work was funded by the D. G. de Investigacin y
                                                                                                                                              o
  (42) Vicente, G.; Martı´ nez, M.; Aracil, J. Bioresour. Technol. 2004, 92,          Polı´ tica Cientı´ fica (Comunidad Autnoma de la Regin de
                                                                                                                            o               o
297–305.                                                                              Murcia, Spain), Project BIO-BMC 07/01-0005.




                                                                               3178
10074                                         Ind. Eng. Chem. Res. 2010, 49, 10074–10079


Experimental Investigations into the Insecticidal, Fungicidal, and Bactericidal
Properties of Pyrolysis Bio-oil from Tobacco Leaves Using a Fluidized Bed
Pilot Plant
                  Christina J. Booker,†,‡ Rohan Bedmutha,†,§ Tiffany Vogel,†,‡ Alex Gloor,†,‡ Ran Xu,†,§
                  Lorenzo Ferrante,†,§ Ken K.-C. Yeung,†,‡ Ian M. Scott,| Kenneth L. Conn,| Franco Berruti,†,§ and
                  Cedric Briens*,†,§
                  Institute for Chemicals and Fuels from AlternatiVe Resources (ICFAR), 22312 Wonderland Road North,
                  RR#3, Ilderton, Ontario N0M 2A0, Canada, Faculty of Science, The UniVersity of Western Ontario,
                  1151 Richmond Street, London, Ontario N6A 5B9, Canada, Faculty of Engineering, The UniVersity of
                  Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada, and Agriculture and
                  Agri-Food Canada, 1391, Sandford Street, London, Ontario N5V 4T3, Canada


                  Tobacco bio-oil, gases, and char were produced through pyrolysis of tobacco leaves using a fluidized bed
                  pilot plant under varying temperature (350, 400, 450, 500, 550, and 600 °C) and residence time (5, 10, and
                  17 s) conditions. The optimized condition for the production of bio-oil was found to be at 500 °C at a vapor
                  residence time of 5 s, giving a bio-oil yield of 43.4%. The Colorado Potato Beetle (CPB) Leptinotarsa
                  decemlineata L. (Coleoptera: Chrysomelidae), a destructive pest toward potato crops, and three microorganisms
                  (Streptomyces scabies, ClaVibacter michiganensis, and Pythium ultimum), all problematic in Canadian
                  agriculture, were strongly affected by tobacco bio-oil generated at all pyrolysis temperatures. Nicotine-free
                  fractions of the tobacco bio-oil were prepared through liquid-liquid extraction, and high mortality rates for
                  the CPB and inhibited growth for the microorganisms were still observed. A potential pesticide from tobacco
                  bio-oil adds value to the biomass as well as the pyrolysis process.

1. Introduction                                                      Canada. One of the reasons this biomass was selected for anal-
                                                                     ysis is that tobacco farmers across the world, and in particular
   Pyrolysis is one of the thermo-chemical processes that is used
                                                                     in Canada, are suffering as demand for their crop continues to
extensively worldwide to convert biomass into liquid bio-oil,
char, and gases. This process is carried out in the absence of       decline. It is well-known that smoking tobacco has a significant,
oxygen.1 However, the pyrolysis oil normally contains a high         negative impact on human health. Transitioning out of tobacco
proportion of oxygenates, reflecting the oxygen content of the        farming, however, is difficult due to the specified nature of the
original substrates. With the current focus on environmentally       equipment used, and therefore many farmers are left with excess
friendly energy prospects and renewable energy resources,            crop every year, which currently goes to waste. Thus, finding
significant research is being directed toward bio-oils. Bio-oil is    alternative, healthy, high value applications to this highly
considered a CO2 neutral alternative to fossil fuels with low        abundant product is an important research area. Already, tobacco
emissions of the undesirable components SO2, NOx, and soot.2         biomass is being investigated for unique, high value applications,
Despite these advantages, bio-oil has several undesirable proper-    such as for medical or industrial proteins,4-6 and in the case of
ties as a fuel, including high viscosity, low heating value, poor    this research, as a natural pesticide. Because tobacco’s pesticide
volatility, and coking. Refining bio-oil to a satisfactory level      properties are well-known, converting tobacco leaves to natural
for commercial use has been performed, but currently uses too        pesticides in the form of bio-oil could provide additional income
much energy and occurs at too high a cost to be economically         to farmers.
viable.3
                                                                        Tobacco biomass has been characterized,7-9 but very limited
   An additional, potentially lucrative prospect for bio-oil is as
                                                                     work has been published on the pyrolysis of tobacco for the
a source for valuable chemicals. These chemicals could be found
                                                                     production of bio-oil. One study concentrated on the production
in the original biomass, such as nicotine in tobacco bio-oil, or
could be created during the pyrolysis process, such as phenols       of fuel gases but did not perform liquid analysis,10 while another
or new chemicals yet to be identified. One of the many potential      study performed liquid analysis but failed to analyze the bio-
applications of these chemicals is as a pesticide. The search for    oil for nicotine.11
effective and safe pesticides is a continuing challenge as species      The potential pesticide activity of bio-oil is an exciting
quickly adapt to most pesticides that are applied.                   research area that has yet to be fully explored. Recently, bio-
   In this Article, tobacco bio-oil is generated through pyrolysis   oil has been studied for its wood preservative qualities12 and
under a wide range of operating conditions and analyzed for
                                                                     specifically for its antifungal properties.13 Two species of fungi
pesticide properties toward a variety of species of concern in
                                                                     were tested and found to have inhibited growth patterns in the
  * To whom correspondence should be addressed. E-mail: cbriens@     presence to bio-oil from wood biomass. In contrast, this research
eng.uwo.ca.                                                          Article investigates the pesticide characteristics of bio-oil from
  †
    ICFAR.                                                           tobacco biomass, not only for antifungal activity, but also for
  ‡
    Faculty of Science, The University of Western Ontario.
  §
    Faculty of Engineering, The University of Western Ontario.       antibacterial and insecticidal activity. The pyrolysis of this
  |
    Agriculture and Agri-Food Canada.                                tobacco biomass is also investigated.
                                         10.1021/ie100329z  2010 American Chemical Society
                                                      Published on Web 09/14/2010
Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010      10075
2. Experimental Section                                                series II gas chromatograph (GC) was used. A RESTEK Shin
                                                                       Carbon ST (micro packed), 2 m length column with 1 mm i.d.
   2.1. Materials. Finely ground tobacco leaves were provided
                                                                       and 1.58 mm o.d., was used to separate the gas mixture. A
by Agriculture and Agri-Food Canada, London, ON. Tobacco
                                                                       thermal conductive detector (TCD) was used to detect the
leaves were obtained from tobacco crops in 2006 and dried at
                                                                       composition of the gas mixture, which consisted of N2, H2, CO,
60 °C. Dried tobacco leaves were then ground using a blender/
                                                                       CO2, and CH4. To measure product gas yields accurately, N2
mixing mill and sieved. The Sauter mean diameter of the tobacco
                                                                       was selected as an internal standard gas. Argon was selected as
particles used for pyrolysis was 60 µm.
                                                                       the GC carrier gas. A standard gas mixture with a fixed com-
   2.2. Methods. 2.2.1. Pilot Plant Design for Pyrolysis. All
                                                                       position of H2, CO, CO2, and CH4 was used to calibrate the
pyrolysis experiments were carried out using a fluidized bed
                                                                       system. The injector was maintained at 150 °C, and the TCD
pilot plant14 (Figure S1, Supporting Information). The heart of
                                                                       was maintained at 275 °C. A gas sample volume of 0.5 µL was
the plant was an atmospheric fluid bed reactor, 0.078 m in
                                                                       injected with a 100 µL Hamilton syringe. Upon injection, the
diameter, with a 0.52 m long cylindrical section, and equipped
                                                                       oven temperature was held at 35 °C for 180 s, then increased
with an expanded section made up of a 0.065 m long truncated
                                                                       at 10 °C/min to 150 °C, and finally increased at 20 °C/min to
cone with an upper diameter of 0.168 m, topped by a second,
                                                                       250 °C. The temperature was then held constant at 250 °C for
0.124 m long, cylindrical section. The total volume of this
                                                                       330 s.
configuration was 6.09 × 10-3 m3. This assembly provided the
                                                                          2.2.4. Characterization of Char. The differential pressure
lowest vapor residence time (5 s). Two different freeboard
                                                                       drop across the fluidized bed was measured at minimum
extensions were used to increase the vapor residence time to
                                                                       fluidization conditions before and after each experiment. The
10 and 17 s. A filter capable of withstanding high temperatures
was installed at the gas exit of each of the extensions. Each          increase in the reading of the differential pressure drop was
filter was made up of a perforated pipe connected to the gas            proportional to the increase in bed weight. This system was
exit covered by a fiberglass pad and wrapped inside a fine               calibrated for very accurate measurement of the char yields.
stainless steel mesh cover. The resulting filter was, in all cases,        2.2.5. Characterization of Bio-oil. The bio-oil was charac-
0.076 m in diameter and 0.178 m long. Although not ideal, these        terized through GC-MS analysis of the various fractions
hot filters have been used in the initial phase of the project with     examined for biological assays (see below). A HP 6890 Series
the objective of avoiding the use of a hot cyclone for the char        gas chromatography system with a mass selective detector was
separation, which would be impossible to properly size due to          used to analyze the bio-oil fractions. All experiments were
the variety of physical characteristics of the chars expected from     performed on an HP-5MS, 30 m column obtained from Agilent
the different feedstocks.                                              Technologies with an i.d. of 0.25 mm and a film of 0.25 µm.
   The fluidizing nitrogen was injected through a perforated copper     The injector temperature and auxiliary temperature were main-
distributor plate with 33 holes, 0.5 mm in diameter, equally spaced    tained at 300 °C. The oven temperature began at 60 °C for 2
across the cross section. The reactor was equipped with 18             min, and then increased at 10 °C/min to 280 °C and was held
thermowells for temperature measurements and control (type K           for 6 min. A threshold of 150 was used, with a mass to charge
thermocouples).                                                        scan range of 50-300 at a rate of 2.98 scans/s.
   An innovative pulsating automatic feeder was used for                  2.2.6. Bio-oil Pesticide Characterization. Pesticide activity
biomass injection to the reactor. It quickly dispersed the injected    tests with the bio-oil were performed on a variety of problematic
biomass into the core of the fluidized bed.                             species of microorganisms and one insect. All tobacco bio-oil
   2.2.2. Bio-oil Production. Tobacco, when injected into the          samples used for the biological tests were produced at a vapor
reactor, produced vapors that exited at the top of the reactor         residence time of 5 s and at different pyrolysis temperatures,
through the hot filter section and flowed into three condensers          as specified for each assay.
in series through a line traced with Raychem Chemelex heating             2.2.6.1. Bio-oil Sample Preparation for Pesticide Analysis.
cable to avoid early, undesirable condensation (as shown in            To initially determine which microorganisms were negatively
Figure S1). Persistent aerosols were then separated in a cylin-        affected by the tobacco bio-oil, a cocktail of naturally separated,
drical demister packed with cotton wool. The demister was              organic phases and a cocktail of the aqueous phases of the bio-
weighed before and after the experiment. The exact yield of            oils produced from 350 to 600 °C were prepared in acetone
tobacco bio-oil was obtained from the mass of oil collected in         (375 mg/mL, one solution of all pyrolysis temperatures). Bio-
the three condensers and the demister.                                 oil samples from each pyrolysis temperature were then prepared
   Pyrolysis was initially carried out at six different temperatures   separately in acetone (375 mg/mL, one solution for each
from 350 to 600 °C and at three different residence times (5,          pyrolysis temperature). Raw tobacco bio-oil at each pyrolysis
10, and 17 s). Each test was conducted with 700 g of tobacco           temperature was used for the CPB tests.
leaves. Fluidizing and atomizing nitrogen volumetric flow rates            Two different liquid-liquid extraction techniques were used
were precisely controlled using “Mass Trak” flow-meters from            to generate nicotine-free and nicotine-containing fractions of
Sierra Instruments Inc., to keep the nominal vapor residence           the tobacco bio-oil. One method was used for the microorganism
time constant at all temperatures. Tobacco bio-oils produced at        assays and generated six unique fractions (also analyzed through
all these temperatures separated into two separate phases, an          GC-MS), while the other method was used for the insect assays
organic and an aqueous one.                                            and generated two distinct fractions. The reason for the two
   Pyrolysis of tobacco leaves was subsequently carried out            methods was that two separate researchers performed these
under the best reactor conditions for high bio-oil yield (discussed    respective tests. Even so, the end result successfully allowed
in Results and Discussion section and found to be at a                 for nicotine-free fractions to be tested on both the microorganism
temperature of 500 °C and a vapor residence time of 5 s) to            and the CPB.
determine the accurate liquid, gas, and char yields.                      The fractionation method used for the microorganism tests,
   2.2.3. Characterization of Product Gases. Gases were                which generated six unique fractions, is illustrated in Figure 1.
sampled in plastic bags at three different time intervals. To          The organic phase of the tobacco bio-oil pyrolyzed at 450 °C
measure the product gas composition, a Hewlett-Packard 5890            was dissolved in ether at a concentration of 175 mg/mL. This
10076    Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010

                                                                              organic fraction recovered was a moderately viscous brown oil,
                                                                              quite similar to the bio-oil itself. The aqueous fraction was
                                                                              orange and had low viscosity.
                                                                                 2.2.6.2. Biological Assays for Pesticide Activity. 2.2.6.2.1. Mi-
                                                                              croorganism Assays. The disk diffusion assay was used to test
                                                                              11 fungi and 4 bacteria for growth inhibition in the presence of
                                                                              the tobacco bio-oil samples. All species are problematic
                                                                              microorganisms in Canada. See Table S1 for the list of species,
                                                                              their source, and the type of media on which they were
                                                                              maintained. Samples and control solutions were added to sterile,
                                                                              6 mm diameter filter paper disks and allowed to air-dry before
                                                                              being placed onto freshly inoculated plates. For bacteria tests,
                                                                              the plates were inoculated by streaking the entire surface with
                                                                              freshly grown bacteria to generate a lawn of growth. One or
                                                                              three paper disks were placed into the center of the plate or in
                                                                              a triangular formation on the plate, depending upon the ex-
                                                                              periment. For fungi tests, a plug of a fresh culture was added
                                                                              about 1 cm away from the disks on a fresh plate. After the plates
Figure 1. Bio-oil fractionation scheme for microorganism assay testing and    were incubated at 24 °C for 3 days, the results were recorded.
GC-MS analysis. Shaded boxes indicate fractions tested in microorganism       A region of no growth around the disk indicated inhibition (with
assays.
                                                                              a minimum measurement of inhibition being 6 mm, the diameter
                                                                              of the disk). Triplicate experiments were performed.
                                                                                 2.2.6.2.2. Insect Assays. These tests were carried out by the
                                                                              leaf disk application, similar to the procedure outlined by
                                                                              Sengonca.18 Bio-oil fractions and control solutions were spread
                                                                              on both sides of a potato leaf disk with a cotton-tipped
                                                                              applicator. Three leaves were tested for each fraction; however,
                                                                              most tests were repeated on multiple dates to ensure accuracy.
                                                                              The potato plants (var. Cal White) were grown on site at the
Figure 2. Extraction scheme for nicotine-free tobacco bio-oil fractions for
                                                                              Southern Crop Protection and Food Research Centre (SCPFRC),
insect assays.                                                                Agriculture and Agri-Food Canada, London, Ontario, with the
                                                                              leaves cut to a diameter of 4 cm. The leaves were allowed to
                                                                              dry after sample application. After drying, the leaves were
fraction was sterile filtered with a 2.5 cm diameter, 45 µm pore               transferred to a Gelman Petri dish. Five, second instar insecticide
size, syringe filter with a nylon membrane (Whatman, NJ)                       susceptible strain Colorado Potato Beetle (CPB) larvae reared
(Fraction Z). The remaining residue was dissolved in acetone                  at SCPFRC were then transferred to the leaf. Mortality rates
(approximately 102 mg/mL) and was also sterile-filtered, giving                were recorded after 24 and 48 h intervals. Adjusted percent
a very dark brown solution (Fraction I). Fraction Z was then                  mortality values are reported, which take into account the natural
fractionated into its aqueous (Fraction A) and organic (Fraction              mortality levels of the CPB in the control treatments. Control
B) components with a water/ether extraction. An additional                    treatments involved simply placing the beetles on leaf disks
water/ether separation was then performed with Fraction B                     without any oil present. If a specific test involved dilution of
where the water phase was acidified with HCl to a pH of 4-5.                   the bio-oil, the control leaf disks were coated with the solvent
This step caused some components, such as the compound                        used.
nicotine, to become charged and move into the aqueous phase.
An organic, ether phase (Fraction C) and a charged, aqueous                   3. Results and Discussion
phase were generated. The acidic phase was then adjusted to
pH 9 (to move the majority of nicotine back into an organic                      3.1. Tobacco Pyrolysis. The effects of pyrolysis temperatures
phase) and a final aqueous/ether extraction made an organic                    (350-600 °C) and residence times (5, 10, and 17 s) on the liquid
phase (Fraction D) and an aqueous phase (Fraction E). Dilution                yield are as shown in Figure 3. Tobacco bio-oil yields were a
factors were calculated for each fraction, and the volume of                  strong function of temperature and residence time. The greatest
sample used for the biological assays was appropriately adjusted.             yield peaked at 500 °C for all residence times. It could also be
Each fraction was analyzed using GC-MS (Figure S2).                           observed that bio-oil yield increased as the residence time
   To generate a nicotine-free and a nicotine-containing fraction             decreased, for all temperatures. Comparable results were found
for the insect tests, liquid-liquid extraction was performed with             when this reactor was used to pyrolyze grape seeds and skins,
diethyl ether and dichloromethane (DCM) (Figure 2). The                       for at a 5 s vapor residence time, the optimum pyrolysis temper-
procedure outlined by Oasmaa et al.15 was used as it closely                  ature was also found to be 500 °C.14
matched past literature methods for nicotine extraction from                     As shown in Table 1, for a residence time of 5 s and a reaction
tobacco plants.16,17 A bio-oil mixture from all pyrolysis tem-                temperature of 500 °C, the bio-oil yield was the highest (43.4%),
peratures (15-20 g) was first passed through a filter paper                     followed by the char yield (29.4%) and the gas yield (22.4%).
(Whatman’s #4) to remove the solid lignin residue. This residue               The mass balance on the pyrolysis products was close to 95%,
was washed with two, 5 mL portions of diethyl ether followed                  which was within the margin of error. Calculations showed that
by two, 5 mL portions of DCM. The filtrate was then extracted                  the heat of combustion of the gases produced was 508 J/g of
with 20-30 mL of diethyl ether followed by 20-30 mL of                        biomass fed. It was assumed that the water produced by com-
DCM. All organic phases were combined, and the solvent was                    bustion was condensed. The heat of combustion value for
evaporated using a rotary evaporator (BUCHI R-114). The                       tobacco was on the lower side as compared to other feedstocks,
Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010           10077




Figure 3. Effect of temperature and residence time on the liquid bio-oil
yield. For experimental details, see Methods section.
                                                                           Figure 4. Effect of pyrolysis temperature on the diameter of inhibition for
                                                                           the three affected microorganism species. Error bars indicate ( standard
Table 1. Pyrolysis Product Split at a Vapor Residence Time of 5 s          deviation (σ) of replicate measurements within an experiment (total length
and Pyrolysis Temperature of 500 °C                                        2σ).
 liquid yield (wt %)        gas yield (wt %)        char yield (wt %)
                                                                           interesting. This selective inhibition suggests that the active
         43.4             22.4                             29.4            components in the bio-oil are not destructive to all living things,
                          H2              0.7
                          CO             27
                                                                           which is an important quality for a potential pesticide.
                          CH4             2.8                                  The Colorado Potato Beetle was also found to be negatively
                          CO2            69.5                              affected by the presence of the tobacco bio-oil. Early tests
                                                                           confirmed high mortality rates for the CPB, and further experiments
such as coffee grounds and pinewood, pyrolyzed in the same                 were performed to investigate one of the key pyrolysis parameters:
pilot plant at the same temperature.                                       the pyrolysis temperature.
   The higher liquid yield at lower residence time can be at-                  3.2.2. Investigation into the Effect of Pyrolysis Tempera-
tributed to the fact that lower residence time minimizes                   ture on Pesticide Activity. Bio-oil produced at each pyrolysis
secondary reactions19 such as thermal cracking, repolymeriza-              temperature successfully inhibited the growth of each of the
tion, and recondensation to maximize liquid yields. It is also             three microorganisms (Figure 4).
very well-known that higher temperature favors gasification                     As the pyrolysis temperature increased to 550 °C, the activity
(higher gas yields and lower liquid and char yields). Thus, the            of the bio-oil seemed to decrease. This could be due to the active
results obtained are consistent with the existing literature on            components being cracked into smaller, inactive components
various other biomass feedstocks.20                                        at this high temperature. At 450 °C, the greatest inhibition was
   3.2. Bio-oil Activity toward Pest Species. 3.2.1. Initial               observed for all three species. For this reason, as well as the
Pesticide Discovery. Initial tests with tobacco bio-oil demon-             fact that this temperature was close to 500 °C (the pyrolysis
strated clear pesticide activity toward a selection of microorgan-         temperature with the greatest percent yield of bio-oil), the bio-
ism species and the Colorado Potato Beetle.                                oil pyrolized at 450 °C was selected for continued investigation.
   To determine which microorganism species were inhibited                 It is important to note that, although these bio-oil samples were
by the tobacco bio-oil, naturally separated organic (375 mg/               prepared to a specific concentration, the observed variations in
mL organic phase in acetone) and aqueous (used directly without            the activity with pyrolysis temperature could be affected by the
dilution) phase mixtures from all pyrolysis temperatures (350-550          amount of water in each bio-oil sample. The water was not
°C) were assayed against 11 fungi and 4 bacteria (Table S1).               removed from the sample to avoid removing other, potentially
These species were selected for analysis because of their                  important chemicals in the process. Nevertheless, each bio-oil
destructive properties toward agriculture in Canada and were               sample was found to successfully inhibit the growth of each
available for testing through Agriculture and Agri-Food Canada.            species.
No inhibition was found from the aqueous phases of the tobacco                 Similar to the microorganism pattern of inhibition, the CPB
bio-oil. In contrast, the organic phases of the tobacco bio-oil            was found to be strongly affected by bio-oil produced at all
showed clear inhibition for two bacteria, Streptomyces scabies             pyrolysis temperatures (Figure 5). The potency of each bio-oil
(S. scabies) and ClaVibacter michiganensis sub. sp. michigan-              was quite strong given the high mortality levels seen. The 48 h
ensis (C. michiganensis), and one fungus, Pythium ultimum (P.              results show that 100% of the beetles tested at each pyrolysis
ultimum).                                                                  temperature died when in the presence of the tobacco bio-oil.
   Pythium ultimum is a fungus that affects plants as a seedling           Although the 24 h results seem to demonstrate some changes
damping-off disease.21 Plants affected include eggplant, pepper,           in toxicity with pyrolysis temperature, these changes are only
lettuce, tomato, and cucumber. ClaVibacter michiganensis kills             minor.
young plants and deforms fruits, primarily tomatoes.22 Strep-                  It was possible that the toxicity effect of the bio-oils toward
tomyces scabies is a common potato scab disease that infects               the CPB was caused solely by the high quantities of nicotine
potatoes and makes them unmarketable.23 Finding inhibition for             in the bio-oil. Nicotine is a moderately effective insecticide
S. scabies is particularly exciting because, currently, no safe            against the CPB with an LD50 of 61 µg per CPB.24 Sufficient
pesticide exists on the market that can control this widespread            quantities of nicotine could be present in the bio-oil to account
disease.                                                                   for the observed activity. Thus, the bio-oil was separated into
   This discovery of tobacco bio-oil affecting only three mi-              nicotine-free and nicotine-containing fractions to determine the
croorganism species (and not the remaining 12) is particularly             effect of nicotine in the observed activity.
10078    Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010




Figure 5. Effect of pyrolysis temperature on the adjusted percent mortality
of the Colorado Potato Beetle at 24 and 48 h.
                                                                               Figure 7. Dilution tests comparing the aqueous (nicotine-free) fraction and
                                                                               the organic (nicotine containing) fraction prepared as illustrated in Figure
                                                                               2. Results for both fractions were recorded at 24 and 48 h.

                                                                               point than 280 °C (the highest temperature in our GC program)
                                                                               or cannot be detected by an electron impact MS detector.
                                                                                  A nicotine-free fraction was also found to be active in the
                                                                               CPB assays. The organic fraction showed greater activity over
                                                                               the aqueous (nicotine-free) fraction. After 24 h of testing, the
                                                                               organic fraction obtained 100% mortality rates, while after 48 h
                                                                               of testing, the aqueous fraction obtained a maximum of 80%
                                                                               mortality for the CPB (Figure 7). It is also worth noting that,
                                                                               although the aqueous phase did not result in 100% mortality to
                                                                               the CPB, application of the aqueous phase to the leaf resulted
                                                                               in a greatly reduced appetite for the beetle. Using the aqueous
                                                                               phase at 2% concentration or higher, the beetles would eat little
Figure 6. Measured diameters of inhibition for three microorganisms by
the six tobacco bio-oil fractions (see Figure 1 for fractionation scheme)
                                                                               to none of the leaf. Studies have shown that 24 h starvation of
after 3 days of growth. Fraction C is nicotine-free. Error bars indicate (     the CPB does not prove fatal; however, starvation does cause
standard deviation (σ) of replicate measurements within an experiment (total   increased susceptibility to applied insecticides.28 Whether or not
length 2σ).                                                                    the chemical agent that causes mortality is the same as the agent
                                                                               that is causing starvation is not known, but the starvation is
   3.2.3. Investigation into the Activity of the Nicotine-Free                 aiding the insecticidal activity of the aqueous fraction.
Fractions of Tobacco Bio-oil. The fractionation scheme shown                      Further investigation into the nicotine content of the organic
in Figure 1 was used to generate the six fractions tested on the               fraction was performed. Nicotine standards were tested at the
three microorganisms, as shown in Figure 6. As expected,                       concentration found in the organic fraction. Dilution tests of
Fraction Z (the initial fraction) had high activity toward the                 the organic phase and the equivalent nicotine standard demon-
microorganisms. However, high levels of nicotine were also                     strated that the potency of the samples was the same when
found in Fraction Z (Figure S1), so much so that few other                     measured at 48 h. However, the 24 h results demonstrated that
chemicals could be observed in the chromatograms of this                       the organic fraction worked faster at causing death in the CPB
fraction.                                                                      than the nicotine standards. This indicates that additional, non-
   The fractionation scheme successfully generated a nicotine-                 nicotine components are acting in the organic fraction.
free fraction, Fraction C, which was confirmed by the absence                      The assays performed on the CPB and the three microorgan-
of a nicotine peak in the GC-MS data. This fraction was also                   isms clearly indicate that tobacco bio-oil contains potent, non-
strongly active (as shown in Figure 6). Phenol and a variety of                nicotine components with insecticidal and antibiotic activity.
its derivatives were found to be in high concentration in this                 Multiple, active components must be present in the tobacco bio-
fraction. Although phenolic compounds are known to have                        oil as liquid-liquid extraction produced multiple, active frac-
pesticide properties,25,26 10 of the most abundant compounds                   tions. Some of these active compounds cannot be detected by
in this fraction were quantitatively tested by chemical standards,             GC-MS.
and it was found that these most abundant phenolic compounds
were not present in high enough concentrations to be responsible
                                                                               4. Conclusions
for the observed activity.27
   Fraction D, which contains nicotine, was also found to be                      Pyrolysis experiments demonstrated that the liquid bio-oil
active. However, when nicotine standards were tested to match                  yield was a strong function of temperature and vapor residence
and even double the concentration of nicotine found in Fraction                time. The maximum bio-oil yield was found at a reactor tem-
D, no inhibition was observed. It is interesting to note that                  perature of 500 °C and the lowest residence time, 5 s.
nicotine is the most abundant and almost the only peak detected                   Bio-oil was found to have valuable pesticide characteris-
by GC-MS in this fraction. Therefore, the active components                    tics toward three problematic microorganisms as well as the
in Fraction D cannot be detected by our GC-MS analysis                         Colorado Potato Beetle, a major agricultural pest. Bio-oil pro-
method. These active components either have a higher boiling                   duced at all pyrolysis temperatures was effective at inhibiting
Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010               10079
the growth or causing mortality in the microorganisms and                          (8) Shen, J. C.; Shao, X. G. Determination of tobacco alkaloids by gas
Colorado Potato Beetle, respectively.                                          chromatography-mass spectrometry using cloud point extraction as a
                                                                               preconcentration step. Anal. Chim. Acta 2006, 561, 83–87.
   Nicotine was found to be active toward the Colorado Potato                      (9) Cai, J. B.; Liu, B. Z.; Lin, P.; Su, Q. D. Fast analysis of nicotine
Beetle, but had no effect on the microorganisms. Nicotine-free                 related alkaloids in tobacco and cigarette smoke by megabore capillary gas
fractions of tobacco bio-oil were found to be active toward the                chromatography. J. Chromatogr., A 2003, 1017, 187–193.
Colorado Potato Beetle and three microorganisms. Multiple                          (10) Encinar, J. M.; Beltran, F. J.; Gonzalez, J. F.; Moreno, M. J.
components are likely responsible for this activity. These                     Pyrolysis of maize, sunflower, grape and tobacco residues. J. Chem. Technol.
                                                                               Biotechnol. 1997, 70, 400–410.
components were not lethal to all of the microorganisms that                       (11) Demirbas, A. Analysis of liquid products from biomass via flash
were examined, demonstrating that these chemicals may only                     pyrolysis. Energy Sources 2002, 24, 337–345.
be toxic to selective species, which is a desirable quality in a                   (12) Mourant, D.; Riedl, B.; Rodrigue, D.; Yang, D. Q.; Roy, C. Phenol-
potential pesticide.                                                           formaldehyde-pyrolytic oil resins for wood preservation: A rheological study.
                                                                               J. Appl. Polym. Sci. 2007, 106, 1087–1094.
   As the demand for tobacco is decreasing, the search for other                   (13) Mohan, D.; Shi, J.; Nicholas, D. D.; Pittman, C. U.; Steele, P. H.;
valuable products from this resource is increasing. A natural                  Cooper, J. E. Fungicidal values of bio-oils and their lignin-rich fractions
pesticide that targets problematic species is a very valuable find.             obtained from wood/bark fast pyrolysis. Chemosphere 2008, 71, 456–465.
Further investigation into the active components and the poten-                    (14) Xu, R.; Ferrante, L.; Briens, C.; Berruti, F. Flash pyrolysis of grape
tial applicability of using tobacco bio-oil as a natural pesticide             residues into biofuel in a bubbling fluid bed. J. Anal. Appl. Pyrolysis 2009,
                                                                               86, 58–65.
will continue.                                                                     (15) Oasmaa, A.; Kuoppala, E. Fast pyrolysis of forestry residue. 3.
                                                                               Storage stability of liquid fuel. Energy Fuels 2003, 17, 1075–1084.
                                                                                   (16) Sheen, S. J. Detection of nicotine in foods and plant materials. J.
Acknowledgment                                                                 Food Sci. 1988, 53, 1572–1573.
                                                                                   (17) Shin, H. S.; Kim, J. G.; Shin, Y. J.; Jee, S. H. Sensitive and simple
   We wish to express our gratitude to the Ontario Centres of                  method for the determination of nicotine and cotinine in human urine, plasma
Excellence (OCE), the Natural Sciences and Research Council                    and saliva by gas chromatography-mass spectrometry. J. Chromatogr., B
of Canada (NSERC), Agri-Therm Canada, the Institute for                        2002, 769, 177–183.
Chemicals and Fuels from Alternative Resources (ICFAR),                            (18) Sengonca, C.; Liu, B.; Zhu, Y. J. Pestic. Sci. 2005, 79, 3–8.
                                                                                   (19) Gercel, H. F.; Putun, E. Fast pyrolysis of sunflower-pressed bagasse:
Agriculture and Agri-Food Canada (through ABIN), and the                       Effects of sweeping gas flow rate. Energy Sources 2002, 24, 451–460.
University of Western Ontario for their generous support of this                   (20) Bridgwater, A. V. Biomass fast pyrolysis. Therm. Sci. 2004, 8, 21–
research.                                                                      49.
                                                                                   (21) Abbasi, P. A.; Lazarovits, G. Effects of AG3 phosphonate formula-
   Supporting Information Available: Additional figures and                     tions on incidence and severity of Pythium damping-off of cucumber
table. This material is available free of charge via the Internet              seedlings under growth room, microplot, and field conditions. Can. J. Plant
                                                                               Pathol. 2005, 27, 420–429.
at http://pubs.acs.org.                                                            (22) Gleason, M. L.; Braun, E. J.; Carlton, W. M.; Peterson, R. H.
                                                                               Survival and dissemination of ClaVibacter michiganensis sub. sp. michagen-
                                                                               ensis in tomatoes. Phytopathology 1991, 81, 1519–1523.
Literature Cited                                                                   (23) Wang, A. X.; Lazarovits, G. Role of seed tubers in the spread of
                                                                               plant pathogenic Streptomyces and initiating potato common scab disease.
   (1) Bridgewater, A. V.; Czernik, S.; Piskorz, J. An overview of fast
                                                                               Am. J. Potato Res. 2005, 82, 221–230.
pyrolysis. In Progress in Thermochemical Biomass ConVersion; Bridge-
                                                                                   (24) Mota-Sanchez, D.; Hollingworth, R. M.; Grafius, E. J.; Moyer, D. D.
water, A. V., Ed.; Blackwell Science Ltd.: Oxford, 2001; pp 977-997.
                                                                               Resistance and cross-resistance to neonicotinoid insecticides and spinosad
   (2) Zhang, Q.; Chang, J.; Wang, T. J.; Xu, Y. Review of biomass
                                                                               in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:
pyrolysis oil properties and upgrading research. Energy ConVers. Manage.
                                                                               Chrysomelidae). Pest Manage. Sci. 2006, 62, 30–37.
2007, 48, 87–92.
                                                                                   (25) EI DuPont de Numours  Co. Cresols, ortho-, meta-, and para-.
   (3) Czernik, S.; Bridgewater, A. V. Overview of applications of biomass
                                                                               NTIS report no. OTS0205862; EI DuPont de Numours  Co., 1983.
fast pyrolysis oil. Energy Fuels 2004, 18, 590–598.
                                                                                   (26) Anonymous. Final report on the safety assessment of sodium
   (4) Joensuu, J. J.; Brown, K. D.; Conley, A. J.; Clavijo, A.; Menassa,
                                                                               p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol,
R.; Brandle, J. E. Expression and purification of an anti-Foot-and-mouth
                                                                               o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol.
disease virus single chain variable antibody fragment in tobacco plants.
                                                                               Int. J. Toxicol. 2006, 25, 29–127.
Transgenic Res. 2009, 18, 685–696.
                                                                                   (27) Booker, C. J.; Bedmutha, R.; Scott, I. M.; Conn, K.; Berruti, F.;
   (5) Menassa, R.; Du, C. G.; Yin, Z. Q.; Ma, S. W.; Poussier, P.; Brandle,
                                                                               Briens, C.; Yeung, K. K.-C. Bioenergy II: Characterization of the pesticide
J.; Jevnikar, A. M. Therapeutic effectiveness of orally administered
                                                                               properties of tobacco bio-oil. Int. J. Chem. Reactor Eng. 2010, 8, Art. 26.
transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse
                                                                                   (28) MacQuarrie, C. J. K.; Boiteau, G. Effect of diet and feeding history
model of colitis. Plant Biotechnol. J. 2007, 5, 50–59.
                                                                               on flight of Colorado potato beetle, Leptinotarsa decemlineata. Entomol.
   (6) Ma, S. W.; Huang, Y.; Davis, A.; Yin, Z. Q.; Mi, Q. S.; Menassa,
                                                                               Exp. Appl. 2003, 107, 207–213.
R.; Brandle, J. E.; Jevnikar, A. M. Production of biologically active human
interleukin-4 in transgenic tobacco and potato. Plant Biotechnol. J. 2005,                                     ReceiVed for reView February 11, 2010
3, 309–318.                                                                                              ReVised manuscript receiVed August 15, 2010
   (7) Sheng, L. Q.; Ding, L.; Tong, H. W.; Yong, G. P.; Zhou, X. Z.;                                                    Accepted September 1, 2010
Liu, S. M. Determination of nicotine-related alkaloids in tobacco and
cigarette smoke by GC-FID. Chromatographia 2005, 62, 63–68.                                                                                      IE100329Z

More Related Content

What's hot

Mobilizing greater crop and land potentials: replacing the faltering engine
Mobilizing greater crop and land potentials: replacing the faltering engineMobilizing greater crop and land potentials: replacing the faltering engine
Mobilizing greater crop and land potentials: replacing the faltering engineFAO
 
Sustainable Development and Bioeconomic Prosperity in Africa
Sustainable Development and Bioeconomic Prosperity in Africa  Sustainable Development and Bioeconomic Prosperity in Africa
Sustainable Development and Bioeconomic Prosperity in Africa QZ1
 
Biochar root growth_and_rhizosphere_communities[linkedi]
Biochar root growth_and_rhizosphere_communities[linkedi]Biochar root growth_and_rhizosphere_communities[linkedi]
Biochar root growth_and_rhizosphere_communities[linkedi]mbennet
 
Sustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investmentsSustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investmentsFAO
 
Sustainable Land Management
Sustainable Land ManagementSustainable Land Management
Sustainable Land ManagementFAO
 
Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...
Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...
Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...Agriculture Journal IJOEAR
 
Innovation of climate friendly technology in developing countries
Innovation of climate friendly technology in developing countriesInnovation of climate friendly technology in developing countries
Innovation of climate friendly technology in developing countrieslana707
 
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...FAO
 
Soil Health and Environmental Management for Sustainable Agricultural Product...
Soil Health and Environmental Management for Sustainable Agricultural Product...Soil Health and Environmental Management for Sustainable Agricultural Product...
Soil Health and Environmental Management for Sustainable Agricultural Product...ICARDA
 
Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...
Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...
Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...FAO
 
An Introduction to Bioenergy: Feedstocks, Processes and Products
An Introduction to Bioenergy: Feedstocks, Processes and ProductsAn Introduction to Bioenergy: Feedstocks, Processes and Products
An Introduction to Bioenergy: Feedstocks, Processes and ProductsElisaMendelsohn
 
Social and economic issues of tropical peatlands
Social and economic issues of tropical peatlandsSocial and economic issues of tropical peatlands
Social and economic issues of tropical peatlandsWetlands International
 
Aquaculture in a changing climate
Aquaculture in a changing climateAquaculture in a changing climate
Aquaculture in a changing climateWorldFish
 
Sustainable land management to mitigate and adapt to climate change
Sustainable land management to mitigate and adapt to climate changeSustainable land management to mitigate and adapt to climate change
Sustainable land management to mitigate and adapt to climate changeExternalEvents
 
(1) sustainable land use
(1) sustainable land use(1) sustainable land use
(1) sustainable land useThetSu2
 

What's hot (20)

Mobilizing greater crop and land potentials: replacing the faltering engine
Mobilizing greater crop and land potentials: replacing the faltering engineMobilizing greater crop and land potentials: replacing the faltering engine
Mobilizing greater crop and land potentials: replacing the faltering engine
 
Enhancing NDC ambition through soil organic carbon sequestration: Agenda, key...
Enhancing NDC ambition through soil organic carbon sequestration: Agenda, key...Enhancing NDC ambition through soil organic carbon sequestration: Agenda, key...
Enhancing NDC ambition through soil organic carbon sequestration: Agenda, key...
 
Sustainable Development and Bioeconomic Prosperity in Africa
Sustainable Development and Bioeconomic Prosperity in Africa  Sustainable Development and Bioeconomic Prosperity in Africa
Sustainable Development and Bioeconomic Prosperity in Africa
 
Biochar root growth_and_rhizosphere_communities[linkedi]
Biochar root growth_and_rhizosphere_communities[linkedi]Biochar root growth_and_rhizosphere_communities[linkedi]
Biochar root growth_and_rhizosphere_communities[linkedi]
 
Nitrogen in environment
Nitrogen in environmentNitrogen in environment
Nitrogen in environment
 
Nitrogen management
Nitrogen managementNitrogen management
Nitrogen management
 
Sustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investmentsSustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investments
 
Sustainable Land Management
Sustainable Land ManagementSustainable Land Management
Sustainable Land Management
 
Bioenergy 101
Bioenergy 101Bioenergy 101
Bioenergy 101
 
Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...
Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...
Assessment of Zinc and Copper Status of Fadama Soils In Borgu Local Governmen...
 
Innovation of climate friendly technology in developing countries
Innovation of climate friendly technology in developing countriesInnovation of climate friendly technology in developing countries
Innovation of climate friendly technology in developing countries
 
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
 
Soil Health and Environmental Management for Sustainable Agricultural Product...
Soil Health and Environmental Management for Sustainable Agricultural Product...Soil Health and Environmental Management for Sustainable Agricultural Product...
Soil Health and Environmental Management for Sustainable Agricultural Product...
 
Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...
Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...
Sustainable Soil Management Pillar 1 of the Global Soil Partnership - Sally B...
 
An Introduction to Bioenergy: Feedstocks, Processes and Products
An Introduction to Bioenergy: Feedstocks, Processes and ProductsAn Introduction to Bioenergy: Feedstocks, Processes and Products
An Introduction to Bioenergy: Feedstocks, Processes and Products
 
Soil degradation
Soil degradationSoil degradation
Soil degradation
 
Social and economic issues of tropical peatlands
Social and economic issues of tropical peatlandsSocial and economic issues of tropical peatlands
Social and economic issues of tropical peatlands
 
Aquaculture in a changing climate
Aquaculture in a changing climateAquaculture in a changing climate
Aquaculture in a changing climate
 
Sustainable land management to mitigate and adapt to climate change
Sustainable land management to mitigate and adapt to climate changeSustainable land management to mitigate and adapt to climate change
Sustainable land management to mitigate and adapt to climate change
 
(1) sustainable land use
(1) sustainable land use(1) sustainable land use
(1) sustainable land use
 

Viewers also liked

Advanced biofuel feedstocks and conversion technologies
Advanced biofuel feedstocks and conversion technologiesAdvanced biofuel feedstocks and conversion technologies
Advanced biofuel feedstocks and conversion technologiesRicardo Energy & Environment
 
Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...
Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...
Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...ZY8
 
Empowering Agriculture Energy Options for Horticulture
Empowering Agriculture Energy Options for Horticulture  Empowering Agriculture Energy Options for Horticulture
Empowering Agriculture Energy Options for Horticulture ZY8
 
Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...
Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...
Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...ZY8
 
25 free Organic Gardening Posters
25 free Organic Gardening Posters25 free Organic Gardening Posters
25 free Organic Gardening PostersZY8
 
Zac Tchoundjeu: Empowering local population for production of non-timber fore...
Zac Tchoundjeu: Empowering local population for production of non-timber fore...Zac Tchoundjeu: Empowering local population for production of non-timber fore...
Zac Tchoundjeu: Empowering local population for production of non-timber fore...Rights and Resources
 
Developments in Hydrogen Production through Microbial Processes
Developments in Hydrogen Production through Microbial Processes  Developments in Hydrogen Production through Microbial Processes
Developments in Hydrogen Production through Microbial Processes ZY8
 
Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...
Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...
Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...ZY8
 
Biomass:an alternative energy source ppt
Biomass:an alternative energy source pptBiomass:an alternative energy source ppt
Biomass:an alternative energy source pptALOK KUMAR BHARTI
 
Biomass energy ppt
Biomass energy pptBiomass energy ppt
Biomass energy pptSann Jana
 

Viewers also liked (13)

Advanced biofuel feedstocks and conversion technologies
Advanced biofuel feedstocks and conversion technologiesAdvanced biofuel feedstocks and conversion technologies
Advanced biofuel feedstocks and conversion technologies
 
Energy Options for Horticulture
Energy Options for HorticultureEnergy Options for Horticulture
Energy Options for Horticulture
 
Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...
Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...
Discovering New Oil Fields: Small-Scale Local Biofuel Production and Use in R...
 
Empowering Agriculture Energy Options for Horticulture
Empowering Agriculture Energy Options for Horticulture  Empowering Agriculture Energy Options for Horticulture
Empowering Agriculture Energy Options for Horticulture
 
Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...
Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...
Agroforestry's Contributions to Ecosystem Enhancement in Miombo Region of Afr...
 
25 free Organic Gardening Posters
25 free Organic Gardening Posters25 free Organic Gardening Posters
25 free Organic Gardening Posters
 
Zac Tchoundjeu: Empowering local population for production of non-timber fore...
Zac Tchoundjeu: Empowering local population for production of non-timber fore...Zac Tchoundjeu: Empowering local population for production of non-timber fore...
Zac Tchoundjeu: Empowering local population for production of non-timber fore...
 
D0 4 ricardo_institutional structure
D0 4 ricardo_institutional structureD0 4 ricardo_institutional structure
D0 4 ricardo_institutional structure
 
Developments in Hydrogen Production through Microbial Processes
Developments in Hydrogen Production through Microbial Processes  Developments in Hydrogen Production through Microbial Processes
Developments in Hydrogen Production through Microbial Processes
 
Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...
Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...
Determination of Suitable Cutting Size for Vegetative Propagation of Jatropha...
 
D0 3 ricardo_policy
D0 3 ricardo_policyD0 3 ricardo_policy
D0 3 ricardo_policy
 
Biomass:an alternative energy source ppt
Biomass:an alternative energy source pptBiomass:an alternative energy source ppt
Biomass:an alternative energy source ppt
 
Biomass energy ppt
Biomass energy pptBiomass energy ppt
Biomass energy ppt
 

Similar to Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel

Microalgae as Potential Feedstock for Biodiesel Production-A Review
Microalgae as Potential Feedstock for Biodiesel Production-A ReviewMicroalgae as Potential Feedstock for Biodiesel Production-A Review
Microalgae as Potential Feedstock for Biodiesel Production-A Reviewpaperpublications3
 
Environmental biotechnology
Environmental biotechnologyEnvironmental biotechnology
Environmental biotechnologyBruno Mmassy
 
Biodiesel Presentation
Biodiesel PresentationBiodiesel Presentation
Biodiesel Presentationguest25c2e72
 
Plant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdfPlant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdfMianHusnainIqbal2
 
algal biofuels with challenges and opportunities
algal biofuels with challenges and opportunitiesalgal biofuels with challenges and opportunities
algal biofuels with challenges and opportunitiesbhushan bhusare
 
MICROBIAL PRODUCTION OF PLASTICS.pptx
MICROBIAL PRODUCTION OF PLASTICS.pptxMICROBIAL PRODUCTION OF PLASTICS.pptx
MICROBIAL PRODUCTION OF PLASTICS.pptx141MANOJS
 
APieroni_CE561_Capstone Paper_Algae Fuel_20150216
APieroni_CE561_Capstone Paper_Algae Fuel_20150216APieroni_CE561_Capstone Paper_Algae Fuel_20150216
APieroni_CE561_Capstone Paper_Algae Fuel_20150216Andrew Pieroni
 
Algae wastewater treatment for biofuel production
  Algae wastewater treatment for biofuel production  Algae wastewater treatment for biofuel production
Algae wastewater treatment for biofuel productionylimeoen
 
Biodiesel from microalgae production methods - a review
Biodiesel from microalgae   production methods - a reviewBiodiesel from microalgae   production methods - a review
Biodiesel from microalgae production methods - a reviewPriyakapriya
 
اقريها عرض لتكون ديزل من طحالبGoh2019
اقريها عرض لتكون ديزل من طحالبGoh2019اقريها عرض لتكون ديزل من طحالبGoh2019
اقريها عرض لتكون ديزل من طحالبGoh2019ShurooqTaib
 
R&d itabira in english
R&d itabira in englishR&d itabira in english
R&d itabira in englishminasinvest
 
Biodiesel From Sewage Sludges
Biodiesel From Sewage SludgesBiodiesel From Sewage Sludges
Biodiesel From Sewage SludgesAli FIRAT
 
Biotechnological strategies in forestry & wasteland management
Biotechnological  strategies  in forestry & wasteland managementBiotechnological  strategies  in forestry & wasteland management
Biotechnological strategies in forestry & wasteland managementSharon Kour
 
Extraction of Bio-Fuel from Algae by Anaerobic Digestion
Extraction of Bio-Fuel from Algae by Anaerobic DigestionExtraction of Bio-Fuel from Algae by Anaerobic Digestion
Extraction of Bio-Fuel from Algae by Anaerobic DigestionEditor IJMTER
 
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEhigher educations
 
14863 chapter 23 biotechnology
14863 chapter 23 biotechnology14863 chapter 23 biotechnology
14863 chapter 23 biotechnologystudent
 
652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDFpoovel4788
 

Similar to Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel (20)

Microalgae as Potential Feedstock for Biodiesel Production-A Review
Microalgae as Potential Feedstock for Biodiesel Production-A ReviewMicroalgae as Potential Feedstock for Biodiesel Production-A Review
Microalgae as Potential Feedstock for Biodiesel Production-A Review
 
Environmental biotechnology
Environmental biotechnologyEnvironmental biotechnology
Environmental biotechnology
 
Algae Biofuel
Algae BiofuelAlgae Biofuel
Algae Biofuel
 
Biodiesel Presentation
Biodiesel PresentationBiodiesel Presentation
Biodiesel Presentation
 
Plant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdfPlant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdf
 
algal biofuels with challenges and opportunities
algal biofuels with challenges and opportunitiesalgal biofuels with challenges and opportunities
algal biofuels with challenges and opportunities
 
MICROBIAL PRODUCTION OF PLASTICS.pptx
MICROBIAL PRODUCTION OF PLASTICS.pptxMICROBIAL PRODUCTION OF PLASTICS.pptx
MICROBIAL PRODUCTION OF PLASTICS.pptx
 
APieroni_CE561_Capstone Paper_Algae Fuel_20150216
APieroni_CE561_Capstone Paper_Algae Fuel_20150216APieroni_CE561_Capstone Paper_Algae Fuel_20150216
APieroni_CE561_Capstone Paper_Algae Fuel_20150216
 
victory
victoryvictory
victory
 
Algae wastewater treatment for biofuel production
  Algae wastewater treatment for biofuel production  Algae wastewater treatment for biofuel production
Algae wastewater treatment for biofuel production
 
New challenges in microalgae biotechnology
New challenges in microalgae biotechnologyNew challenges in microalgae biotechnology
New challenges in microalgae biotechnology
 
Biodiesel from microalgae production methods - a review
Biodiesel from microalgae   production methods - a reviewBiodiesel from microalgae   production methods - a review
Biodiesel from microalgae production methods - a review
 
اقريها عرض لتكون ديزل من طحالبGoh2019
اقريها عرض لتكون ديزل من طحالبGoh2019اقريها عرض لتكون ديزل من طحالبGoh2019
اقريها عرض لتكون ديزل من طحالبGoh2019
 
R&d itabira in english
R&d itabira in englishR&d itabira in english
R&d itabira in english
 
Biodiesel From Sewage Sludges
Biodiesel From Sewage SludgesBiodiesel From Sewage Sludges
Biodiesel From Sewage Sludges
 
Biotechnological strategies in forestry & wasteland management
Biotechnological  strategies  in forestry & wasteland managementBiotechnological  strategies  in forestry & wasteland management
Biotechnological strategies in forestry & wasteland management
 
Extraction of Bio-Fuel from Algae by Anaerobic Digestion
Extraction of Bio-Fuel from Algae by Anaerobic DigestionExtraction of Bio-Fuel from Algae by Anaerobic Digestion
Extraction of Bio-Fuel from Algae by Anaerobic Digestion
 
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
 
14863 chapter 23 biotechnology
14863 chapter 23 biotechnology14863 chapter 23 biotechnology
14863 chapter 23 biotechnology
 
652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF
 

More from ZY8

Economic Viability of Jatropha Curcas in Northern Tanzania
Economic Viability of Jatropha Curcas in Northern Tanzania  Economic Viability of Jatropha Curcas in Northern Tanzania
Economic Viability of Jatropha Curcas in Northern Tanzania ZY8
 
Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...
Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...
Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...ZY8
 
Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...
Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...
Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...ZY8
 
Energy Conservation: Lessons Save Money and Save the Environment
Energy Conservation: Lessons Save Money and Save the Environment  Energy Conservation: Lessons Save Money and Save the Environment
Energy Conservation: Lessons Save Money and Save the Environment ZY8
 
Environmentally Friendly Cars: Promoting and increasing their use in the UK
Environmentally Friendly Cars: Promoting and increasing their use in the UK  Environmentally Friendly Cars: Promoting and increasing their use in the UK
Environmentally Friendly Cars: Promoting and increasing their use in the UK ZY8
 
From Algae to Biofuels: An Integrated System Approach to Renewable Energy
From Algae to Biofuels: An Integrated System Approach to Renewable Energy  From Algae to Biofuels: An Integrated System Approach to Renewable Energy
From Algae to Biofuels: An Integrated System Approach to Renewable Energy ZY8
 
Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...
Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...
Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...ZY8
 
Fuel-Saving Measures for Fishing Industry Vessels
Fuel-Saving Measures for Fishing Industry Vessels  Fuel-Saving Measures for Fishing Industry Vessels
Fuel-Saving Measures for Fishing Industry Vessels ZY8
 
Gender and Equity issues in Liquid Biofuels Production
Gender and Equity issues in Liquid Biofuels Production  Gender and Equity issues in Liquid Biofuels Production
Gender and Equity issues in Liquid Biofuels Production ZY8
 
Grease Works: Biodiesel for First Time Users and How to Save the Environment
Grease Works: Biodiesel for First Time Users and How to Save the Environment  Grease Works: Biodiesel for First Time Users and How to Save the Environment
Grease Works: Biodiesel for First Time Users and How to Save the Environment ZY8
 
Green Energy in Namibia
Green Energy in Namibia  Green Energy in Namibia
Green Energy in Namibia ZY8
 
Green Values in Europe
Green Values in Europe  Green Values in Europe
Green Values in Europe ZY8
 
Hilltown Farmers Biodiesel Project
Hilltown Farmers Biodiesel Project  Hilltown Farmers Biodiesel Project
Hilltown Farmers Biodiesel Project ZY8
 
How Will Small Scale Farmers in Zambia
How Will Small Scale Farmers in Zambia  How Will Small Scale Farmers in Zambia
How Will Small Scale Farmers in Zambia ZY8
 
Implementation of Renewable Energy Technologies in Zimbabwe
Implementation of Renewable Energy Technologies in Zimbabwe  Implementation of Renewable Energy Technologies in Zimbabwe
Implementation of Renewable Energy Technologies in Zimbabwe ZY8
 
Influence of Bio Fuels on Pollutant Emissions of Diesel Engines
Influence of Bio Fuels on Pollutant Emissions of Diesel Engines  Influence of Bio Fuels on Pollutant Emissions of Diesel Engines
Influence of Bio Fuels on Pollutant Emissions of Diesel Engines ZY8
 
Jatropha: A Smallholder Bioenergy Crop
Jatropha: A Smallholder Bioenergy Crop  Jatropha: A Smallholder Bioenergy Crop
Jatropha: A Smallholder Bioenergy Crop ZY8
 
Jatropha Handbook
Jatropha Handbook  Jatropha Handbook
Jatropha Handbook ZY8
 
Jatropha Vegetable Oil as a Possible Jet Fuel
Jatropha Vegetable Oil as a Possible Jet Fuel  Jatropha Vegetable Oil as a Possible Jet Fuel
Jatropha Vegetable Oil as a Possible Jet Fuel ZY8
 
Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor
Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor  Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor
Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor ZY8
 

More from ZY8 (20)

Economic Viability of Jatropha Curcas in Northern Tanzania
Economic Viability of Jatropha Curcas in Northern Tanzania  Economic Viability of Jatropha Curcas in Northern Tanzania
Economic Viability of Jatropha Curcas in Northern Tanzania
 
Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...
Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...
Electrifying Indian Villages by Using Straight Jatropha Vegetable Oil as Fuel...
 
Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...
Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...
Energy and Waste: Ensuring that a Community has Reliable, Secure and Environm...
 
Energy Conservation: Lessons Save Money and Save the Environment
Energy Conservation: Lessons Save Money and Save the Environment  Energy Conservation: Lessons Save Money and Save the Environment
Energy Conservation: Lessons Save Money and Save the Environment
 
Environmentally Friendly Cars: Promoting and increasing their use in the UK
Environmentally Friendly Cars: Promoting and increasing their use in the UK  Environmentally Friendly Cars: Promoting and increasing their use in the UK
Environmentally Friendly Cars: Promoting and increasing their use in the UK
 
From Algae to Biofuels: An Integrated System Approach to Renewable Energy
From Algae to Biofuels: An Integrated System Approach to Renewable Energy  From Algae to Biofuels: An Integrated System Approach to Renewable Energy
From Algae to Biofuels: An Integrated System Approach to Renewable Energy
 
Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...
Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...
Fuel, Fertilizer and Family Income: Steps towards a New Approach to Conservat...
 
Fuel-Saving Measures for Fishing Industry Vessels
Fuel-Saving Measures for Fishing Industry Vessels  Fuel-Saving Measures for Fishing Industry Vessels
Fuel-Saving Measures for Fishing Industry Vessels
 
Gender and Equity issues in Liquid Biofuels Production
Gender and Equity issues in Liquid Biofuels Production  Gender and Equity issues in Liquid Biofuels Production
Gender and Equity issues in Liquid Biofuels Production
 
Grease Works: Biodiesel for First Time Users and How to Save the Environment
Grease Works: Biodiesel for First Time Users and How to Save the Environment  Grease Works: Biodiesel for First Time Users and How to Save the Environment
Grease Works: Biodiesel for First Time Users and How to Save the Environment
 
Green Energy in Namibia
Green Energy in Namibia  Green Energy in Namibia
Green Energy in Namibia
 
Green Values in Europe
Green Values in Europe  Green Values in Europe
Green Values in Europe
 
Hilltown Farmers Biodiesel Project
Hilltown Farmers Biodiesel Project  Hilltown Farmers Biodiesel Project
Hilltown Farmers Biodiesel Project
 
How Will Small Scale Farmers in Zambia
How Will Small Scale Farmers in Zambia  How Will Small Scale Farmers in Zambia
How Will Small Scale Farmers in Zambia
 
Implementation of Renewable Energy Technologies in Zimbabwe
Implementation of Renewable Energy Technologies in Zimbabwe  Implementation of Renewable Energy Technologies in Zimbabwe
Implementation of Renewable Energy Technologies in Zimbabwe
 
Influence of Bio Fuels on Pollutant Emissions of Diesel Engines
Influence of Bio Fuels on Pollutant Emissions of Diesel Engines  Influence of Bio Fuels on Pollutant Emissions of Diesel Engines
Influence of Bio Fuels on Pollutant Emissions of Diesel Engines
 
Jatropha: A Smallholder Bioenergy Crop
Jatropha: A Smallholder Bioenergy Crop  Jatropha: A Smallholder Bioenergy Crop
Jatropha: A Smallholder Bioenergy Crop
 
Jatropha Handbook
Jatropha Handbook  Jatropha Handbook
Jatropha Handbook
 
Jatropha Vegetable Oil as a Possible Jet Fuel
Jatropha Vegetable Oil as a Possible Jet Fuel  Jatropha Vegetable Oil as a Possible Jet Fuel
Jatropha Vegetable Oil as a Possible Jet Fuel
 
Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor
Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor  Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor
Jatropha Vegetable Oil: BioEnergy Fuel for the 3rd World Poor
 

Recently uploaded

Morgenbooster: Storytelling in Identity Design
Morgenbooster: Storytelling in Identity DesignMorgenbooster: Storytelling in Identity Design
Morgenbooster: Storytelling in Identity Design1508 A/S
 
一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样
一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样
一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样yhavx
 
Branding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfBranding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfAlexandra Plesner
 
怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证
怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证
怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证eeanqy
 
如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证ugzga
 
Gamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad IbrahimGamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad Ibrahimamgadibrahim92
 
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...samsungultra782445
 
Edward Boginsky's Trailblazing Contributions to Printing
Edward Boginsky's Trailblazing Contributions to PrintingEdward Boginsky's Trailblazing Contributions to Printing
Edward Boginsky's Trailblazing Contributions to PrintingEdward Boginsky
 
Academic Portfolio (2017-2021) .pdf
Academic Portfolio (2017-2021)      .pdfAcademic Portfolio (2017-2021)      .pdf
Academic Portfolio (2017-2021) .pdfM. A. Architects
 
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...drmarathore
 
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证ugzga
 
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样awasv46j
 
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKLANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKMarekMitek1
 
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证wpkuukw
 
TRose UXPA Experience Design Concord .pptx
TRose UXPA Experience Design Concord .pptxTRose UXPA Experience Design Concord .pptx
TRose UXPA Experience Design Concord .pptxtrose8
 
Furniture & Joinery Details_Designs.pptx
Furniture & Joinery Details_Designs.pptxFurniture & Joinery Details_Designs.pptx
Furniture & Joinery Details_Designs.pptxNikhil Raut
 
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Resume all my skills and educations and achievement
Resume all my skills and educations and  achievement Resume all my skills and educations and  achievement
Resume all my skills and educations and achievement 210303105569
 
Spring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisSpring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisPeclers Paris
 
422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmm422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmmKarenNares2
 

Recently uploaded (20)

Morgenbooster: Storytelling in Identity Design
Morgenbooster: Storytelling in Identity DesignMorgenbooster: Storytelling in Identity Design
Morgenbooster: Storytelling in Identity Design
 
一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样
一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样
一比一原版(ANU毕业证书)澳大利亚国立大学毕业证原件一模一样
 
Branding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfBranding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdf
 
怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证
怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证
怎样办理伦敦国王学院毕业证(KCL毕业证书)成绩单留信认证
 
如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(Columbia College毕业证书)纽约市哥伦比亚大学毕业证成绩单本科硕士学位证留信学历认证
 
Gamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad IbrahimGamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad Ibrahim
 
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
 
Edward Boginsky's Trailblazing Contributions to Printing
Edward Boginsky's Trailblazing Contributions to PrintingEdward Boginsky's Trailblazing Contributions to Printing
Edward Boginsky's Trailblazing Contributions to Printing
 
Academic Portfolio (2017-2021) .pdf
Academic Portfolio (2017-2021)      .pdfAcademic Portfolio (2017-2021)      .pdf
Academic Portfolio (2017-2021) .pdf
 
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
 
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
 
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
 
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKLANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
 
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
 
TRose UXPA Experience Design Concord .pptx
TRose UXPA Experience Design Concord .pptxTRose UXPA Experience Design Concord .pptx
TRose UXPA Experience Design Concord .pptx
 
Furniture & Joinery Details_Designs.pptx
Furniture & Joinery Details_Designs.pptxFurniture & Joinery Details_Designs.pptx
Furniture & Joinery Details_Designs.pptx
 
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Resume all my skills and educations and achievement
Resume all my skills and educations and  achievement Resume all my skills and educations and  achievement
Resume all my skills and educations and achievement
 
Spring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisSpring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers Paris
 
422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmm422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmm
 

Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel

  • 1. Energy Fuels 2010, 24, 3173–3178 : DOI:10.1021/ef9015872 Published on Web 04/02/2010 Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel Gemma Vicente,† L. Fernando Bautista,† Francisco J. Gutirrez,† Rosalı´ a Rodrı´ guez,† Virginia Martı´ nez,† e Rosa A. Rodrı´ guez-Frmeta,‡ Rosa M. Ruiz-Vzquez,‡ Santiago Torres-Martı´ nez,‡ and Victoriano Garre*,‡ o a † Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipn s/n, a 28933 Mstoles, Madrid, Spain, and ‡Departamento de Gentica y Microbiologı´a (Unidad Asociada al IQFR-CSIC), o e Facultad de Biologı´a, Universidad de Murcia, 30071 Murcia, Spain Received July 29, 2009. Revised Manuscript Received March 11, 2010 Diminishing fossil fuel reserves and the increase in their consumption indicate that strategies need to be developed to produce biofuels from renewable resources. Biodiesel offers advantages over other petro- leum-derived fuel substitutes, because it is comparatively environmentally friendly and an excellent fuel for existing diesel engines. Biodiesel, which consists of fatty acid methyl esters (FAMEs), is usually obtained from plant oils. However, its extensive production from oil crops is not sustainable because of the impact this would have on food supply and the environment. Microbial oils are postulated as an alternative to plant oils, but not all oleaginous microorganisms have ideal lipid profiles for biodiesel production. On the other hand, lipid profiles could be modified by genetic engineering in some oleaginous microorganisms, such as the fungus Mucor circinelloides, which has powerful genetic tools. We show here that the biomass from submerged cultures of the oleaginous fungus M. circinelloides can be used to produce biodiesel by acid-catalyzed direct transformation, without previous extraction of the lipids. Direct transformation, which should mean a cost savings for biodiesel production, increased lipid extraction and demonstrated that structural lipids, in addition to energy storage lipids, can be transformed into FAMEs. Moreover, the analyzed properties of the M. circinelloides-derived biodiesel using three different catalysts (BF3, H2SO4, and HCl) fulfilled the specifications established by the American standards and most of the European standard specifications. 1. Introduction crop oils should be quickly developed.6 One way to increase world oil production that would cause a low ecosystem impact Society is facing an unprecedented situation with regard is to use lipids from oleaginous microorganisms (also called to the fundamental sources of its raw materials and energy. single-cell oils), which present many significant advanta- Petroleum, the fuel that has driven modern society for the last ges over plants. Oleaginous microorganisms, such as yeasts, century, is showing signs of scarcity.1,2 Many renewable fuel fungi, bacteria, and microalgae, can accumulate high levels of alternatives are under study,3 but ethanol and biodiesel are lipids7-14 (Table 1) and do not require arable land, so that already available in petrol stations. Biodiesel, which consists they do not compete with food production. More particularly, of fatty acid methyl esters (FAMEs), has many advantages, photosynthetic microalgae have attracted attention and invest- such as high energy density, great lubricity, fast biodegrada- ment because they capture carbon dioxide in lipids using sun- tion rate, and reduced emissions of sulfur, aromatic com- light. However, their growth in bioreactor systems is proble- pounds, and particulate matter.4 However, biodiesel adoption matic because of the light supply requirement.6,15 Oleaginous is complicated because it competes with the food industry for yeasts and fungi have also been considered as potential oil the main raw material input, plant oils, and the worldwide sources for biodiesel production because they accumulate large supply of plant oils is limited by land and water availability.4,5 amounts of lipids. Among these microorganisms, particular Moreover, a rapid expansion in biodiesel production capacity attention has been dedicated to various oleaginous zygomyce- is being observed in not only developed countries, e.g., United tes species, such as Mortierella isabelina and Cunninghamella States and European Union, but also developing countries. To meet the demand of this industry, oil sources other than (7) Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Renewable Energy 2009, 34, 1–5. (8) Chisti, Y. Biotechnol. Adv. 2007, 25, 294–306. *To whom correspondence should be addressed: Departamento de (9) Illman, A. M.; Scragg, A. H.; Shales, S. W. Enzyme Microb. Gentica y Microbiologı´ a, Facultad de Biologı´ a, Universidad de Murcia, e Technol. 2000, 27, 631–635. 30071 Murcia, Spain. Telephone: þ34-868887148. Fax: þ34-868883963. (10) Gouda, M. K.; Omar, S. H.; Aouad, L. M. World J. Microbiol. E-mail: vgarre@um.es. Biotechnol. 2008, 24, 1703–1711. (1) Grant, L. Science 2005, 309, 52–54. (11) Papanikolaou, S.; Komaitis, M.; Aggelis, G. Bioresour. Technol. (2) Vasudevan, P. T.; Briggs, M. J. Ind. Microbiol. Biotechnol. 2008, 2004, 95, 287–291. 35, 421–430. (12) Fakas, S.; Papanikolaou, S.; Galiotou-Panatoyou, M.; Komaitis, (3) Wackett, L. P. Microb. Biotechnol. 2008, 1, 211–225. M.; Aggelis, G. J. Appl. Microbiol. 2008, 105, 1062–1070. (4) Durrett, T. P.; Benning., C.; Ohlrogge, J. Plant J. 2008, 54, 593– (13) Fakas, S.; Papanikolaou, S.; Batsos, A.; Galiotou-Panatoyou, 607. M.; Mallouchos, A.; Aggelis, G. Biomass Bioenergy 2009, 33, 573–580. (5) Pinzi, S.; Garcia, I. L.; Lopez-Gimenez, F. J.; Luque de Castro, (14) Vicente, G.; Bautista, L. F.; Rodrı´ guez, R.; Gutirrez, F. J.; e M. D.; Dorado, G.; Dorado, M. P. Energy Fuels 2009, 23, 2325–2341. Sdaba, I.; Ruiz-Vzquez, R. M.; Torres-Martı´ nez, S.; Garre, V. a a (6) Li, Q.; Du, W.; Liu, D. Appl. Microbiol. Biotechnol. 2008, 80, 749– Biochem. Eng. J. 2009, 48, 22–27. 756. (15) Rittmann, B. E. Biotechnol. Bioeng. 2008, 100, 203–212. r 2010 American Chemical Society 3173 pubs.acs.org/EF
  • 2. Energy Fuels 2010, 24, 3173–3178 : DOI:10.1021/ef9015872 Vicente et al. Table 1. Oleaginous Microorganisms Used for by the industry. One way to generate microorganisms with Single-Cell Oil Production ideal lipid composition for biodiesel production could be by means of genetic manipulation of key genes.4,5 However, microorganisms considered thus far as a feedstock for biodie- sel production lack appropriate genetic engineering tech- niques to improve fatty acid profiles that would produce high-quality biodiesel.16 Besides, their genomes have not been sequenced, which makes it even more difficult to improve strategies based on genetic manipulation. In contrast, the oleaginous fungus Mucor circinelloides, which was used for the first commercial production of micro- bial lipids,21 has its genome sequenced and a large collection of genetic engineering techniques for its manipulation. These techniques include the expression of genes using autoreplica- tive plasmids and inactivation of genes by disruption22 or gene silencing (RNAi).23 In addition, the regulation of lipid accu- mulation in this fungus has been extensively studied for decades,24,25 and key genes have been identified.26 Moreover, the possibility to manipulate lipid accumulation in M. circi- nelloides using genetic engineering techniques has been recen- tly proven. Thus, overexpression of malic enzyme, which has been postulated to be the rate-limiting step for fatty acid biosynthesis in M. circinelloides, led to a 2.5-fold increase in lipid accumulation.27 The M. circinelloides lipids extracted for mycelium grown in a solid medium have been suggested as a suitable feedstock to produce biodiesel.14 Biodiesel was produced by acid-catalyzed transesterification/esterification because of its high free fatty acid content (31.6 ( 1.3%) following two different app- roaches: transformation of extracted microbial lipids and echinulata, which may accumulate up to 86 and 57% of lipids in acid-catalyzed direct transformation of microbial dry mass. dry biomass, respectively.11-13 These fungi are able to grow and The FAME yield was significantly higher in the direct transfor- accumulate large amounts of lipids in cultures containing raw mation than in the two-step process, with the FAME purity also glycerol derived from biodiesel production as a carbon source. being higher in the direct method. However, growth in a solid Glycerol is the major byproduct of the biodiesel production, and medium is unfeasible for the industry, which should use biomass its recycling to produce oleaginous microbial biomass could from submerged cultures. Therefore, we describe here the significantly decrease the cost of biodiesel production.13 characterization of the lipids accumulated by M. circinelloides Biodiesel is conventionally produced by transesterification mycelia grown in submerged liquid cultures and the acid- of extracted triacylglycerides with methanol, but a single-step catalyzed direct transformation of the M. circinelloides biomass method has been developed that transforms lipids present in into biodiesel, without previous extraction of those lipids. In dried microbial biomass into FAMEs, without previous lipid addition, we also show that the biodiesel obtained complies with extraction.16 This method combines the lipid extraction, the the current existing standards, the ASTM D6751 standard in the acid-catalyzed transesterification of the extracted saponifiable United States and most of the specifications in the EN 14213 lipids, and the acid-catalyzed esterification of the extracted and 14214 standards in the European Union. free fatty acids in one step and was initially proposed because of the substantial reduction in both time and solvents that this 2. Experimental Section technique offers for analytical purposes.17 Similar procedures 2.1. Strains and Growth Conditions. The strain MU241,28 that avoid the lipid extraction step have already been deve- derived from R7B29 after replacement of its leuA mutant allele loped.13,18-20 However, most of them involve a previous by a wild-type allele, was used as a wild-type strain to produce transmethylation step and do not include an acid-catalyzed fungal biomass. For biomass production, 1 Â 105 spores/mL transesterification and esterification.13,18,19 Biodiesel quality depends upon the fatty acid composition (21) Ratledge, C. Biochimie 2004, 86, 807–815. (22) Navarro, E.; Lorca-Pascual, J. M.; Quiles-Rosillo, M. D.; Nicols, a of raw materials, and consequently, not all microorganisms F. E.; Garre, V.; Torres-Martı´ nez, S.; Ruiz-Vzquez, R. M. Mol. Genet. a can be used as a feedstock for biodiesel production.4,5 Thus, a Genomics 2001, 266, 463–470. careful characterization of the lipid composition of each (23) Nicols, F. E.; Torres-Martı´ nez, S.; Ruiz-Vzquez, R. M. EMBO a a microbial candidate should be carried out before its adoption J. 2003, 22, 3983–3991. (24) Aggelis, G.; Ratomahenina, R.; Arnaud, A.; Galzy, P.; Martin- Privat, P.; Perraud, J. P.; Pina, M.; Graille, J. Oleagineux 1988, 43, 311– (16) Liu, B.; Zhao, Z. B. J. Chem. Technol. Biotechnol. 2007, 82, 775– 317. 780. (25) Aggelis, G.; Pina, M.; Graille, J. Oleagineux 1990, 45, 229–232. (17) Lewis, T.; Nichols, P. D.; McMeekin, T. A. J. Microbiol. (26) Wynn, J. P.; bin Abdul, H. A.; Ratledge, C. Microbiology 1999, Methods 2000, 43, 107–116. 145, 1911–1917. (18) Rodrı´ guez-Ruiz, J.; Belarbi, E.-H.; Garcı´ a Snchez, J. L.; Lpez a o (27) Zhang, Y.; Adams, I. P.; Ratledge, C. Microbiology 2007, 153, Alonso, D. Biotechnol. Technol. 1998, 12, 689–691. 2013–2025. (19) Weete, J. D.; Shewmaker, F.; Gandhi, S. R. J. Am. Oil Chem. Soc. (28) Silva, F.; Navarro, E.; Pe~ aranda, A.; Murcia-Flores, L.; Torres- n 1998, 75, 1367–1372. Martı´ nez, S.; Garre, V. Mol. Microbiol. 2008, 70, 1026–1036. (20) Johnson, M. B.; Wen, Z. Energy Fuels 2009, 23, 5179–5183. (29) Roncero, M. I. G. Carlsberg Res. Commun. 1984, 49, 685–690. 3174
  • 3. Energy Fuels 2010, 24, 3173–3178 : DOI:10.1021/ef9015872 Vicente et al. were inoculated in a 500 mL flask with 100 mL of YNB2XG liquid medium (20 g/L glucose, 1.5 g/L ammonium sulfate, 1.5 g/L glutamic acid, 0.5 g/L yeast nitrogen base without amino acids and ammonium sulfate, 1 mg/L nicotinic acid, and 1 mg/L thiamine at pH 4.5) and incubated in the dark for 24, 48, 72, or 96 h at 26 °C and 250 rpm. Culture pH was measured every 24 h and manually adjusted by the addition of 1 M NaOH. 2.2. Analysis of Cell Lipids. Mycelia harvested by filtration using Whatman Paper No. 1 were dried between paper towels, frozen in liquid nitrogen, lyophilized, weighed to estimate dry mass, and ground using a mortar and pestle. Cell lipids were extracted as previously described.30 Characterization of cell lipids was performed following stan- dard methods when possible. Free fatty acids, tri-, di-, and monoglycerides, FAMEs, carotenoids, sterol esters, sterols and tocoferols, retinoids and polar lipids in microbial oil were identi- fied and quantified by TLC analysis. Chromatographic separation Figure 1. Kinetics of biomass production (2), lipid biosynthesis (O), and glucose consumption (b) in M. circinelloides cultures. Data are was developed in 20 Â 20 cm silica-coated aluminum plates presented as mean values from duplicate experiments. (Alugram Sil G/UV, Macherey-Nagel GmbH, D€ren, Germany) u using a solvent mixture of 88% (v) n-hexane, 11% (v/v) diethyl weighed to calculate the yield and then analyzed to determine its ether, and 1% (v/v) glacial acetic acid. Visualization was carried quality as biodiesel, following standard methods according to out by staining with iodine. Digital image analyses of staining European Union specifications (EN 14214). plates were performed with Un-Scan-It Gel 6.1 software (Silk Scientific, Inc., Orem, UT), and the lipid compositions were 3. Results and Discussion quantified by the corresponding calibration curves. Free fatty acid content in the lipid fraction extracted from the 3.1. Biomass Production and Lipid Characterization. To microorganisms was measured following a colorimetric proce- produce biodiesel, M. circinelloides biomass was obtained dure31 based on the formation of cupric soaps and further quan- from the prototrophic strain MU241 grown in a liquid medium tification of the chromophore complex by absorbance at 715 nm (YNB2XG) containing glucose as a carbon source (20 g/L). In in a Cary 500 spectrophotometer (Varian, Inc., Palo Alto, CA). our experimental conditions, the fungus grew very quickly The phosphorus content in microbial oil was determined by inductively coupled plasma-optical emission spectrometry because it consumed all of the available glucose and stopped (ICP-OES) using a Vista AX model (Varian, Inc.). The analysis growing in the first 48 h after inoculation (Figure 1). Similar was performed according to EN 14107:2003 standard. fast growth has been observed in not only M. circinelloides,26 Fatty acid profiles of microbial, rapeseed, and sunflower oils but also other Mucorales, such as M. isabellina.32 Lipid accu- were performed by gas chromatography (GC) in a CP-3800 mulation was high in the first analyzed time (24 h) and only gas chromatograph (Varian, Inc.) fitted with a flame ioniza- increase slightly afterward. Although culture kinetic compar- tion detector (FID) and TRB-FFAP capillary column (30 m isons are difficult, particularly when different strains or culture length, 0.32 mm internal diameter, and 0.25 μm film thickness, conditions are used, similar lipid accumulation kinetics were Teknokroma, Barcelona, Spain). Prior to GC analysis, the oil previously observed in cultures of M. circinelloides.26 In addi- samples were transformed into their corresponding methyl tion, the fatty acid profile of the lipid extracted from esters by saponification in 0.5 M KOH in methanol solution (30 min at 90 °C) followed by treatment with 14% boron M. circinelloides did not change significantly with the fermen- trifluoride in methanol (10 min at 90 °C) and extraction with tation time (data not shown). n-hexane/water. Finally, 3 μL of the organic phase containing After 96 h of growth, the fungus was clearly in stationary FAMEs was injected into the capillary column, where the phase and no further increases in lipids were expected. In that separation was achieved using a temperature ramp (1 °C/min) time, a 4.17 ( 0.25 g/L fungal biomass with a total lipid from 150 to 240 °C at a flow rate of 1 mL/min (injector tempe- content of 22.9 ( 0.9% dry mass was obtained. Nonetheless, rature, 180 °C; detector temperature, 280 °C; injection mode, not all lipids obtained from microbial biomass are suitable splitless). Identification of chromatographic peaks was per- for making biodiesel. Only saponifiable lipids and free fatty formed by a comparison to a FAME standard mixture (refe- acids (also referred to as oils) can be converted into FAMEs, rence 07131-1AM, Supelco, Bellefonte, PA) and quantification which can be used as biodiesel if they comply with the current by means of external standards and their corresponding calibra- tion curve. The iodine number was calculated as described in EN standards (ASTM D6751 in the United States or EN 14213 14214:2003 standard from the free fatty acid profile. and 14214 in the European Union). The saponifiable lipids 2.3. Direct Acid-Catalyzed Transesterification/Esterification and free fatty acids (including energy storage and structural Reactions. M. circinelloides biomass was transesterified/ester- lipids) were 98.0 ( 1.3% of the total lipids extracted from ified by stirring (900 rpm) with a solution of the catalyst M. circinelloides biomass, with the main components being (BF3, H2SO4, or HCl) in a closed container at 65 °C for 8 h. In triglycerides, polar lipids (phospholipids, sphingolipids, and this direct process, a 10:1 methanol/chloroform (v/v) mixture saccharolipids), and free fatty acids (Table 2). In particular, was used as a reagent-solvent system, where the appropriate the quantity of sphingolipids and saccharolipids produced amount of the corresponding acid catalyst was dissolved. The by M. circinelloides was very high (around 54% of total obtained mixture was diluted with water and then extracted with lipids). The amount of neutral lipids (mono-, di-, and trigly- hexane and diethyl ether using a centrifuge. The solvents were removed in a rotary evaporator, and the residue (FAMEs) was cerides) accumulated by M. circinelloides was 23.8%. Neu- tral lipids were comprised of mainly triglycerides (22.6 ( 1.3%). In addition, the proportion of phospholipids in this (30) Folch, J.; Lees, M.; Stanley, G. H. S. J. Biol. Chem. 1957, 226, 497–509. (31) Lowry, R. R.; Tinsley, I. J. J. Am. Oil Chem. Soc. 1976, 53, 470– (32) Papanikolaou, S.; Galiotou-Panatoyou, M.; Fakas, S.; Komaitis, 472. M.; Aggelis, G. Eur. J. Lipid Sci. Technol. 2007, 109, 1060–1070. 3175
  • 4. Energy Fuels 2010, 24, 3173–3178 : DOI:10.1021/ef9015872 Vicente et al. 35-38 Table 2. Composition of the Lipids Extracted from esterification or transesterification reactions. Operating M. circinelloides after 96 h of Growth conditions (temperature, time, and solvent ratio) were pre- viously optimized using M. circinelloides biomass from solid medium.14 Using optimal reaction conditions (8 h at 65 °C), biodiesel yields were 18.9, 18.9, and 18.4% relative to the dry mass of M. circinelloides, using H2SO4, HCl, and BF3, respectively. These yields were even slightly higher than the corresponding theoretical yield calculated for this micro- organism (18.1%), indicating that acid-catalyzed direct tran- sesterification/esterification of fungal biomass can be app- lied to M. circinelloides biomass from submerged cultures because it improves the amount of total lipids extracted in comparison to the conventional methods for lipid extraction from microorganisms.30,39 This observation is supported by previous works describing increased recovery of fatty acids from microorganisms by direct transterification tech- niques.17,40 Interestingly, these results also indicate that saponifiable lipids other than triglycerides, such as phospho- fungus was 16%. Significantly lower proportions of struc- lipids, sphingolipids, and saccharolipids (Table 2), are trans- tural lipids (sphingolipids, saccharolipids, and phospho- formed into FAMEs by this method and should be consi- lipids) were observed in the biomass from stationary cultures dered as substrates for FAME obtention. of other oleaginous fungi, such as Cunninghamella echinulata,33 At the end of the procedure, methanol and chloro- whereas the amount of neutral lipids (storage lipids) was form were recovered and recirculated through the process higher at this stage. The level of neutral lipids (storage lipids) (Figure 2). increased with time during the cultivation of this fungus, 3.3. Quality Analysis of the Biodiesel. The quality of the which means a decrease in the relative proportion of all of biodiesel produced in the one-step procedure was deter- the structural lipids with this variable. In fact, the amount of mined according to the EN 14214 specifications, and the structural lipids in a microorganism is concrete, and there- results were compared to the corresponding specified bio- fore, it has to keep constant with time. In contrast, lipid diesel limits in standards EN 14213 (European Union), EN accumulation in M. circinelloides was 18.9% at 24 h, increas- 14214 (European Union), and ASTM D6751 (United ing only slightly after this time (Figure 1). In this case, the States). Dependent upon the catalyst, the ester content quantity of neutral lipids did not change significantly with ranged between 99.0 and 99.2% (Table 3), which is signifi- the fermentation time, which justifies the relative high pro- cantly higher than the corresponding specified minimum portion of phospholipids, sphingolipids, and saccharolipids value in the European Union standard (96.5%). These values at the stationary stage. Although free fatty acid levels were were higher and the reaction was faster than those repor- still high (3.6 ( 0.6%), they were substantially reduced in ted for other oleaginous microorganisms, in which an acid- comparison to those observed in biomass from solid medium catalyzed direct transformation method was also used.16 (31.6 ( 1.3%).14 The non-saponifiable lipid fraction, which Futhermore, the amounts of all byproduct analyzed were consisted of small amounts of carotenoids, sterols, tocopher- below the maximum allowed values for American and ols, and retinoids (Table 2), was also reduced in these culture European standards. Thus, the contents of individual glyce- conditions (1.96%) in comparison to the solid medium rides (mono-, di-, and triglycerides) were within the biodiesel (13.5%), probably because of the absence of light.22 These specifications, indicating that the transesterification and results suggest that the fungal biomass from liquid cultures in esterification reactions were complete. The free glycerol the dark shows better characteristics for biodiesel produc- content was lower than the two standard limits, indicating tion than that from solid cultures. that the glycerol residues were eliminated during the purifi- 3.2. Biodiesel Production. The high concentration of free cation treatment. Besides, the individual glyceride and free fatty acids (3.6 ( 0.6%) in M. circinelloides determines that glycerol levels were below the established limits. The total an acid-catalyzed process is more suitable for producing glycerol content also met all of the standards. The acid biodiesel than an alkali one to avoid yield losses from free values, which depend upon the free fatty acid content, fatty acid neutralization.34 Methods for simultaneous lipid were also within the specifications in all reactions. In addi- extraction and transesterification involving a previous trans- tion, non-saponifiable lipids were not detected in the methylation step have been previously used with zygomy- M. circinelloides-derived biodiesel, which means that these cetes fungi, but they were avoided because of their low types of lipids were also eliminated during the purification yields.13 Therefore, the acid-catalyzed direct transformation stage. Nonetheless, the biodiesel obtained had small quan- method16,17 (Figure 2) was applied to dried mycelial biomass tities of polar lipids, which were lower than 0.9% in all cases using methanol and chloroform as solvents and H2SO4, HCl, (Table 3). These compounds are residuals of nonconverted and BF3 as acid catalysts, all of which are commonly used in polar lipids, and they are not considered in the biodiesel specifications established thus far. (33) Fakas, S.; Papanikolaou, S.; Galiotou-Panatoyou, M.; Komaitis, M.; Aggelis, G. Appl. Microbiol. Biotechnol. 2006, 73, 676–683. (37) Canakci, M.; Van Gerpen, J. Trans. ASAE 1999, 42, 1203–1210. (34) Vicente, G.; Martı´ nez, M.; Aracil, J. Energy Fuels 2006, 20, 394– (38) Canakci, M.; Van Gerpen, J. Trans ASAE 2003, 46, 945–954. 398. (39) Bligh, E. G.; Dyer, W. J. Can. J. Biochem. Physiol. 1959, 37, 911– (35) Formo, M. W. J. Am. Oil Chem. Soc. 1954, 31, 548–559. 917. (36) Freedman, B.; Pryde, E. H.; Mounts, T. L. J. Am. Oil Chem. Soc. (40) Dionisi, F.; Golay, P. A.; Elli, M.; Fay, L. B. Lipids 1999, 34, 1984, 61, 1638–1643. 1107. 3176
  • 5. Energy Fuels 2010, 24, 3173–3178 : DOI:10.1021/ef9015872 Vicente et al. Figure 2. Schematic diagram of the process for biodiesel production from fungal biomass. Table 3. Quality Control of M. circinelloides-Derived Biodiesela catalyst property BF3 H2SO4 HCl EU standard EN 14214 U.S. standard ASTM D6751 monoglyceride content (wt %) nd nd nd 0.8 maximum ns diglyceride content (wt %) nd nd nd 0.2 maximum ns triglyceride content (wt %) nd nd nd 0.2 maximum ns free glycerol (wt %) 0.0020 0.0032 0.0030 0.02 maximum 0.02 maximum total glycerol (wt %) 0.0020 0.0032 0.0030 0.25 maximum 0.24 maximum acid value (mg of KOH/g) nd 0.40 nd 0.5 maximum 0.5 maximum non-saponifiable lipids (wt %) nd nd nd ns ns polar lipids (wt %) 0.8 0.8 0.9 ns ns ester content (wt %) 99.2 99.0 99.1 96.5 minimum ns a nd, not detected; ns, not a specified limit. Table 4. Fatty Acid Composition in Biodiesel from M. circinelloides, Rapeseed, Sunflower, Palm, and Soy Oils content (wt %) fatty acid M. circinelloides oil rapeseed oil sunflower oil palm oil41 soy oil41 lauric acid 12:0 nd nd nd 0.1 nd myristic acid 14:0 1.6 0.1 nd 0.7 nd myristoleic acid 14:1 0.6 nd nd nd nd pentadecanoic acid 15:0 2.5 nd nd nd nd palmı´ tic acid 16:0 20.7 5.0 6.3 36.7 11.3 palmitoleic acid 16:1 1.1 nd 0.2 0.1 0.1 stearic acid 18:0 7.0 1.6 2.2 6.6 3.6 oleic acid 18:1 28.0 36.3 20.6 46.1 24.9 linoleic acid 18:2 12.7 19.8 52.8 8.6 53.0 linolenic acid 18:3 22.5a 7.8b 3.5b 0.3b 6.1b arachidic acid 20:0 0.3 0.1 1.6 0.4 0.3 gadoleic acid 20:1 nd 9.1 0.3 0.2 0.3 behenic acid 22:0 0.4 nd 7.2 0.1 nd erucic acid 22:1 0.07 20.2 5.1 nd 0.3 lignoceric acid 24:0 1.2 nd 0.2 0.1 0.1 nervonic acid 24:1 nd nd nd nd nd other 1.3 nd nd nd nd iodine value (g of I2/100 g) 106.0 107.7 122.4 55.6 129.7 a The γ-linolenic acid isomer was obtained. b The R-linolenic acid isomer was obtained. The fatty acid profile for the FAMEs obtained from biodiesel obtained from M. circinelloides was within the M. circinelloides was compared to those produced for rapeseed, European Union specifications because the specified limit sunflower, palm,41 and soy41 oils (Table 4), which are the most (1%) only includes polyunsaturated fatty acids with four or commonly used raw materials by the biodiesel industry in more double bonds, which are absent in M. circinelloides- Europe and the United States. Microbial oils usually differ from derived biodiesel. FAMEs from M. circinelloides contained most vegetable oils in being quite rich in polyunsaturated 12.7 and 22.5% of linoleic (two double bonds) and linolenic fatty acids.8 However, the content of these fatty acids in the (three double bonds) acids, respectively, which would have low oxidative stability. In fact, the linolenic acid methyl ester (41) Ramos, M. J.; Fernndez, C. M.; Casas, A.; Rodrı´ guez, L.; Prez, a e content in the M. circinelloides-derived biodiesel was above A. Bioresour. Technol. 2008, 100, 261–268. the specified limit, 12%, in the European standards. On the 3177
  • 6. Energy Fuels 2010, 24, 3173–3178 : DOI:10.1021/ef9015872 Vicente et al. other hand, the high degree of unsaturation inherent to cations established by the current existing standards, ASTM methyl esters from these fatty acids would evidence excellent D6751 in the United States and EN 14213 and 14214 in fuel properties at low temperatures, which is an advantage in the European Union. In addition, efficient biodiesel produc- winter operation.42 Moreover, all of these fatty acids are tion by direct transformation of fungal biomass without lipid common in industrial vegetable oils, and in particular, sun- extraction is technically feasible in M. circinelloides, which flower and soy oils are also very rich in polyunsaturated fatty represents a starting point for developing this process on an acids. Thus, the calculated iodine value, which is a measure industrial scale. However, biodiesel yields should be increased of the total unsaturation level, for the M. circinelloides- to make the industrial process economical, which could be derived biodiesel (106.0 mg of I2/g) was far below the speci- attained by the genetic manipulation of this fungus. In this fied limit (120 mg of I2/g) in the European Union standards sense, efforts are now dedicated to overexpress genes that code and also met the United States standards because these for enzymes postulated to be rate-limiting steps for fatty specifications do not include the iodine value as a quality acid biosynthesis in oleaginous fungi.26 Other strategies are parameter. In comparison to the vegetable oils, the iodine focused on the generation of strains with enhanced ability to value was very similar to the one obtained in biodiesel from use crop residues or industrial byproduct, avoiding competi- rapeseed oil (107.7 mg of I2/g), which is the preferred raw tion with the food supply, with low linolenic acid levels or material for biodiesel production in Europe. overexpressing genes involved in saponifiable lipid biosynthe- sis. Particularly interesting is the generation of strains with 4. Conclusions low free fatty acid levels because they could be used for biodiesel production by using a base-catalyzed technology, The results shown here indicate that M. circinelloides which is the common way to produce biodiesel on an indus- biomass from submerged cultures may be a suitable feedstock trial scale. for biodiesel production. Moreover, the analyzed properties of the M. circinelloides-derived biodiesel fulfilled the specifi- Acknowledgment. We thank J. A. Madrid for technical assis- tance. This work was funded by the D. G. de Investigacin y o (42) Vicente, G.; Martı´ nez, M.; Aracil, J. Bioresour. Technol. 2004, 92, Polı´ tica Cientı´ fica (Comunidad Autnoma de la Regin de o o 297–305. Murcia, Spain), Project BIO-BMC 07/01-0005. 3178
  • 7. 10074 Ind. Eng. Chem. Res. 2010, 49, 10074–10079 Experimental Investigations into the Insecticidal, Fungicidal, and Bactericidal Properties of Pyrolysis Bio-oil from Tobacco Leaves Using a Fluidized Bed Pilot Plant Christina J. Booker,†,‡ Rohan Bedmutha,†,§ Tiffany Vogel,†,‡ Alex Gloor,†,‡ Ran Xu,†,§ Lorenzo Ferrante,†,§ Ken K.-C. Yeung,†,‡ Ian M. Scott,| Kenneth L. Conn,| Franco Berruti,†,§ and Cedric Briens*,†,§ Institute for Chemicals and Fuels from AlternatiVe Resources (ICFAR), 22312 Wonderland Road North, RR#3, Ilderton, Ontario N0M 2A0, Canada, Faculty of Science, The UniVersity of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada, Faculty of Engineering, The UniVersity of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada, and Agriculture and Agri-Food Canada, 1391, Sandford Street, London, Ontario N5V 4T3, Canada Tobacco bio-oil, gases, and char were produced through pyrolysis of tobacco leaves using a fluidized bed pilot plant under varying temperature (350, 400, 450, 500, 550, and 600 °C) and residence time (5, 10, and 17 s) conditions. The optimized condition for the production of bio-oil was found to be at 500 °C at a vapor residence time of 5 s, giving a bio-oil yield of 43.4%. The Colorado Potato Beetle (CPB) Leptinotarsa decemlineata L. (Coleoptera: Chrysomelidae), a destructive pest toward potato crops, and three microorganisms (Streptomyces scabies, ClaVibacter michiganensis, and Pythium ultimum), all problematic in Canadian agriculture, were strongly affected by tobacco bio-oil generated at all pyrolysis temperatures. Nicotine-free fractions of the tobacco bio-oil were prepared through liquid-liquid extraction, and high mortality rates for the CPB and inhibited growth for the microorganisms were still observed. A potential pesticide from tobacco bio-oil adds value to the biomass as well as the pyrolysis process. 1. Introduction Canada. One of the reasons this biomass was selected for anal- ysis is that tobacco farmers across the world, and in particular Pyrolysis is one of the thermo-chemical processes that is used in Canada, are suffering as demand for their crop continues to extensively worldwide to convert biomass into liquid bio-oil, char, and gases. This process is carried out in the absence of decline. It is well-known that smoking tobacco has a significant, oxygen.1 However, the pyrolysis oil normally contains a high negative impact on human health. Transitioning out of tobacco proportion of oxygenates, reflecting the oxygen content of the farming, however, is difficult due to the specified nature of the original substrates. With the current focus on environmentally equipment used, and therefore many farmers are left with excess friendly energy prospects and renewable energy resources, crop every year, which currently goes to waste. Thus, finding significant research is being directed toward bio-oils. Bio-oil is alternative, healthy, high value applications to this highly considered a CO2 neutral alternative to fossil fuels with low abundant product is an important research area. Already, tobacco emissions of the undesirable components SO2, NOx, and soot.2 biomass is being investigated for unique, high value applications, Despite these advantages, bio-oil has several undesirable proper- such as for medical or industrial proteins,4-6 and in the case of ties as a fuel, including high viscosity, low heating value, poor this research, as a natural pesticide. Because tobacco’s pesticide volatility, and coking. Refining bio-oil to a satisfactory level properties are well-known, converting tobacco leaves to natural for commercial use has been performed, but currently uses too pesticides in the form of bio-oil could provide additional income much energy and occurs at too high a cost to be economically to farmers. viable.3 Tobacco biomass has been characterized,7-9 but very limited An additional, potentially lucrative prospect for bio-oil is as work has been published on the pyrolysis of tobacco for the a source for valuable chemicals. These chemicals could be found production of bio-oil. One study concentrated on the production in the original biomass, such as nicotine in tobacco bio-oil, or could be created during the pyrolysis process, such as phenols of fuel gases but did not perform liquid analysis,10 while another or new chemicals yet to be identified. One of the many potential study performed liquid analysis but failed to analyze the bio- applications of these chemicals is as a pesticide. The search for oil for nicotine.11 effective and safe pesticides is a continuing challenge as species The potential pesticide activity of bio-oil is an exciting quickly adapt to most pesticides that are applied. research area that has yet to be fully explored. Recently, bio- In this Article, tobacco bio-oil is generated through pyrolysis oil has been studied for its wood preservative qualities12 and under a wide range of operating conditions and analyzed for specifically for its antifungal properties.13 Two species of fungi pesticide properties toward a variety of species of concern in were tested and found to have inhibited growth patterns in the * To whom correspondence should be addressed. E-mail: cbriens@ presence to bio-oil from wood biomass. In contrast, this research eng.uwo.ca. Article investigates the pesticide characteristics of bio-oil from † ICFAR. tobacco biomass, not only for antifungal activity, but also for ‡ Faculty of Science, The University of Western Ontario. § Faculty of Engineering, The University of Western Ontario. antibacterial and insecticidal activity. The pyrolysis of this | Agriculture and Agri-Food Canada. tobacco biomass is also investigated. 10.1021/ie100329z  2010 American Chemical Society Published on Web 09/14/2010
  • 8. Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010 10075 2. Experimental Section series II gas chromatograph (GC) was used. A RESTEK Shin Carbon ST (micro packed), 2 m length column with 1 mm i.d. 2.1. Materials. Finely ground tobacco leaves were provided and 1.58 mm o.d., was used to separate the gas mixture. A by Agriculture and Agri-Food Canada, London, ON. Tobacco thermal conductive detector (TCD) was used to detect the leaves were obtained from tobacco crops in 2006 and dried at composition of the gas mixture, which consisted of N2, H2, CO, 60 °C. Dried tobacco leaves were then ground using a blender/ CO2, and CH4. To measure product gas yields accurately, N2 mixing mill and sieved. The Sauter mean diameter of the tobacco was selected as an internal standard gas. Argon was selected as particles used for pyrolysis was 60 µm. the GC carrier gas. A standard gas mixture with a fixed com- 2.2. Methods. 2.2.1. Pilot Plant Design for Pyrolysis. All position of H2, CO, CO2, and CH4 was used to calibrate the pyrolysis experiments were carried out using a fluidized bed system. The injector was maintained at 150 °C, and the TCD pilot plant14 (Figure S1, Supporting Information). The heart of was maintained at 275 °C. A gas sample volume of 0.5 µL was the plant was an atmospheric fluid bed reactor, 0.078 m in injected with a 100 µL Hamilton syringe. Upon injection, the diameter, with a 0.52 m long cylindrical section, and equipped oven temperature was held at 35 °C for 180 s, then increased with an expanded section made up of a 0.065 m long truncated at 10 °C/min to 150 °C, and finally increased at 20 °C/min to cone with an upper diameter of 0.168 m, topped by a second, 250 °C. The temperature was then held constant at 250 °C for 0.124 m long, cylindrical section. The total volume of this 330 s. configuration was 6.09 × 10-3 m3. This assembly provided the 2.2.4. Characterization of Char. The differential pressure lowest vapor residence time (5 s). Two different freeboard drop across the fluidized bed was measured at minimum extensions were used to increase the vapor residence time to fluidization conditions before and after each experiment. The 10 and 17 s. A filter capable of withstanding high temperatures was installed at the gas exit of each of the extensions. Each increase in the reading of the differential pressure drop was filter was made up of a perforated pipe connected to the gas proportional to the increase in bed weight. This system was exit covered by a fiberglass pad and wrapped inside a fine calibrated for very accurate measurement of the char yields. stainless steel mesh cover. The resulting filter was, in all cases, 2.2.5. Characterization of Bio-oil. The bio-oil was charac- 0.076 m in diameter and 0.178 m long. Although not ideal, these terized through GC-MS analysis of the various fractions hot filters have been used in the initial phase of the project with examined for biological assays (see below). A HP 6890 Series the objective of avoiding the use of a hot cyclone for the char gas chromatography system with a mass selective detector was separation, which would be impossible to properly size due to used to analyze the bio-oil fractions. All experiments were the variety of physical characteristics of the chars expected from performed on an HP-5MS, 30 m column obtained from Agilent the different feedstocks. Technologies with an i.d. of 0.25 mm and a film of 0.25 µm. The fluidizing nitrogen was injected through a perforated copper The injector temperature and auxiliary temperature were main- distributor plate with 33 holes, 0.5 mm in diameter, equally spaced tained at 300 °C. The oven temperature began at 60 °C for 2 across the cross section. The reactor was equipped with 18 min, and then increased at 10 °C/min to 280 °C and was held thermowells for temperature measurements and control (type K for 6 min. A threshold of 150 was used, with a mass to charge thermocouples). scan range of 50-300 at a rate of 2.98 scans/s. An innovative pulsating automatic feeder was used for 2.2.6. Bio-oil Pesticide Characterization. Pesticide activity biomass injection to the reactor. It quickly dispersed the injected tests with the bio-oil were performed on a variety of problematic biomass into the core of the fluidized bed. species of microorganisms and one insect. All tobacco bio-oil 2.2.2. Bio-oil Production. Tobacco, when injected into the samples used for the biological tests were produced at a vapor reactor, produced vapors that exited at the top of the reactor residence time of 5 s and at different pyrolysis temperatures, through the hot filter section and flowed into three condensers as specified for each assay. in series through a line traced with Raychem Chemelex heating 2.2.6.1. Bio-oil Sample Preparation for Pesticide Analysis. cable to avoid early, undesirable condensation (as shown in To initially determine which microorganisms were negatively Figure S1). Persistent aerosols were then separated in a cylin- affected by the tobacco bio-oil, a cocktail of naturally separated, drical demister packed with cotton wool. The demister was organic phases and a cocktail of the aqueous phases of the bio- weighed before and after the experiment. The exact yield of oils produced from 350 to 600 °C were prepared in acetone tobacco bio-oil was obtained from the mass of oil collected in (375 mg/mL, one solution of all pyrolysis temperatures). Bio- the three condensers and the demister. oil samples from each pyrolysis temperature were then prepared Pyrolysis was initially carried out at six different temperatures separately in acetone (375 mg/mL, one solution for each from 350 to 600 °C and at three different residence times (5, pyrolysis temperature). Raw tobacco bio-oil at each pyrolysis 10, and 17 s). Each test was conducted with 700 g of tobacco temperature was used for the CPB tests. leaves. Fluidizing and atomizing nitrogen volumetric flow rates Two different liquid-liquid extraction techniques were used were precisely controlled using “Mass Trak” flow-meters from to generate nicotine-free and nicotine-containing fractions of Sierra Instruments Inc., to keep the nominal vapor residence the tobacco bio-oil. One method was used for the microorganism time constant at all temperatures. Tobacco bio-oils produced at assays and generated six unique fractions (also analyzed through all these temperatures separated into two separate phases, an GC-MS), while the other method was used for the insect assays organic and an aqueous one. and generated two distinct fractions. The reason for the two Pyrolysis of tobacco leaves was subsequently carried out methods was that two separate researchers performed these under the best reactor conditions for high bio-oil yield (discussed respective tests. Even so, the end result successfully allowed in Results and Discussion section and found to be at a for nicotine-free fractions to be tested on both the microorganism temperature of 500 °C and a vapor residence time of 5 s) to and the CPB. determine the accurate liquid, gas, and char yields. The fractionation method used for the microorganism tests, 2.2.3. Characterization of Product Gases. Gases were which generated six unique fractions, is illustrated in Figure 1. sampled in plastic bags at three different time intervals. To The organic phase of the tobacco bio-oil pyrolyzed at 450 °C measure the product gas composition, a Hewlett-Packard 5890 was dissolved in ether at a concentration of 175 mg/mL. This
  • 9. 10076 Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010 organic fraction recovered was a moderately viscous brown oil, quite similar to the bio-oil itself. The aqueous fraction was orange and had low viscosity. 2.2.6.2. Biological Assays for Pesticide Activity. 2.2.6.2.1. Mi- croorganism Assays. The disk diffusion assay was used to test 11 fungi and 4 bacteria for growth inhibition in the presence of the tobacco bio-oil samples. All species are problematic microorganisms in Canada. See Table S1 for the list of species, their source, and the type of media on which they were maintained. Samples and control solutions were added to sterile, 6 mm diameter filter paper disks and allowed to air-dry before being placed onto freshly inoculated plates. For bacteria tests, the plates were inoculated by streaking the entire surface with freshly grown bacteria to generate a lawn of growth. One or three paper disks were placed into the center of the plate or in a triangular formation on the plate, depending upon the ex- periment. For fungi tests, a plug of a fresh culture was added about 1 cm away from the disks on a fresh plate. After the plates Figure 1. Bio-oil fractionation scheme for microorganism assay testing and were incubated at 24 °C for 3 days, the results were recorded. GC-MS analysis. Shaded boxes indicate fractions tested in microorganism A region of no growth around the disk indicated inhibition (with assays. a minimum measurement of inhibition being 6 mm, the diameter of the disk). Triplicate experiments were performed. 2.2.6.2.2. Insect Assays. These tests were carried out by the leaf disk application, similar to the procedure outlined by Sengonca.18 Bio-oil fractions and control solutions were spread on both sides of a potato leaf disk with a cotton-tipped applicator. Three leaves were tested for each fraction; however, most tests were repeated on multiple dates to ensure accuracy. The potato plants (var. Cal White) were grown on site at the Figure 2. Extraction scheme for nicotine-free tobacco bio-oil fractions for Southern Crop Protection and Food Research Centre (SCPFRC), insect assays. Agriculture and Agri-Food Canada, London, Ontario, with the leaves cut to a diameter of 4 cm. The leaves were allowed to dry after sample application. After drying, the leaves were fraction was sterile filtered with a 2.5 cm diameter, 45 µm pore transferred to a Gelman Petri dish. Five, second instar insecticide size, syringe filter with a nylon membrane (Whatman, NJ) susceptible strain Colorado Potato Beetle (CPB) larvae reared (Fraction Z). The remaining residue was dissolved in acetone at SCPFRC were then transferred to the leaf. Mortality rates (approximately 102 mg/mL) and was also sterile-filtered, giving were recorded after 24 and 48 h intervals. Adjusted percent a very dark brown solution (Fraction I). Fraction Z was then mortality values are reported, which take into account the natural fractionated into its aqueous (Fraction A) and organic (Fraction mortality levels of the CPB in the control treatments. Control B) components with a water/ether extraction. An additional treatments involved simply placing the beetles on leaf disks water/ether separation was then performed with Fraction B without any oil present. If a specific test involved dilution of where the water phase was acidified with HCl to a pH of 4-5. the bio-oil, the control leaf disks were coated with the solvent This step caused some components, such as the compound used. nicotine, to become charged and move into the aqueous phase. An organic, ether phase (Fraction C) and a charged, aqueous 3. Results and Discussion phase were generated. The acidic phase was then adjusted to pH 9 (to move the majority of nicotine back into an organic 3.1. Tobacco Pyrolysis. The effects of pyrolysis temperatures phase) and a final aqueous/ether extraction made an organic (350-600 °C) and residence times (5, 10, and 17 s) on the liquid phase (Fraction D) and an aqueous phase (Fraction E). Dilution yield are as shown in Figure 3. Tobacco bio-oil yields were a factors were calculated for each fraction, and the volume of strong function of temperature and residence time. The greatest sample used for the biological assays was appropriately adjusted. yield peaked at 500 °C for all residence times. It could also be Each fraction was analyzed using GC-MS (Figure S2). observed that bio-oil yield increased as the residence time To generate a nicotine-free and a nicotine-containing fraction decreased, for all temperatures. Comparable results were found for the insect tests, liquid-liquid extraction was performed with when this reactor was used to pyrolyze grape seeds and skins, diethyl ether and dichloromethane (DCM) (Figure 2). The for at a 5 s vapor residence time, the optimum pyrolysis temper- procedure outlined by Oasmaa et al.15 was used as it closely ature was also found to be 500 °C.14 matched past literature methods for nicotine extraction from As shown in Table 1, for a residence time of 5 s and a reaction tobacco plants.16,17 A bio-oil mixture from all pyrolysis tem- temperature of 500 °C, the bio-oil yield was the highest (43.4%), peratures (15-20 g) was first passed through a filter paper followed by the char yield (29.4%) and the gas yield (22.4%). (Whatman’s #4) to remove the solid lignin residue. This residue The mass balance on the pyrolysis products was close to 95%, was washed with two, 5 mL portions of diethyl ether followed which was within the margin of error. Calculations showed that by two, 5 mL portions of DCM. The filtrate was then extracted the heat of combustion of the gases produced was 508 J/g of with 20-30 mL of diethyl ether followed by 20-30 mL of biomass fed. It was assumed that the water produced by com- DCM. All organic phases were combined, and the solvent was bustion was condensed. The heat of combustion value for evaporated using a rotary evaporator (BUCHI R-114). The tobacco was on the lower side as compared to other feedstocks,
  • 10. Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010 10077 Figure 3. Effect of temperature and residence time on the liquid bio-oil yield. For experimental details, see Methods section. Figure 4. Effect of pyrolysis temperature on the diameter of inhibition for the three affected microorganism species. Error bars indicate ( standard Table 1. Pyrolysis Product Split at a Vapor Residence Time of 5 s deviation (σ) of replicate measurements within an experiment (total length and Pyrolysis Temperature of 500 °C 2σ). liquid yield (wt %) gas yield (wt %) char yield (wt %) interesting. This selective inhibition suggests that the active 43.4 22.4 29.4 components in the bio-oil are not destructive to all living things, H2 0.7 CO 27 which is an important quality for a potential pesticide. CH4 2.8 The Colorado Potato Beetle was also found to be negatively CO2 69.5 affected by the presence of the tobacco bio-oil. Early tests confirmed high mortality rates for the CPB, and further experiments such as coffee grounds and pinewood, pyrolyzed in the same were performed to investigate one of the key pyrolysis parameters: pilot plant at the same temperature. the pyrolysis temperature. The higher liquid yield at lower residence time can be at- 3.2.2. Investigation into the Effect of Pyrolysis Tempera- tributed to the fact that lower residence time minimizes ture on Pesticide Activity. Bio-oil produced at each pyrolysis secondary reactions19 such as thermal cracking, repolymeriza- temperature successfully inhibited the growth of each of the tion, and recondensation to maximize liquid yields. It is also three microorganisms (Figure 4). very well-known that higher temperature favors gasification As the pyrolysis temperature increased to 550 °C, the activity (higher gas yields and lower liquid and char yields). Thus, the of the bio-oil seemed to decrease. This could be due to the active results obtained are consistent with the existing literature on components being cracked into smaller, inactive components various other biomass feedstocks.20 at this high temperature. At 450 °C, the greatest inhibition was 3.2. Bio-oil Activity toward Pest Species. 3.2.1. Initial observed for all three species. For this reason, as well as the Pesticide Discovery. Initial tests with tobacco bio-oil demon- fact that this temperature was close to 500 °C (the pyrolysis strated clear pesticide activity toward a selection of microorgan- temperature with the greatest percent yield of bio-oil), the bio- ism species and the Colorado Potato Beetle. oil pyrolized at 450 °C was selected for continued investigation. To determine which microorganism species were inhibited It is important to note that, although these bio-oil samples were by the tobacco bio-oil, naturally separated organic (375 mg/ prepared to a specific concentration, the observed variations in mL organic phase in acetone) and aqueous (used directly without the activity with pyrolysis temperature could be affected by the dilution) phase mixtures from all pyrolysis temperatures (350-550 amount of water in each bio-oil sample. The water was not °C) were assayed against 11 fungi and 4 bacteria (Table S1). removed from the sample to avoid removing other, potentially These species were selected for analysis because of their important chemicals in the process. Nevertheless, each bio-oil destructive properties toward agriculture in Canada and were sample was found to successfully inhibit the growth of each available for testing through Agriculture and Agri-Food Canada. species. No inhibition was found from the aqueous phases of the tobacco Similar to the microorganism pattern of inhibition, the CPB bio-oil. In contrast, the organic phases of the tobacco bio-oil was found to be strongly affected by bio-oil produced at all showed clear inhibition for two bacteria, Streptomyces scabies pyrolysis temperatures (Figure 5). The potency of each bio-oil (S. scabies) and ClaVibacter michiganensis sub. sp. michigan- was quite strong given the high mortality levels seen. The 48 h ensis (C. michiganensis), and one fungus, Pythium ultimum (P. results show that 100% of the beetles tested at each pyrolysis ultimum). temperature died when in the presence of the tobacco bio-oil. Pythium ultimum is a fungus that affects plants as a seedling Although the 24 h results seem to demonstrate some changes damping-off disease.21 Plants affected include eggplant, pepper, in toxicity with pyrolysis temperature, these changes are only lettuce, tomato, and cucumber. ClaVibacter michiganensis kills minor. young plants and deforms fruits, primarily tomatoes.22 Strep- It was possible that the toxicity effect of the bio-oils toward tomyces scabies is a common potato scab disease that infects the CPB was caused solely by the high quantities of nicotine potatoes and makes them unmarketable.23 Finding inhibition for in the bio-oil. Nicotine is a moderately effective insecticide S. scabies is particularly exciting because, currently, no safe against the CPB with an LD50 of 61 µg per CPB.24 Sufficient pesticide exists on the market that can control this widespread quantities of nicotine could be present in the bio-oil to account disease. for the observed activity. Thus, the bio-oil was separated into This discovery of tobacco bio-oil affecting only three mi- nicotine-free and nicotine-containing fractions to determine the croorganism species (and not the remaining 12) is particularly effect of nicotine in the observed activity.
  • 11. 10078 Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010 Figure 5. Effect of pyrolysis temperature on the adjusted percent mortality of the Colorado Potato Beetle at 24 and 48 h. Figure 7. Dilution tests comparing the aqueous (nicotine-free) fraction and the organic (nicotine containing) fraction prepared as illustrated in Figure 2. Results for both fractions were recorded at 24 and 48 h. point than 280 °C (the highest temperature in our GC program) or cannot be detected by an electron impact MS detector. A nicotine-free fraction was also found to be active in the CPB assays. The organic fraction showed greater activity over the aqueous (nicotine-free) fraction. After 24 h of testing, the organic fraction obtained 100% mortality rates, while after 48 h of testing, the aqueous fraction obtained a maximum of 80% mortality for the CPB (Figure 7). It is also worth noting that, although the aqueous phase did not result in 100% mortality to the CPB, application of the aqueous phase to the leaf resulted in a greatly reduced appetite for the beetle. Using the aqueous phase at 2% concentration or higher, the beetles would eat little Figure 6. Measured diameters of inhibition for three microorganisms by the six tobacco bio-oil fractions (see Figure 1 for fractionation scheme) to none of the leaf. Studies have shown that 24 h starvation of after 3 days of growth. Fraction C is nicotine-free. Error bars indicate ( the CPB does not prove fatal; however, starvation does cause standard deviation (σ) of replicate measurements within an experiment (total increased susceptibility to applied insecticides.28 Whether or not length 2σ). the chemical agent that causes mortality is the same as the agent that is causing starvation is not known, but the starvation is 3.2.3. Investigation into the Activity of the Nicotine-Free aiding the insecticidal activity of the aqueous fraction. Fractions of Tobacco Bio-oil. The fractionation scheme shown Further investigation into the nicotine content of the organic in Figure 1 was used to generate the six fractions tested on the fraction was performed. Nicotine standards were tested at the three microorganisms, as shown in Figure 6. As expected, concentration found in the organic fraction. Dilution tests of Fraction Z (the initial fraction) had high activity toward the the organic phase and the equivalent nicotine standard demon- microorganisms. However, high levels of nicotine were also strated that the potency of the samples was the same when found in Fraction Z (Figure S1), so much so that few other measured at 48 h. However, the 24 h results demonstrated that chemicals could be observed in the chromatograms of this the organic fraction worked faster at causing death in the CPB fraction. than the nicotine standards. This indicates that additional, non- The fractionation scheme successfully generated a nicotine- nicotine components are acting in the organic fraction. free fraction, Fraction C, which was confirmed by the absence The assays performed on the CPB and the three microorgan- of a nicotine peak in the GC-MS data. This fraction was also isms clearly indicate that tobacco bio-oil contains potent, non- strongly active (as shown in Figure 6). Phenol and a variety of nicotine components with insecticidal and antibiotic activity. its derivatives were found to be in high concentration in this Multiple, active components must be present in the tobacco bio- fraction. Although phenolic compounds are known to have oil as liquid-liquid extraction produced multiple, active frac- pesticide properties,25,26 10 of the most abundant compounds tions. Some of these active compounds cannot be detected by in this fraction were quantitatively tested by chemical standards, GC-MS. and it was found that these most abundant phenolic compounds were not present in high enough concentrations to be responsible 4. Conclusions for the observed activity.27 Fraction D, which contains nicotine, was also found to be Pyrolysis experiments demonstrated that the liquid bio-oil active. However, when nicotine standards were tested to match yield was a strong function of temperature and vapor residence and even double the concentration of nicotine found in Fraction time. The maximum bio-oil yield was found at a reactor tem- D, no inhibition was observed. It is interesting to note that perature of 500 °C and the lowest residence time, 5 s. nicotine is the most abundant and almost the only peak detected Bio-oil was found to have valuable pesticide characteris- by GC-MS in this fraction. Therefore, the active components tics toward three problematic microorganisms as well as the in Fraction D cannot be detected by our GC-MS analysis Colorado Potato Beetle, a major agricultural pest. Bio-oil pro- method. These active components either have a higher boiling duced at all pyrolysis temperatures was effective at inhibiting
  • 12. Ind. Eng. Chem. Res., Vol. 49, No. 20, 2010 10079 the growth or causing mortality in the microorganisms and (8) Shen, J. C.; Shao, X. G. Determination of tobacco alkaloids by gas Colorado Potato Beetle, respectively. chromatography-mass spectrometry using cloud point extraction as a preconcentration step. Anal. Chim. Acta 2006, 561, 83–87. Nicotine was found to be active toward the Colorado Potato (9) Cai, J. B.; Liu, B. Z.; Lin, P.; Su, Q. D. Fast analysis of nicotine Beetle, but had no effect on the microorganisms. Nicotine-free related alkaloids in tobacco and cigarette smoke by megabore capillary gas fractions of tobacco bio-oil were found to be active toward the chromatography. J. Chromatogr., A 2003, 1017, 187–193. Colorado Potato Beetle and three microorganisms. Multiple (10) Encinar, J. M.; Beltran, F. J.; Gonzalez, J. F.; Moreno, M. J. components are likely responsible for this activity. These Pyrolysis of maize, sunflower, grape and tobacco residues. J. Chem. Technol. Biotechnol. 1997, 70, 400–410. components were not lethal to all of the microorganisms that (11) Demirbas, A. Analysis of liquid products from biomass via flash were examined, demonstrating that these chemicals may only pyrolysis. Energy Sources 2002, 24, 337–345. be toxic to selective species, which is a desirable quality in a (12) Mourant, D.; Riedl, B.; Rodrigue, D.; Yang, D. Q.; Roy, C. Phenol- potential pesticide. formaldehyde-pyrolytic oil resins for wood preservation: A rheological study. J. Appl. Polym. Sci. 2007, 106, 1087–1094. As the demand for tobacco is decreasing, the search for other (13) Mohan, D.; Shi, J.; Nicholas, D. D.; Pittman, C. U.; Steele, P. H.; valuable products from this resource is increasing. A natural Cooper, J. E. Fungicidal values of bio-oils and their lignin-rich fractions pesticide that targets problematic species is a very valuable find. obtained from wood/bark fast pyrolysis. Chemosphere 2008, 71, 456–465. Further investigation into the active components and the poten- (14) Xu, R.; Ferrante, L.; Briens, C.; Berruti, F. Flash pyrolysis of grape tial applicability of using tobacco bio-oil as a natural pesticide residues into biofuel in a bubbling fluid bed. J. Anal. Appl. Pyrolysis 2009, 86, 58–65. will continue. (15) Oasmaa, A.; Kuoppala, E. Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuels 2003, 17, 1075–1084. (16) Sheen, S. J. Detection of nicotine in foods and plant materials. J. Acknowledgment Food Sci. 1988, 53, 1572–1573. (17) Shin, H. S.; Kim, J. G.; Shin, Y. J.; Jee, S. H. Sensitive and simple We wish to express our gratitude to the Ontario Centres of method for the determination of nicotine and cotinine in human urine, plasma Excellence (OCE), the Natural Sciences and Research Council and saliva by gas chromatography-mass spectrometry. J. Chromatogr., B of Canada (NSERC), Agri-Therm Canada, the Institute for 2002, 769, 177–183. Chemicals and Fuels from Alternative Resources (ICFAR), (18) Sengonca, C.; Liu, B.; Zhu, Y. J. Pestic. Sci. 2005, 79, 3–8. (19) Gercel, H. F.; Putun, E. Fast pyrolysis of sunflower-pressed bagasse: Agriculture and Agri-Food Canada (through ABIN), and the Effects of sweeping gas flow rate. Energy Sources 2002, 24, 451–460. University of Western Ontario for their generous support of this (20) Bridgwater, A. V. Biomass fast pyrolysis. Therm. Sci. 2004, 8, 21– research. 49. (21) Abbasi, P. A.; Lazarovits, G. Effects of AG3 phosphonate formula- Supporting Information Available: Additional figures and tions on incidence and severity of Pythium damping-off of cucumber table. This material is available free of charge via the Internet seedlings under growth room, microplot, and field conditions. Can. J. Plant Pathol. 2005, 27, 420–429. at http://pubs.acs.org. (22) Gleason, M. L.; Braun, E. J.; Carlton, W. M.; Peterson, R. H. Survival and dissemination of ClaVibacter michiganensis sub. sp. michagen- ensis in tomatoes. Phytopathology 1991, 81, 1519–1523. Literature Cited (23) Wang, A. X.; Lazarovits, G. Role of seed tubers in the spread of plant pathogenic Streptomyces and initiating potato common scab disease. (1) Bridgewater, A. V.; Czernik, S.; Piskorz, J. An overview of fast Am. J. Potato Res. 2005, 82, 221–230. pyrolysis. In Progress in Thermochemical Biomass ConVersion; Bridge- (24) Mota-Sanchez, D.; Hollingworth, R. M.; Grafius, E. J.; Moyer, D. D. water, A. V., Ed.; Blackwell Science Ltd.: Oxford, 2001; pp 977-997. Resistance and cross-resistance to neonicotinoid insecticides and spinosad (2) Zhang, Q.; Chang, J.; Wang, T. J.; Xu, Y. Review of biomass in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: pyrolysis oil properties and upgrading research. Energy ConVers. Manage. Chrysomelidae). Pest Manage. Sci. 2006, 62, 30–37. 2007, 48, 87–92. (25) EI DuPont de Numours Co. Cresols, ortho-, meta-, and para-. (3) Czernik, S.; Bridgewater, A. V. Overview of applications of biomass NTIS report no. OTS0205862; EI DuPont de Numours Co., 1983. fast pyrolysis oil. Energy Fuels 2004, 18, 590–598. (26) Anonymous. Final report on the safety assessment of sodium (4) Joensuu, J. J.; Brown, K. D.; Conley, A. J.; Clavijo, A.; Menassa, p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, R.; Brandle, J. E. Expression and purification of an anti-Foot-and-mouth o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. disease virus single chain variable antibody fragment in tobacco plants. Int. J. Toxicol. 2006, 25, 29–127. Transgenic Res. 2009, 18, 685–696. (27) Booker, C. J.; Bedmutha, R.; Scott, I. M.; Conn, K.; Berruti, F.; (5) Menassa, R.; Du, C. G.; Yin, Z. Q.; Ma, S. W.; Poussier, P.; Brandle, Briens, C.; Yeung, K. K.-C. Bioenergy II: Characterization of the pesticide J.; Jevnikar, A. M. Therapeutic effectiveness of orally administered properties of tobacco bio-oil. Int. J. Chem. Reactor Eng. 2010, 8, Art. 26. transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse (28) MacQuarrie, C. J. K.; Boiteau, G. Effect of diet and feeding history model of colitis. Plant Biotechnol. J. 2007, 5, 50–59. on flight of Colorado potato beetle, Leptinotarsa decemlineata. Entomol. (6) Ma, S. W.; Huang, Y.; Davis, A.; Yin, Z. Q.; Mi, Q. S.; Menassa, Exp. Appl. 2003, 107, 207–213. R.; Brandle, J. E.; Jevnikar, A. M. Production of biologically active human interleukin-4 in transgenic tobacco and potato. Plant Biotechnol. J. 2005, ReceiVed for reView February 11, 2010 3, 309–318. ReVised manuscript receiVed August 15, 2010 (7) Sheng, L. Q.; Ding, L.; Tong, H. W.; Yong, G. P.; Zhou, X. Z.; Accepted September 1, 2010 Liu, S. M. Determination of nicotine-related alkaloids in tobacco and cigarette smoke by GC-FID. Chromatographia 2005, 62, 63–68. IE100329Z