SlideShare a Scribd company logo
1 of 7
Download to read offline
Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012
347
DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD
DESIGN FOR WIRELESS LOCAL AREA NETWORK
APPLICATION
Asst. Lect. Basim Khalaf Jarulla
Al-Mustansiriya University, College of Engineering, Electrical Engineering Department,
Email:basimkalaf@yahoo.com
Asst. Lect. Izz Kadhum Abboud
Al-Mustansiriya University, College of Engineering, Computer & Software Department,
Email:izz1962@yahoo.com
Asst. Lect. Wail Ibrahim khalil
Al-Mustansiriya University, College of Engineering, Electrical Engineering Department
Email:wailalazawy@yahoo.com
ABSTRACT
This paper presents a design of dual frequency band operation nearly square patch antenna
for IEEE 802.11b,g (2.4Ghz-2.4835GHz) and IEEE 802.11a (5.15GHz-5.25GHz)by using a patch
antenna. The patch and ground plane are separated by a substrate; the radiating patch have two pairs
of orthogonal slits cut from the edge, this antenna has wide bandwidth in the frequency band of
(WLAN) and with a return loss ≤ −10 dB from 2.4 GHz to 2.48 GHz and from 5.12 GHz to 5.32
GHz exhibits circularly polarized far field radiation pattern. The proposed antennas have been
simulated and analyzed using method of moments (MoM) based software package Microwave
Office 2009 v9.0. The results show that the antenna has dual band frequency operation by using slit
load.
KEYWORDS: IEEE802.11a/b/g, Microstrip Antenna, Dual Band, Slit Load, Circular
Polarization.
‫اﻟﻤﺘﻌﺎﻣ‬ ‫اﻟﻔﺘﺤﺎت‬ ‫ﺑﺎﺳﺘﺤﺪام‬ ‫اﻟﺤﺰﻣﺔ‬ ‫ﻣﺰدوج‬ ‫اﻟﺪﻗﯿﻘﺔ‬ ‫اﻟﺸﺮﯾﺤﺔ‬ ‫ھﻮاﺋﻲ‬ ‫ﺗﺼﻤﯿﻢ‬‫ﻟﺘﻄﺒﯿﻘﺎت‬ ‫اﻟﻤﻨﺘﻈﻤﺔ‬ ‫ﺪة‬
‫اﻟﻤﺤﻠﻲ‬ ‫اﻻﺳﻠﻜﻲ‬ ‫اﻟﺒﺚ‬
‫ﺑﺎﺳﻢ‬‫ﺧﻠﻒ‬‫ﺟﺎراﷲ‬)‫ﻣﺪ‬‫ﻣﺴﺎﻋﺪ‬ ‫رس‬(
‫اﻟﻤﺴﺘﻨﺼﺮﺳﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬،‫اﻟﮭﻨﺪﺳﺔ‬ ‫ﻛﻠﯿﺔ‬،‫ﻗﺴﻢ‬
‫اﻟﻜﮭﺮﺑﺎﺋﯿﺔ‬ ‫اﻟﮭﻨﺪﺳﺔ‬
Email:basimkalaf@yahoo.com
‫ﻋﺒﻮد‬ ‫ﻛﺎﻇﻢ‬ ‫ﻋﺰ‬)‫ﻣﺴﺎﻋﺪ‬ ‫ﻣﺪرس‬(
‫اﻟﻤﺴﺘﻨﺼﺮﺳﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬،‫اﻟﮭﻨﺪﺳﺔ‬ ‫ﻛﻠﯿﺔ‬،‫ﻗﺴﻢ‬
‫واﻟﺒﺮﻣﺠﯿﺎت‬ ‫اﻟﺤﺎﺳﺒﺎت‬ ‫ھﻨﺪﺳﺔ‬
Email:izz1962@yahoo.com
‫ﺧﻠﯿﻞ‬ ‫اﺑﺮاھﯿﻢ‬ ‫واﺋﻞ‬)‫ﻣﺴﺎﻋﺪ‬ ‫ﻣﺪرس‬(
‫اﻟﻤﺴﺘﻨﺼﺮﺳﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬،‫اﻟﮭﻨﺪﺳﺔ‬ ‫ﻛﻠﯿﺔ‬،‫ﻗﺴﻢ‬
‫اﻟﻜﮭﺮﺑﺎﺋﯿﺔ‬ ‫اﻟﮭﻨﺪﺳﺔ‬
Email:wailalazawy@yahoo.com
Basim Khalaf Jarulla, Izz Kadhum Abboud and Wail Ibrahim khalil
Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012348
(IEEE 802.11b,g)(IEEE802.11a)
(IEEE
802.11b,g)(IEEE802.11a)
3 dB
2009
1. INTRODUCTION
Microstrip antenna is a type of antennas which can be used for transmitting and receiving
signals. Microstrip or printed antennas are low profile, small size, light weight and widely used in
wireless and mobile communications, as well as radar applications. Microstrip antennas can be
divided into two basic types by structure, namely microstrip patch antenna and microstrip slot
antenna. The microstrip patch antennas can be fed by microstrip line and coaxial probe
(Kueathawikun1, 2006).
Recently, wireless local area network (WLAN) has received much attention for the flexibility
of network reconfiguration in office room, mobile internet connection and so on. A WLAN
provides all the benefits of traditional LAN technologies without the limitations of being tethered to
a cable. This provides greatly increased freedom and flexibility (Jim, 2002). There are many
commercial WLAN devices in the markets which use 2.4GHz frequency band supporting the speed
of 11Mbps. And the demand for faster data communication made consideration of using 5GHz
frequency band instead of 2.4GHz frequency band which is widely used as IEEE 802.11b. There are
three frequency bands for IEEE 802.11a, which are 5.15GHz ~ 5.25GHz, 5.25GHz ~ 5.35GHz,
5.725GHz ~ 5.825GHz. The IEEE 802.11a standard defines operation at up to 54Mbps. So, it
would be very convenient if we have an antenna which can be applied to 2.4GHz and 5GHz
operations with suitable gains (Woon, 2002).
This proposed microstrip antenna designed to utilized in 2.4-2.4835 GHz and 5.725-
5.825GHz frequency ranges (IEEE 802.11 b/g/a), fed by 50Ω standard miniature adapter (SMA).
2- THE PROPOSED ANTENNA:-
2.1-Rectangular Microstrip Patch Antenna:-
The antenna configuration is rectangular microstrip patch antenna shown in Fig.l. In this case
the circular polarization (CP) is obtained because the two modes of resonance (corresponding to the
adjacent sides of the rectangle), are spatially orthogonal. The antenna is excited at a frequency in
between the resonant frequencies of these two modes in order to obtain the phase quadrature
relationship between the voltages (and therefore magnetic currents) of two modes. Corner or
diagonal feeding is required to allow both the modes to be excited with a single feed (Sharma,
1983).
The ratio of the two orthogonal dimensions W/L should be generally in the range of (1.01–
1.10) depending upon the substrate parameters. When the patch is fed along the diagonal, then the
two resonance modes corresponding to lengths L and W are spatially orthogonal. The CP is
DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK
APPLICATION
349Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012
obtained at a frequency, which lies between the resonance frequencies of these two modes, where
the two orthogonal modes have equal magnitude and are in phase quadrature (Kumar, 2003).
This kind of design is the simplest form to generated circular polarization and is very suitable
for the WLAN RHCP or LHCP microstrip antenna design (Basim, 2011).
2.2-Rectangular Patch with Slits:-
By embedding suitable slots in the radiating patch, compact operation of microstrip antennas
can be obtained. Figure 2 shows slotted patch suitable for the design of compact microstrip
antenna. In this figure, the embedded slot is a cross slot, whose two orthogonal arms can be of
unequal (Iwasaki, 1996; Jawad, 2008) or equal lengths (Wong, 1997; Kin-Lu, 2002).
The use of four inserted slits at the patch edges of a rectangular patch [30] has been shown to
be a promising compact dual-frequency design. The antenna design is shown in Fig2. The four
inserted slits are of equal length l and narrow width 1 mm (Kin-Lu, 2002)
This kind of slotted patch causes meandering of the patch surface current path in two
orthogonal directions and is suitable for achieving compact circularly polarized radiation or
compact dual-frequency operation with orthogonal polarizations (Yang, 1998).
The basic idea of the proposed antenna structure has been extracted from a comparative study
of both the conventional square patch antenna, Fig. 1, and the square microstrip antenna with two
pairs of orthogonal slits at the edges, Fig. 2 (Qais, 2005). The presence of slits in this antenna is a
way to increase the surface current path length compared with that of the conventional square patch
antenna, Fig. 1a, resulting in a reduced resonant frequency or a reduced size antenna if the design
frequency is to maintained. It had been found that this antenna structure provides a reduction in size
of about 40% (Jawad, 2008).
In the present work, further increase in the slit lengths has been proposed in an attempt to
gain further size reduction of the resulting structure as compared to the patch structures cited in Fig.
1 and 2. The dimensions of slots have been optimized to meet the 802.11b/g/a antenna design
requirements.
A single 50 Ω probe feed has been used to support producing the RHCP or LHCP
requirement of the 802.11b/g/a antenna radiation pattern (Jawad, 2008).
3- THE PROPOSED ANTENNA DESIGN:-
The calculation of the square Microstrip antenna length is based on transmission-line model
(Bahi, 1980) The width W of the radiating edge, which is not critical, chosen first. The length L is
slightly less than a half wavelength in the dielectric. The precise value of the dimension L of the
square patch has been calculated using expression (Amamam, 1997).
(1)
Where the effective dielectric constant, and ∆L is the fringe factor (Balanis, 1997).
For the frequency of 5.25 GHz and using (FR-4) with a relative dielectric constant of 4.2
and loss tangent of 0.017, with substrate height of 1.575 mm, this yields nearly square patch
antenna length Fig. 1, of L=15.38 mm and W=16.11 mm. The ratio of the two orthogonal
dimensions W/L is 1.047, lies in the range of generating two spatially orthogonal resonance modes
(Iwasaki, 1996).
The feed-point of the antenna, it is defined in terms of input impedance Zin of the antenna
and the characteristic impedance Zo of the feed line. The feed point position should be placed at the
location where the input impedance of the antenna matches the characteristic impedance of the feed
(Iwasaki, 1996). The patch can be fed by a coax line from underneath. The impedance varies from
zero in the center to the edge resistance approximately as (Thomas, 2005).
Basim Khalaf Jarulla, Izz Kadhum Abboud and Wail Ibrahim khalil
Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012350
(2)
Where Ri is the input resistance, Re the input resistance at the edge, and x the distance from the
patch center.
By shifting the feed-point along the diagonal to x =-0.4875 cm and y = -0.475 cm, from the center
of the patch; a perfect match with a 50Ω feed line is obtained. The feeding point position is 0.323%
from the diagonal long (Basim, 1996).
The slit lengths of the antenna in Fig. 2 are tuned to the resonance (design) frequency in the
x and y-directions and are set to result in a value of about 7.5 mm, with a slot width a of 1 mm. This
results in a patch length of the antenna structure of Fig. 2 to be L = 22.90 mm, using the same
substrate. The resulting size reduction offered by this antenna is of about 35% as compared with the
conventional nearly square microstrip antenna (Jawad, 2008)
The proposed antenna structure has been modeled using a full-wave numerical Method of
Moment (MoM). EMSightTM, of the Applied Wave Research (AWR), includes a full-wave
electromagnetic solver that uses a modified spectral domain method of moments to accurately
determine the multi-port scattering parameters for predominately planar structures (AWR, 2009). In
the presented design; this software package was applied to simulate the typical characteristic of the
proposed antennas.
4- SIMULATION RESULTS:-
The proposed antenna structure had been modeled at the design frequencies of the IEEE
802.11b/g/a. It has been supposed that the antenna element to be located parallel to x-y plane and
centered at the origin (0, 0, 0). The computed input return losses of the antenna patch is shown in
Fig. 3. E-plane and H-plane RHCP and LHCP radiation patterns at the IEEE 802.11b/g frequency
of 2.45 GHz are shown in Fig. 4a, where E-plane and H-plane RHCP and LHCP radiation patterns
at the IEEE 802.11a frequency of 5.21 GHz are shown in Fig. 4b. It is clear that this antenna
supports the required RHCP electric field radiation pattern. The resulting axial ratio as a function of
frequency is depicted in Fig. 5. It can be seen that the axial ratio in the broadside direction is below
3 dB.
The computed gain around the IEEE802.11b/g and IEEE802.11a has 7 dB and 5 dB
respectively. As the gain response implies, the proposed antenna possesses an average gain of about
more than 4 dB throughout the required bandwidths of IEEE802.11b/g/a antenna.
5- CONCLUSIONS:-
A nearly square dual-band single probe-fed microstrip patch antenna with four inserted slits
at the patch edges has been investigated. The realized impedance bandwidths (return loss ≤ −10 dB)
and the circular polarization bandwidth (axial ratio ≤ 3 dB) satisfy the bandwidth requirements for
the IEEE802.11b/g/a operation.
6- REFENCES:-
1. AWR®
Design Environment, Microwave Office®
(MWO) 2009 V9. 1960 E. Grand Avenue,
Suite 430 El Segundo, CA 90245 USA
2. Bahi, and Bhartia, “Microstrip Antennas”, Artech House, Inc. 1980.
3. Basim K. Jarulla, “Circularly Polarized Microstrip Antenna with Reactive Load Design
for Wireless Local Area Network Application”, Journal of Engineering and
Development,Vol.15, No.4, 2011.
4. C. A. Balanis, “Antenna Theory, Analysis and Design”, John Wiley & Sons 1997.
DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK
APPLICATION
351Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012
5. C. Sharma and Kuldip C. Gupta, “Analysis and Optimized Design of Single Feed
Circularly Polarized Microstrip Antenna,” IEEE Transactions on Antennas and
Propagation, Vol. AP-31, No.6, November 1983.
6. G. Kumar and K. P. Ray, “Broadband Microstrip Antennas”, Artech House, Inc. 2003.
7. H. Iwasaki, “A circularly polarized small-size microstrip antenna with a cross slot,” IEEE.
Trans. Antennas Propagat. 44, 1399–1401, Oct. 1996.
8. Jawad K. Ali, “A New Compact Size Microstrip Patch Antenna with Irregular Slots for
Handheld GPS Application”, Eng. & Technology, Vol.26, No.10, 2008.
9. Jim Feier, “Wireless LANs”, Sams, 2002.
10. Kin-Lu Wong, “Compact and Broadband Microstrip Antennas”. John Wiley & Sons 2002.
11. K. L. Wong and K. P. Yang, “Small dual-frequency microstrip antenna with cross slot,”
Electron. Lett. 33, 1916– 1917, Nov. 6, 1997.
12. K. P. Yang and K. L. Wong, “Inclined-slot-coupled compact dual frequency microstrip
antenna with cross-slot,” Electron. Lett. 34, 321–322, Feb. 19, 1998.
13. M. Amamam, “Design of Rectangular Microstrip Patch Antenna for 2.4 GHz Band”,
Applied Microwave and Wireless Nov/Dec 1997.
14. Qais K. Shakir, “Investigation, Design, and Simulation of Microstrip Antenna for GPS
Applications”, M.Sc. Thesis, University of Technology, Baghdad, 2005.
15. W. Kueathawikun1, P. Thumwarin1, N. Anantrasirichai1, and T. Wakabayashi2, “Wide-
Band Slot Antenna for IEEE 802.11b/g,” SICE-ICASE International Joint Conference
2006 Oct. 18-21, 2006 in Bexco, Busan, Korea.
16. Woon Geun Yang, Chang Il Kim, Jong Dae Oh, Kyu Ho Lee, Sung Min Kim, “Design and
Implementation of 2.4GHz and 5GHz Dual Band Antenna for Access Point of Wireless
LAN,” North-East Asia IT Symposium 2002, pp.573-576, Nov. 2002.
17. Thomas A. Milligan, “Modern Antenna Design”, John Wiley & Sons. 2ed. ed. 2005.
Basim Khalaf Jarulla, Izz Kadhum Abboud and Wail Ibrahim khalil
Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012352
Figure 3 The calculated input return loss for the modeled patch element
Figure 1 The nearly square patch antenna.
Figure 2 The nearly square patch antenna with two pairs of orthogonal slits.
feeding
point
y
x
feeding
point
DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK
APPLICATION
353Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012
Figure 5 The computed axial ratios around 802.11a/b/g frequencies
Figure 4 E-plane (y-z plane) and H-plane (x-z plane) radiation patterns.
(a) f=2.45 GHz. (b) f=5.21 GHz.

More Related Content

What's hot

TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...
TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...
TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...ijsrd.com
 
Paper id 27201432
Paper id 27201432Paper id 27201432
Paper id 27201432IJRAT
 
Conformal antenna
Conformal antennaConformal antenna
Conformal antennakonan23
 
Rectangular patch Antenna
Rectangular patch AntennaRectangular patch Antenna
Rectangular patch Antennasulaim_qais
 
Circular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB AntennaCircular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB AntennaAmitesh Raikwar
 
WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...
WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...
WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...SHILPA K JOSE
 
Design & Simulation of E-Shaped Micro Strip Patch Antenna for GPS Application
Design & Simulation of E-Shaped Micro Strip Patch Antenna for GPS ApplicationDesign & Simulation of E-Shaped Micro Strip Patch Antenna for GPS Application
Design & Simulation of E-Shaped Micro Strip Patch Antenna for GPS ApplicationIJERA Editor
 
Compact Quad-band Antenna for WiMax Application
Compact Quad-band Antenna for WiMax ApplicationCompact Quad-band Antenna for WiMax Application
Compact Quad-band Antenna for WiMax Applicationijsrd.com
 
High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...
High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...
High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...IJERA Editor
 
Artificial intelligence in the design of microstrip antenna
Artificial intelligence in the design of microstrip antennaArtificial intelligence in the design of microstrip antenna
Artificial intelligence in the design of microstrip antennaRaj Kumar Thenua
 
Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...
Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...
Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...IJERA Editor
 
Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.
Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.
Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.IOSR Journals
 
Design and Analysis of Triple-Band Multi Slotted Microstrip Patch Antenna
Design and Analysis of Triple-Band Multi Slotted Microstrip Patch AntennaDesign and Analysis of Triple-Band Multi Slotted Microstrip Patch Antenna
Design and Analysis of Triple-Band Multi Slotted Microstrip Patch AntennaIOSR Journals
 
Optimization of rectangular microstrip patch antenna parameters in l band by e
Optimization of rectangular microstrip patch antenna parameters in l band by eOptimization of rectangular microstrip patch antenna parameters in l band by e
Optimization of rectangular microstrip patch antenna parameters in l band by eIAEME Publication
 
Comparison between Rectangular and Circular Patch Antennas Array
Comparison between Rectangular and Circular Patch Antennas ArrayComparison between Rectangular and Circular Patch Antennas Array
Comparison between Rectangular and Circular Patch Antennas Arrayijceronline
 
Microstrip patch-antenna
Microstrip patch-antennaMicrostrip patch-antenna
Microstrip patch-antennaaquibjamal123
 
Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...
Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...
Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...ijsrd.com
 
Project Paper
Project Paper Project Paper
Project Paper King Ram
 

What's hot (19)

TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...
TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...
TRI-BAND MICROSTRIP PATCH ANTENNA FOR S-BAND NANO SATELLITE APPLICATION USING...
 
Paper id 27201432
Paper id 27201432Paper id 27201432
Paper id 27201432
 
Conformal antenna
Conformal antennaConformal antenna
Conformal antenna
 
Rectangular patch Antenna
Rectangular patch AntennaRectangular patch Antenna
Rectangular patch Antenna
 
Circular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB AntennaCircular shape, Dual band proximity feed UWB Antenna
Circular shape, Dual band proximity feed UWB Antenna
 
WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...
WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...
WARSE-IJMA -Vol4, Iss.1, PP.6-10 Circular-rectangular Microstrip Antenna by S...
 
40120140504010 2
40120140504010 240120140504010 2
40120140504010 2
 
Design & Simulation of E-Shaped Micro Strip Patch Antenna for GPS Application
Design & Simulation of E-Shaped Micro Strip Patch Antenna for GPS ApplicationDesign & Simulation of E-Shaped Micro Strip Patch Antenna for GPS Application
Design & Simulation of E-Shaped Micro Strip Patch Antenna for GPS Application
 
Compact Quad-band Antenna for WiMax Application
Compact Quad-band Antenna for WiMax ApplicationCompact Quad-band Antenna for WiMax Application
Compact Quad-band Antenna for WiMax Application
 
High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...
High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...
High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi...
 
Artificial intelligence in the design of microstrip antenna
Artificial intelligence in the design of microstrip antennaArtificial intelligence in the design of microstrip antenna
Artificial intelligence in the design of microstrip antenna
 
Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...
Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...
Design and Improved Performance of Rectangular Micro strip Patch Antenna for ...
 
Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.
Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.
Design of a Dual-Band Microstrip Patch Antenna for GPS,WiMAX and WLAN.
 
Design and Analysis of Triple-Band Multi Slotted Microstrip Patch Antenna
Design and Analysis of Triple-Band Multi Slotted Microstrip Patch AntennaDesign and Analysis of Triple-Band Multi Slotted Microstrip Patch Antenna
Design and Analysis of Triple-Band Multi Slotted Microstrip Patch Antenna
 
Optimization of rectangular microstrip patch antenna parameters in l band by e
Optimization of rectangular microstrip patch antenna parameters in l band by eOptimization of rectangular microstrip patch antenna parameters in l band by e
Optimization of rectangular microstrip patch antenna parameters in l band by e
 
Comparison between Rectangular and Circular Patch Antennas Array
Comparison between Rectangular and Circular Patch Antennas ArrayComparison between Rectangular and Circular Patch Antennas Array
Comparison between Rectangular and Circular Patch Antennas Array
 
Microstrip patch-antenna
Microstrip patch-antennaMicrostrip patch-antenna
Microstrip patch-antenna
 
Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...
Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...
Gain Enhancement of Series Feed Square Patch Microstrip Antenna Array for S b...
 
Project Paper
Project Paper Project Paper
Project Paper
 

Similar to Dual band microstrip antenna with slit load design for wireless local area network application

MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYMINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYIAEME Publication
 
Dual polarized, high-gain sector antenna for mimo
Dual polarized, high-gain sector antenna for mimoDual polarized, high-gain sector antenna for mimo
Dual polarized, high-gain sector antenna for mimoprjpublications
 
A Triple Band Bow Tie Array Antenna Using Both-sided MIC Technology
A Triple Band Bow Tie Array Antenna Using Both-sided  MIC Technology  A Triple Band Bow Tie Array Antenna Using Both-sided  MIC Technology
A Triple Band Bow Tie Array Antenna Using Both-sided MIC Technology IJECEIAES
 
Design and development of low profile, dual band microstrip antenna with enha...
Design and development of low profile, dual band microstrip antenna with enha...Design and development of low profile, dual band microstrip antenna with enha...
Design and development of low profile, dual band microstrip antenna with enha...IAEME Publication
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX jantjournal
 
Rectangular and circular antennas design for Bluetooth applications
Rectangular and circular antennas design for Bluetooth applicationsRectangular and circular antennas design for Bluetooth applications
Rectangular and circular antennas design for Bluetooth applicationsTELKOMNIKA JOURNAL
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 

Similar to Dual band microstrip antenna with slit load design for wireless local area network application (20)

MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYMINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
 
PERFORMANCE ANALYSIS OF MICROSTRIP PATCH ANTENNA USING COAXIAL PROBE FEED TEC...
PERFORMANCE ANALYSIS OF MICROSTRIP PATCH ANTENNA USING COAXIAL PROBE FEED TEC...PERFORMANCE ANALYSIS OF MICROSTRIP PATCH ANTENNA USING COAXIAL PROBE FEED TEC...
PERFORMANCE ANALYSIS OF MICROSTRIP PATCH ANTENNA USING COAXIAL PROBE FEED TEC...
 
595290
595290595290
595290
 
Dual polarized, high-gain sector antenna for mimo
Dual polarized, high-gain sector antenna for mimoDual polarized, high-gain sector antenna for mimo
Dual polarized, high-gain sector antenna for mimo
 
A Triple Band Bow Tie Array Antenna Using Both-sided MIC Technology
A Triple Band Bow Tie Array Antenna Using Both-sided  MIC Technology  A Triple Band Bow Tie Array Antenna Using Both-sided  MIC Technology
A Triple Band Bow Tie Array Antenna Using Both-sided MIC Technology
 
Design and development of low profile, dual band microstrip antenna with enha...
Design and development of low profile, dual band microstrip antenna with enha...Design and development of low profile, dual band microstrip antenna with enha...
Design and development of low profile, dual band microstrip antenna with enha...
 
L1103047478
L1103047478L1103047478
L1103047478
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
 
Ac4101168171
Ac4101168171Ac4101168171
Ac4101168171
 
Rectangular and circular antennas design for Bluetooth applications
Rectangular and circular antennas design for Bluetooth applicationsRectangular and circular antennas design for Bluetooth applications
Rectangular and circular antennas design for Bluetooth applications
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 

More from BASIM AL-SHAMMARI

IoT traffic management and integration in the QoS supported network
IoT traffic management and integration in the QoS supported networkIoT traffic management and integration in the QoS supported network
IoT traffic management and integration in the QoS supported networkBASIM AL-SHAMMARI
 
Design and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antennaDesign and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antennaBASIM AL-SHAMMARI
 
Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...BASIM AL-SHAMMARI
 
Dual band microstrip antenna with slit load design for wireless local area ne...
Dual band microstrip antenna with slit load design for wireless local area ne...Dual band microstrip antenna with slit load design for wireless local area ne...
Dual band microstrip antenna with slit load design for wireless local area ne...BASIM AL-SHAMMARI
 
Design and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antennaDesign and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antennaBASIM AL-SHAMMARI
 
Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...BASIM AL-SHAMMARI
 

More from BASIM AL-SHAMMARI (6)

IoT traffic management and integration in the QoS supported network
IoT traffic management and integration in the QoS supported networkIoT traffic management and integration in the QoS supported network
IoT traffic management and integration in the QoS supported network
 
Design and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antennaDesign and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antenna
 
Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...
 
Dual band microstrip antenna with slit load design for wireless local area ne...
Dual band microstrip antenna with slit load design for wireless local area ne...Dual band microstrip antenna with slit load design for wireless local area ne...
Dual band microstrip antenna with slit load design for wireless local area ne...
 
Design and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antennaDesign and simulation of broadband rectangular microstrip antenna
Design and simulation of broadband rectangular microstrip antenna
 
Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...Circularly polarized microstrip antenna with reactive load design for wireles...
Circularly polarized microstrip antenna with reactive load design for wireles...
 

Recently uploaded

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 

Recently uploaded (20)

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 

Dual band microstrip antenna with slit load design for wireless local area network application

  • 1. Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012 347 DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK APPLICATION Asst. Lect. Basim Khalaf Jarulla Al-Mustansiriya University, College of Engineering, Electrical Engineering Department, Email:basimkalaf@yahoo.com Asst. Lect. Izz Kadhum Abboud Al-Mustansiriya University, College of Engineering, Computer & Software Department, Email:izz1962@yahoo.com Asst. Lect. Wail Ibrahim khalil Al-Mustansiriya University, College of Engineering, Electrical Engineering Department Email:wailalazawy@yahoo.com ABSTRACT This paper presents a design of dual frequency band operation nearly square patch antenna for IEEE 802.11b,g (2.4Ghz-2.4835GHz) and IEEE 802.11a (5.15GHz-5.25GHz)by using a patch antenna. The patch and ground plane are separated by a substrate; the radiating patch have two pairs of orthogonal slits cut from the edge, this antenna has wide bandwidth in the frequency band of (WLAN) and with a return loss ≤ −10 dB from 2.4 GHz to 2.48 GHz and from 5.12 GHz to 5.32 GHz exhibits circularly polarized far field radiation pattern. The proposed antennas have been simulated and analyzed using method of moments (MoM) based software package Microwave Office 2009 v9.0. The results show that the antenna has dual band frequency operation by using slit load. KEYWORDS: IEEE802.11a/b/g, Microstrip Antenna, Dual Band, Slit Load, Circular Polarization. ‫اﻟﻤﺘﻌﺎﻣ‬ ‫اﻟﻔﺘﺤﺎت‬ ‫ﺑﺎﺳﺘﺤﺪام‬ ‫اﻟﺤﺰﻣﺔ‬ ‫ﻣﺰدوج‬ ‫اﻟﺪﻗﯿﻘﺔ‬ ‫اﻟﺸﺮﯾﺤﺔ‬ ‫ھﻮاﺋﻲ‬ ‫ﺗﺼﻤﯿﻢ‬‫ﻟﺘﻄﺒﯿﻘﺎت‬ ‫اﻟﻤﻨﺘﻈﻤﺔ‬ ‫ﺪة‬ ‫اﻟﻤﺤﻠﻲ‬ ‫اﻻﺳﻠﻜﻲ‬ ‫اﻟﺒﺚ‬ ‫ﺑﺎﺳﻢ‬‫ﺧﻠﻒ‬‫ﺟﺎراﷲ‬)‫ﻣﺪ‬‫ﻣﺴﺎﻋﺪ‬ ‫رس‬( ‫اﻟﻤﺴﺘﻨﺼﺮﺳﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬،‫اﻟﮭﻨﺪﺳﺔ‬ ‫ﻛﻠﯿﺔ‬،‫ﻗﺴﻢ‬ ‫اﻟﻜﮭﺮﺑﺎﺋﯿﺔ‬ ‫اﻟﮭﻨﺪﺳﺔ‬ Email:basimkalaf@yahoo.com ‫ﻋﺒﻮد‬ ‫ﻛﺎﻇﻢ‬ ‫ﻋﺰ‬)‫ﻣﺴﺎﻋﺪ‬ ‫ﻣﺪرس‬( ‫اﻟﻤﺴﺘﻨﺼﺮﺳﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬،‫اﻟﮭﻨﺪﺳﺔ‬ ‫ﻛﻠﯿﺔ‬،‫ﻗﺴﻢ‬ ‫واﻟﺒﺮﻣﺠﯿﺎت‬ ‫اﻟﺤﺎﺳﺒﺎت‬ ‫ھﻨﺪﺳﺔ‬ Email:izz1962@yahoo.com ‫ﺧﻠﯿﻞ‬ ‫اﺑﺮاھﯿﻢ‬ ‫واﺋﻞ‬)‫ﻣﺴﺎﻋﺪ‬ ‫ﻣﺪرس‬( ‫اﻟﻤﺴﺘﻨﺼﺮﺳﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬،‫اﻟﮭﻨﺪﺳﺔ‬ ‫ﻛﻠﯿﺔ‬،‫ﻗﺴﻢ‬ ‫اﻟﻜﮭﺮﺑﺎﺋﯿﺔ‬ ‫اﻟﮭﻨﺪﺳﺔ‬ Email:wailalazawy@yahoo.com
  • 2. Basim Khalaf Jarulla, Izz Kadhum Abboud and Wail Ibrahim khalil Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012348 (IEEE 802.11b,g)(IEEE802.11a) (IEEE 802.11b,g)(IEEE802.11a) 3 dB 2009 1. INTRODUCTION Microstrip antenna is a type of antennas which can be used for transmitting and receiving signals. Microstrip or printed antennas are low profile, small size, light weight and widely used in wireless and mobile communications, as well as radar applications. Microstrip antennas can be divided into two basic types by structure, namely microstrip patch antenna and microstrip slot antenna. The microstrip patch antennas can be fed by microstrip line and coaxial probe (Kueathawikun1, 2006). Recently, wireless local area network (WLAN) has received much attention for the flexibility of network reconfiguration in office room, mobile internet connection and so on. A WLAN provides all the benefits of traditional LAN technologies without the limitations of being tethered to a cable. This provides greatly increased freedom and flexibility (Jim, 2002). There are many commercial WLAN devices in the markets which use 2.4GHz frequency band supporting the speed of 11Mbps. And the demand for faster data communication made consideration of using 5GHz frequency band instead of 2.4GHz frequency band which is widely used as IEEE 802.11b. There are three frequency bands for IEEE 802.11a, which are 5.15GHz ~ 5.25GHz, 5.25GHz ~ 5.35GHz, 5.725GHz ~ 5.825GHz. The IEEE 802.11a standard defines operation at up to 54Mbps. So, it would be very convenient if we have an antenna which can be applied to 2.4GHz and 5GHz operations with suitable gains (Woon, 2002). This proposed microstrip antenna designed to utilized in 2.4-2.4835 GHz and 5.725- 5.825GHz frequency ranges (IEEE 802.11 b/g/a), fed by 50Ω standard miniature adapter (SMA). 2- THE PROPOSED ANTENNA:- 2.1-Rectangular Microstrip Patch Antenna:- The antenna configuration is rectangular microstrip patch antenna shown in Fig.l. In this case the circular polarization (CP) is obtained because the two modes of resonance (corresponding to the adjacent sides of the rectangle), are spatially orthogonal. The antenna is excited at a frequency in between the resonant frequencies of these two modes in order to obtain the phase quadrature relationship between the voltages (and therefore magnetic currents) of two modes. Corner or diagonal feeding is required to allow both the modes to be excited with a single feed (Sharma, 1983). The ratio of the two orthogonal dimensions W/L should be generally in the range of (1.01– 1.10) depending upon the substrate parameters. When the patch is fed along the diagonal, then the two resonance modes corresponding to lengths L and W are spatially orthogonal. The CP is
  • 3. DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK APPLICATION 349Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012 obtained at a frequency, which lies between the resonance frequencies of these two modes, where the two orthogonal modes have equal magnitude and are in phase quadrature (Kumar, 2003). This kind of design is the simplest form to generated circular polarization and is very suitable for the WLAN RHCP or LHCP microstrip antenna design (Basim, 2011). 2.2-Rectangular Patch with Slits:- By embedding suitable slots in the radiating patch, compact operation of microstrip antennas can be obtained. Figure 2 shows slotted patch suitable for the design of compact microstrip antenna. In this figure, the embedded slot is a cross slot, whose two orthogonal arms can be of unequal (Iwasaki, 1996; Jawad, 2008) or equal lengths (Wong, 1997; Kin-Lu, 2002). The use of four inserted slits at the patch edges of a rectangular patch [30] has been shown to be a promising compact dual-frequency design. The antenna design is shown in Fig2. The four inserted slits are of equal length l and narrow width 1 mm (Kin-Lu, 2002) This kind of slotted patch causes meandering of the patch surface current path in two orthogonal directions and is suitable for achieving compact circularly polarized radiation or compact dual-frequency operation with orthogonal polarizations (Yang, 1998). The basic idea of the proposed antenna structure has been extracted from a comparative study of both the conventional square patch antenna, Fig. 1, and the square microstrip antenna with two pairs of orthogonal slits at the edges, Fig. 2 (Qais, 2005). The presence of slits in this antenna is a way to increase the surface current path length compared with that of the conventional square patch antenna, Fig. 1a, resulting in a reduced resonant frequency or a reduced size antenna if the design frequency is to maintained. It had been found that this antenna structure provides a reduction in size of about 40% (Jawad, 2008). In the present work, further increase in the slit lengths has been proposed in an attempt to gain further size reduction of the resulting structure as compared to the patch structures cited in Fig. 1 and 2. The dimensions of slots have been optimized to meet the 802.11b/g/a antenna design requirements. A single 50 Ω probe feed has been used to support producing the RHCP or LHCP requirement of the 802.11b/g/a antenna radiation pattern (Jawad, 2008). 3- THE PROPOSED ANTENNA DESIGN:- The calculation of the square Microstrip antenna length is based on transmission-line model (Bahi, 1980) The width W of the radiating edge, which is not critical, chosen first. The length L is slightly less than a half wavelength in the dielectric. The precise value of the dimension L of the square patch has been calculated using expression (Amamam, 1997). (1) Where the effective dielectric constant, and ∆L is the fringe factor (Balanis, 1997). For the frequency of 5.25 GHz and using (FR-4) with a relative dielectric constant of 4.2 and loss tangent of 0.017, with substrate height of 1.575 mm, this yields nearly square patch antenna length Fig. 1, of L=15.38 mm and W=16.11 mm. The ratio of the two orthogonal dimensions W/L is 1.047, lies in the range of generating two spatially orthogonal resonance modes (Iwasaki, 1996). The feed-point of the antenna, it is defined in terms of input impedance Zin of the antenna and the characteristic impedance Zo of the feed line. The feed point position should be placed at the location where the input impedance of the antenna matches the characteristic impedance of the feed (Iwasaki, 1996). The patch can be fed by a coax line from underneath. The impedance varies from zero in the center to the edge resistance approximately as (Thomas, 2005).
  • 4. Basim Khalaf Jarulla, Izz Kadhum Abboud and Wail Ibrahim khalil Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012350 (2) Where Ri is the input resistance, Re the input resistance at the edge, and x the distance from the patch center. By shifting the feed-point along the diagonal to x =-0.4875 cm and y = -0.475 cm, from the center of the patch; a perfect match with a 50Ω feed line is obtained. The feeding point position is 0.323% from the diagonal long (Basim, 1996). The slit lengths of the antenna in Fig. 2 are tuned to the resonance (design) frequency in the x and y-directions and are set to result in a value of about 7.5 mm, with a slot width a of 1 mm. This results in a patch length of the antenna structure of Fig. 2 to be L = 22.90 mm, using the same substrate. The resulting size reduction offered by this antenna is of about 35% as compared with the conventional nearly square microstrip antenna (Jawad, 2008) The proposed antenna structure has been modeled using a full-wave numerical Method of Moment (MoM). EMSightTM, of the Applied Wave Research (AWR), includes a full-wave electromagnetic solver that uses a modified spectral domain method of moments to accurately determine the multi-port scattering parameters for predominately planar structures (AWR, 2009). In the presented design; this software package was applied to simulate the typical characteristic of the proposed antennas. 4- SIMULATION RESULTS:- The proposed antenna structure had been modeled at the design frequencies of the IEEE 802.11b/g/a. It has been supposed that the antenna element to be located parallel to x-y plane and centered at the origin (0, 0, 0). The computed input return losses of the antenna patch is shown in Fig. 3. E-plane and H-plane RHCP and LHCP radiation patterns at the IEEE 802.11b/g frequency of 2.45 GHz are shown in Fig. 4a, where E-plane and H-plane RHCP and LHCP radiation patterns at the IEEE 802.11a frequency of 5.21 GHz are shown in Fig. 4b. It is clear that this antenna supports the required RHCP electric field radiation pattern. The resulting axial ratio as a function of frequency is depicted in Fig. 5. It can be seen that the axial ratio in the broadside direction is below 3 dB. The computed gain around the IEEE802.11b/g and IEEE802.11a has 7 dB and 5 dB respectively. As the gain response implies, the proposed antenna possesses an average gain of about more than 4 dB throughout the required bandwidths of IEEE802.11b/g/a antenna. 5- CONCLUSIONS:- A nearly square dual-band single probe-fed microstrip patch antenna with four inserted slits at the patch edges has been investigated. The realized impedance bandwidths (return loss ≤ −10 dB) and the circular polarization bandwidth (axial ratio ≤ 3 dB) satisfy the bandwidth requirements for the IEEE802.11b/g/a operation. 6- REFENCES:- 1. AWR® Design Environment, Microwave Office® (MWO) 2009 V9. 1960 E. Grand Avenue, Suite 430 El Segundo, CA 90245 USA 2. Bahi, and Bhartia, “Microstrip Antennas”, Artech House, Inc. 1980. 3. Basim K. Jarulla, “Circularly Polarized Microstrip Antenna with Reactive Load Design for Wireless Local Area Network Application”, Journal of Engineering and Development,Vol.15, No.4, 2011. 4. C. A. Balanis, “Antenna Theory, Analysis and Design”, John Wiley & Sons 1997.
  • 5. DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK APPLICATION 351Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012 5. C. Sharma and Kuldip C. Gupta, “Analysis and Optimized Design of Single Feed Circularly Polarized Microstrip Antenna,” IEEE Transactions on Antennas and Propagation, Vol. AP-31, No.6, November 1983. 6. G. Kumar and K. P. Ray, “Broadband Microstrip Antennas”, Artech House, Inc. 2003. 7. H. Iwasaki, “A circularly polarized small-size microstrip antenna with a cross slot,” IEEE. Trans. Antennas Propagat. 44, 1399–1401, Oct. 1996. 8. Jawad K. Ali, “A New Compact Size Microstrip Patch Antenna with Irregular Slots for Handheld GPS Application”, Eng. & Technology, Vol.26, No.10, 2008. 9. Jim Feier, “Wireless LANs”, Sams, 2002. 10. Kin-Lu Wong, “Compact and Broadband Microstrip Antennas”. John Wiley & Sons 2002. 11. K. L. Wong and K. P. Yang, “Small dual-frequency microstrip antenna with cross slot,” Electron. Lett. 33, 1916– 1917, Nov. 6, 1997. 12. K. P. Yang and K. L. Wong, “Inclined-slot-coupled compact dual frequency microstrip antenna with cross-slot,” Electron. Lett. 34, 321–322, Feb. 19, 1998. 13. M. Amamam, “Design of Rectangular Microstrip Patch Antenna for 2.4 GHz Band”, Applied Microwave and Wireless Nov/Dec 1997. 14. Qais K. Shakir, “Investigation, Design, and Simulation of Microstrip Antenna for GPS Applications”, M.Sc. Thesis, University of Technology, Baghdad, 2005. 15. W. Kueathawikun1, P. Thumwarin1, N. Anantrasirichai1, and T. Wakabayashi2, “Wide- Band Slot Antenna for IEEE 802.11b/g,” SICE-ICASE International Joint Conference 2006 Oct. 18-21, 2006 in Bexco, Busan, Korea. 16. Woon Geun Yang, Chang Il Kim, Jong Dae Oh, Kyu Ho Lee, Sung Min Kim, “Design and Implementation of 2.4GHz and 5GHz Dual Band Antenna for Access Point of Wireless LAN,” North-East Asia IT Symposium 2002, pp.573-576, Nov. 2002. 17. Thomas A. Milligan, “Modern Antenna Design”, John Wiley & Sons. 2ed. ed. 2005.
  • 6. Basim Khalaf Jarulla, Izz Kadhum Abboud and Wail Ibrahim khalil Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012352 Figure 3 The calculated input return loss for the modeled patch element Figure 1 The nearly square patch antenna. Figure 2 The nearly square patch antenna with two pairs of orthogonal slits. feeding point y x feeding point
  • 7. DUAL BAND MICROSTRIP ANTENNA WITH SLIT LOAD DESIGN FOR WIRELESS LOCAL AREA NETWORK APPLICATION 353Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 347-353, Year 2012 Figure 5 The computed axial ratios around 802.11a/b/g frequencies Figure 4 E-plane (y-z plane) and H-plane (x-z plane) radiation patterns. (a) f=2.45 GHz. (b) f=5.21 GHz.