Andrey Β Lavrentyev
Head Β of Β Technology Β Research Β Department,
Future Β Technologies,
Kaspersky Β Lab
Detecting Β ICS Β Attacks Β Using Β  Β 
Recurrent Β Neural Β Networks Β 
(RNN)
Plant
PLC
SCADA
INDUSTRIAL Β DATA:
β€’ Multi-Β­channel Β ~ Β 104 Β  signals Β 
β€’ Real-Β­time Β flow Β  Β ~ Β 100 Β ms
β€’ Big Β history Β ~ Β years
β€’ Noise, Β jitter, Β gaps, Β faults Β 
β€’ Cross-Β­channel Β correlation
ICS Β 
PLC  – Programmable Β Logic Β Controller
SCADA Β -Β­ Supervisory Β Control Β and Β Data Β Acquisition Β 
system
Control Β Loop
Set Β points
Actuators
Disturbance
Controlled Β 
variables Β 
Cyber-Β­Physical
System
Sensors Β 
Controller
Plant PLC SCADA
Physical
attacks
Cyber
attacks
0101010101010101
1010101010101010
ICS Β under Β Attack
Attacks may target:
-Β­ information technology (IT) or
-Β­ operational technology (OT)
Attacks Β on Β OT Β are Β the Β most Β dangerous
-Β­ quick damage to physical equipment
-Β­ severe financial losses
How Β to Β detect Β attacks Β on Β OT?
A clue:
In any real-Β­world plant, all industrial signals
(sensor and actuator values, control logic parameters)
are correlated and governed by physical laws
An attack that modifies one signal causes
corresponding changes to other signals.
These correlations between signals can be established using ML
MLAD Β -Β­ Machine Β Learning Β for Β Anomaly Β Detection
Plant
PLC
SCADA
Physical
attacks
Cyber
attacks
Traffic
Mirroring
OT
Security Monitor
DPI MLAD
Data-Β­Driven Β Anomaly Β Detection Β  1. Β Training Β under Β normal Β operating Β conditions
Recurrent Β Neural Β Network
Data: Β Multivariate Β Time Β Series
2. Β Online Β anomaly Β detection Β via Β prediction Β error
ΓΌοƒΌ Anomaly Β interpretation Β based Β on Β matching Β errors Β to Β 
specific Β signals
ΓΌοƒΌ Early Β detection
Understanding Β Anomalies
VALUE Change
PERIOD Change
PHASE Change
LSTM Β Recurrent Β Neural Β Network
β€’ 2 Β layers Β (2 Β x Β 64)
β€’ Input Β window Β size = Β prediction Β horizon (w)
β€’ Regularization  – Dropout
β€’ Optimization Β algorithm – RMSProp
β€’ Loss Β function – MSE
Activation: Β ReLU
Activation: Β Linear
Anomaly Β Detection
Tennessee Β Eastman Β Process Β (TEP)
Reactor
Separator
Condenser
Stripper
Purge
Product
G/H
Inlet gases A, D, E
and C
13
TEP
14
TEP
MLAD Β Key Β Features:
ΓΌοƒΌ Early anomaly detection in OT telemetry
ΓΌοƒΌ Anomaly interpretation
ΓΌοƒΌ No dependence on the nature of an attack
ΓΌοƒΌ Seamless integration with conventional ICS cybersecurity
ΓΌοƒΌ Additional important layer of ICS cybersecurity focused on OT protection
References
www.kaspersky.com
mlad@kaspersky.com
[1] MLAD Presentation
https://youtu.be/xXWjfYcPi_Q
[2] RNN-Β­based Early Cyber-Β­Attack Detection for the Tennessee Eastman Process. ICML 2017
Time Series Workshop, Sydney, Australia, 2017.
https://arxiv.org/abs/1709.02232
[3] Multivariate Industrial Time Series with Cyber-Β­Attack Simulation: Fault Detection Using an
LSTM-Β­based Predictive Data Model. NIPS 2016 Time Series Workshop, Barcelona, Spain, 2016.
http://arxiv.org/abs/1612.06676
[4] ICS Anomaly Detection Panel
https://www.youtube.com/watch?v=jeepkpqdurc&t=306s
Thank Β you!

Detecting ICS Attacks Using Recurrent Neural Networks

  • 1.
    Andrey Β Lavrentyev Head Β ofΒ Technology Β Research Β Department, Future Β Technologies, Kaspersky Β Lab Detecting Β ICS Β Attacks Β Using Β  Β  Recurrent Β Neural Β Networks Β  (RNN)
  • 2.
    Plant PLC SCADA INDUSTRIAL Β DATA: β€’ Multi-Β­channelΒ ~ Β 104 Β  signals Β  β€’ Real-Β­time Β flow Β  Β ~ Β 100 Β ms β€’ Big Β history Β ~ Β years β€’ Noise, Β jitter, Β gaps, Β faults Β  β€’ Cross-Β­channel Β correlation ICS Β  PLC  – Programmable Β Logic Β Controller SCADA Β -Β­ Supervisory Β Control Β and Β Data Β Acquisition Β  system
  • 3.
    Control Β Loop Set Β points Actuators Disturbance ControlledΒ  variables Β  Cyber-Β­Physical System Sensors Β  Controller
  • 4.
    Plant PLC SCADA Physical attacks Cyber attacks 0101010101010101 1010101010101010 ICSΒ under Β Attack Attacks may target: -Β­ information technology (IT) or -Β­ operational technology (OT)
  • 5.
    Attacks Β on Β OTΒ are Β the Β most Β dangerous -Β­ quick damage to physical equipment -Β­ severe financial losses
  • 6.
    How Β to Β detectΒ attacks Β on Β OT? A clue: In any real-Β­world plant, all industrial signals (sensor and actuator values, control logic parameters) are correlated and governed by physical laws An attack that modifies one signal causes corresponding changes to other signals. These correlations between signals can be established using ML
  • 7.
    MLAD Β -Β­ MachineΒ Learning Β for Β Anomaly Β Detection Plant PLC SCADA Physical attacks Cyber attacks Traffic Mirroring OT Security Monitor DPI MLAD
  • 8.
    Data-Β­Driven Β Anomaly Β DetectionΒ  1. Β Training Β under Β normal Β operating Β conditions Recurrent Β Neural Β Network Data: Β Multivariate Β Time Β Series 2. Β Online Β anomaly Β detection Β via Β prediction Β error ΓΌοƒΌ Anomaly Β interpretation Β based Β on Β matching Β errors Β to Β  specific Β signals ΓΌοƒΌ Early Β detection
  • 9.
  • 10.
    LSTM Β Recurrent Β NeuralΒ Network β€’ 2 Β layers Β (2 Β x Β 64) β€’ Input Β window Β size = Β prediction Β horizon (w) β€’ Regularization  – Dropout β€’ Optimization Β algorithm – RMSProp β€’ Loss Β function – MSE Activation: Β ReLU Activation: Β Linear
  • 11.
  • 12.
    Tennessee Β Eastman Β ProcessΒ (TEP) Reactor Separator Condenser Stripper Purge Product G/H Inlet gases A, D, E and C
  • 13.
  • 14.
  • 15.
    MLAD Β Key Β Features: ΓΌοƒΌEarly anomaly detection in OT telemetry ΓΌοƒΌ Anomaly interpretation ΓΌοƒΌ No dependence on the nature of an attack ΓΌοƒΌ Seamless integration with conventional ICS cybersecurity ΓΌοƒΌ Additional important layer of ICS cybersecurity focused on OT protection
  • 16.
    References www.kaspersky.com mlad@kaspersky.com [1] MLAD Presentation https://youtu.be/xXWjfYcPi_Q [2]RNN-Β­based Early Cyber-Β­Attack Detection for the Tennessee Eastman Process. ICML 2017 Time Series Workshop, Sydney, Australia, 2017. https://arxiv.org/abs/1709.02232 [3] Multivariate Industrial Time Series with Cyber-Β­Attack Simulation: Fault Detection Using an LSTM-Β­based Predictive Data Model. NIPS 2016 Time Series Workshop, Barcelona, Spain, 2016. http://arxiv.org/abs/1612.06676 [4] ICS Anomaly Detection Panel https://www.youtube.com/watch?v=jeepkpqdurc&t=306s
  • 17.