This document discusses the changing landscape of data science and AI in biomedicine. Some key points:
- We are at a tipping point where data science is becoming a driver of biomedical research rather than just a tool. Biomedical researchers need to become data scientists.
- Data science is interdisciplinary and touches every field due to the rise of digital data. It requires openness, translation of findings, and consideration of responsibilities like algorithmic bias.
- Advances like AlphaFold2 show the power of large collaborative efforts combining data, computing resources, engineering, and domain expertise. This points to the need for public-private partnerships and new models of open data sharing.
- The definition of