December 18 Fri., 2015, 13:30-13:50, Regular Session: Networked Control Systems 2, Frb09.1 @ 1003
Cyber-‐‑‒Security  Enhancements  of  
Networked  Control  Systems  Using  
Homomorphic  Encryption
Kiminao Kogiso
University of Electro-Communications
Tokyo, Japan
Takahiro Fujita
Yokogawa Denshikiki Co., Ltd.
The 54 Conference on Decision and Control
Osaka International Convention Center, Osaka, Japan
December 15 to 18, 2015
Outline
2
Introduction  
Problem  Statement  
Controller  Encryption  
Simulation  &  Validation  
Conclusion
Introduction
3
Controller device is important, but exposed to threats of hacking and targeted attacks.
signals: modeling, stealing recipe, management policy and know-how
parameters: knowledges about system designs and operations
Attacks on networked control system
plantcontroller
ref. (recipe)
control signals
feedback signals
parameters
[1] Sandberg et al., 2015. [2] Sato et al., 2015. [3] Pang et al., 2011
Related works
aiming to conceal the signals
control-theoretical approach: detection[1], positive use of noises[2]
cryptography-based approach: encryption of communication links[3]
no studies considering encryption of the controller or its inside…
control
(cipher)
feedback
(cipher)
EncDec
Enc Dec
plantcontroller
ref.
ref.
(cipher)
Enc Dec
Introduction
4
Objective of this work
Realize a cryptography-based control law to conceal both the signals & parameters.
control
(cipher)
feedback
(cipher)
EncDec
Enc Dec
plantcontroller
ref.
ref.
(cipher)
Enc Dec
conventional:
control
(cipher)
feedback
(cipher)
Enc
Dec
plantencrypted
controller
ref.
ref.
(cipher)
Enc
parameters
(cipher)
proposed:
Concept of encrypted controller:
calculates an encrypted control directly from an encrypted feedback signal & an encrypted
reference using encrypted parameters,
is achieved by incorporating homomorphic encryption scheme into the control law.
Problem Statement
5
Encryption of linear controller
Consider a linear controller: f
Controller Encryption Problem:
Given an encryption scheme , for a control law realize an encrypted law .fE fE
Define an encrypted control law , given an encryption scheme , satisfyingfE E

x[k + 1]
u[k]
=

A B
C D

x[k]
y[k]
:= ⇠[k] := f( , ⇠[k])
: parameter matrix
: plant output
: control inputu
y
5
control
(cipher)
feedback
(cipher)
Enc
Dec
plant
parameters
(cipher)
Enc(y)
Enc(u) u
y
Enc( )
fE (Enc( ), Enc(⇠))
fE (Enc( ), Enc(⇠)) = Enc(f( , ⇠))
RSA encryption[4,5] (deterministic) & ElGamal encryption[6] (stochastic)
ElGamal encryption scheme[4]
key generation: public , and private (random)
encryption:
decryption:
Controller Encryption 1/3
6[4] Rivest, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystem”, 1978. [5] Rivest, “On Data Banks and Privacy Homomorphisms”, 1978.
Homomorphic encryption schemes
RSA: Rivest-Shamir-Adelman
Dec(c1, c2) = c2 ⇥ c s
1 mod p
g, p, s 2 N(g, p) s
r 2 N:  randomEnc(m) = (gr
mod p, m ⇥ gsr
mod p)
= c1 = c2 m: integer in plaintext space
: integer in ciphertext spacec1, c2
Homomorphism
definition
Enc(m1 • m2) = Enc(m1) ⇤ Enc(m2)
in the case of ElGamal
·: multiplication ⇤ : modulo operation
plaintext  
space
ciphertext  
space
m1
m2
⇥
⇥
⇥
m2•m1
⇥
⇥
⇥
Enc(m1)
Enc(m2)
N N2
Enc
Enc
Enc
Controller Encryption 2/3
7
Idea for controller encryption
Divide the linear operation to apply the homomorphism.
f = f+
f⇥
f⇥
( , ⇠) =
⇥
1⇠1 2⇠2 · · · L⇠L
⇤
=:
←  executed  after  the  decryption
←  executed  in  the  controller  device
modification of the decryption process to update the decryption algorithm with “Dec+
”.
Dec+
Configuration using ElGamal encryption scheme
signals
(cipher)
feedback
(cipher)
Enc
Dec
plant
parameters
(cipher)
Enc( )
Enc( )
f+
f⇥
Enc(⇠)
x[k + 1]
u[k]
⇠
fE (Enc( ), Enc(⇠))
f+
( ) =
LX
l=1
l
with and sufficient large, rounding (quantization) error can be made small.a
encrypted
controller
u[k]
y[k]
Enc
Enc(KpM)
Enc(yM[k])
Enc(uM[k])
a 2
yM[k]
uM[k]
ba•e
plant
Dec+
n
Controller Encryption 3/3
8
a 2 N
b•e : round function
KpM = ba ⇥ Kpe
yM[k] = ba ⇥ y[k]e
uM[k] = KpMyM[k]
Kp
y[k]
u[k] = Kpy[k]
example: , then .Kp = 0.83, a = 1000 KpM = b1000 ⇥ 0.83e = 830
Remarks
Signals & parameters are real; Plaintext is integer.
need a map: multiplying by a natural number and rounding off to an integer, i.e.,
Simulation: Controller Encryption
9
(key length 25bit)
Things seen in controller
encrypted
controller
normal:
proposed:
u[k]
y[k]
controller
n = 67108913 g = 3
Enc( )
=
2
4
1 0.0063 0
0 0.3678 0.0063
10 99.90 3
3
5
=

Enc(x[k])
Enc(y[k])
Enc(⇠[k])
Enc( [k])
0 1 2 3 4 5
-3
-2
-1
0
1
0 1 2 3 4 5
-0.5
0
0.5
1
1.5
time [s] time [s]
control output
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
0
1
2
3
4
× 107
0 1 2 3 4 5
0
1
2
3
4
× 107
6 signals related to control
2 signals related to output
0 1 2 3 4 5
-0.5
0
0.5
1
1.5
0 1 2 3 4 5
-3
-2
-1
0
1
Enc( )2 =
2
4
14170023 24305287 4114472
24817983 26559389 33379406
29922594 31813162 24125985
3
5
Enc( )1 =
2
4
16354115 11333831 12428094
25939844 22437363 17650745
23018684 228286 8037052
3
5
Validation: Protection from Stealing
10
System identification (n4sid)
-150
-100
-50
0
50
10-2
100
102
-270
-225
-180
-135
-90
-45
0
frequency [rad/s]
gain[dB]phase[deg]
original closed loop system
without encryption
with encryption(RSA)
with encryption(ElGamal)
Conclusion
11
Introduction
Problem Statement
controller encryption problem
Encrypted Controller
homomorphism of specific encryption scheme
remarks in quantization error
Simulation & Validation
enable to conceal signals & parameters inside
the controller device in terms of cryptography.
enable to hide dynamics of the control system.
Future works
incorporate an attack detection method.
validate computation cost of encrypted controller.
-150
-100
-50
0
50
10-2
100
102
-270
-225
-180
-135
-90
-45
0
frequency [rad/s]
gain[dB]phase[deg]
original closed loop system
without encryption
with encryption(RSA)
with encryption(ElGamal)
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
time [s]
0
1
2
3
4
× 107
0 1 2 3 4 5
0
1
2
3
4
× 107
0 1 2 3 4 5
0
1
2
3
4
× 107

Cyber-Security Enhancements of Networked Control Systems Using Homomorphic Encryption

  • 1.
    December 18 Fri.,2015, 13:30-13:50, Regular Session: Networked Control Systems 2, Frb09.1 @ 1003 Cyber-‐‑‒Security  Enhancements  of   Networked  Control  Systems  Using   Homomorphic  Encryption Kiminao Kogiso University of Electro-Communications Tokyo, Japan Takahiro Fujita Yokogawa Denshikiki Co., Ltd. The 54 Conference on Decision and Control Osaka International Convention Center, Osaka, Japan December 15 to 18, 2015
  • 2.
    Outline 2 Introduction   Problem  Statement  Controller  Encryption   Simulation  &  Validation   Conclusion
  • 3.
    Introduction 3 Controller device isimportant, but exposed to threats of hacking and targeted attacks. signals: modeling, stealing recipe, management policy and know-how parameters: knowledges about system designs and operations Attacks on networked control system plantcontroller ref. (recipe) control signals feedback signals parameters [1] Sandberg et al., 2015. [2] Sato et al., 2015. [3] Pang et al., 2011 Related works aiming to conceal the signals control-theoretical approach: detection[1], positive use of noises[2] cryptography-based approach: encryption of communication links[3] no studies considering encryption of the controller or its inside… control (cipher) feedback (cipher) EncDec Enc Dec plantcontroller ref. ref. (cipher) Enc Dec
  • 4.
    Introduction 4 Objective of thiswork Realize a cryptography-based control law to conceal both the signals & parameters. control (cipher) feedback (cipher) EncDec Enc Dec plantcontroller ref. ref. (cipher) Enc Dec conventional: control (cipher) feedback (cipher) Enc Dec plantencrypted controller ref. ref. (cipher) Enc parameters (cipher) proposed: Concept of encrypted controller: calculates an encrypted control directly from an encrypted feedback signal & an encrypted reference using encrypted parameters, is achieved by incorporating homomorphic encryption scheme into the control law.
  • 5.
    Problem Statement 5 Encryption oflinear controller Consider a linear controller: f Controller Encryption Problem: Given an encryption scheme , for a control law realize an encrypted law .fE fE Define an encrypted control law , given an encryption scheme , satisfyingfE E  x[k + 1] u[k] =  A B C D  x[k] y[k] := ⇠[k] := f( , ⇠[k]) : parameter matrix : plant output : control inputu y 5 control (cipher) feedback (cipher) Enc Dec plant parameters (cipher) Enc(y) Enc(u) u y Enc( ) fE (Enc( ), Enc(⇠)) fE (Enc( ), Enc(⇠)) = Enc(f( , ⇠))
  • 6.
    RSA encryption[4,5] (deterministic)& ElGamal encryption[6] (stochastic) ElGamal encryption scheme[4] key generation: public , and private (random) encryption: decryption: Controller Encryption 1/3 6[4] Rivest, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystem”, 1978. [5] Rivest, “On Data Banks and Privacy Homomorphisms”, 1978. Homomorphic encryption schemes RSA: Rivest-Shamir-Adelman Dec(c1, c2) = c2 ⇥ c s 1 mod p g, p, s 2 N(g, p) s r 2 N:  randomEnc(m) = (gr mod p, m ⇥ gsr mod p) = c1 = c2 m: integer in plaintext space : integer in ciphertext spacec1, c2 Homomorphism definition Enc(m1 • m2) = Enc(m1) ⇤ Enc(m2) in the case of ElGamal ·: multiplication ⇤ : modulo operation plaintext   space ciphertext   space m1 m2 ⇥ ⇥ ⇥ m2•m1 ⇥ ⇥ ⇥ Enc(m1) Enc(m2) N N2 Enc Enc Enc
  • 7.
    Controller Encryption 2/3 7 Ideafor controller encryption Divide the linear operation to apply the homomorphism. f = f+ f⇥ f⇥ ( , ⇠) = ⇥ 1⇠1 2⇠2 · · · L⇠L ⇤ =: ←  executed  after  the  decryption ←  executed  in  the  controller  device modification of the decryption process to update the decryption algorithm with “Dec+ ”. Dec+ Configuration using ElGamal encryption scheme signals (cipher) feedback (cipher) Enc Dec plant parameters (cipher) Enc( ) Enc( ) f+ f⇥ Enc(⇠) x[k + 1] u[k] ⇠ fE (Enc( ), Enc(⇠)) f+ ( ) = LX l=1 l
  • 8.
    with and sufficientlarge, rounding (quantization) error can be made small.a encrypted controller u[k] y[k] Enc Enc(KpM) Enc(yM[k]) Enc(uM[k]) a 2 yM[k] uM[k] ba•e plant Dec+ n Controller Encryption 3/3 8 a 2 N b•e : round function KpM = ba ⇥ Kpe yM[k] = ba ⇥ y[k]e uM[k] = KpMyM[k] Kp y[k] u[k] = Kpy[k] example: , then .Kp = 0.83, a = 1000 KpM = b1000 ⇥ 0.83e = 830 Remarks Signals & parameters are real; Plaintext is integer. need a map: multiplying by a natural number and rounding off to an integer, i.e.,
  • 9.
    Simulation: Controller Encryption 9 (keylength 25bit) Things seen in controller encrypted controller normal: proposed: u[k] y[k] controller n = 67108913 g = 3 Enc( ) = 2 4 1 0.0063 0 0 0.3678 0.0063 10 99.90 3 3 5 =  Enc(x[k]) Enc(y[k]) Enc(⇠[k]) Enc( [k]) 0 1 2 3 4 5 -3 -2 -1 0 1 0 1 2 3 4 5 -0.5 0 0.5 1 1.5 time [s] time [s] control output 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 0 1 2 3 4 × 107 0 1 2 3 4 5 0 1 2 3 4 × 107 6 signals related to control 2 signals related to output 0 1 2 3 4 5 -0.5 0 0.5 1 1.5 0 1 2 3 4 5 -3 -2 -1 0 1 Enc( )2 = 2 4 14170023 24305287 4114472 24817983 26559389 33379406 29922594 31813162 24125985 3 5 Enc( )1 = 2 4 16354115 11333831 12428094 25939844 22437363 17650745 23018684 228286 8037052 3 5
  • 10.
    Validation: Protection fromStealing 10 System identification (n4sid) -150 -100 -50 0 50 10-2 100 102 -270 -225 -180 -135 -90 -45 0 frequency [rad/s] gain[dB]phase[deg] original closed loop system without encryption with encryption(RSA) with encryption(ElGamal)
  • 11.
    Conclusion 11 Introduction Problem Statement controller encryptionproblem Encrypted Controller homomorphism of specific encryption scheme remarks in quantization error Simulation & Validation enable to conceal signals & parameters inside the controller device in terms of cryptography. enable to hide dynamics of the control system. Future works incorporate an attack detection method. validate computation cost of encrypted controller. -150 -100 -50 0 50 10-2 100 102 -270 -225 -180 -135 -90 -45 0 frequency [rad/s] gain[dB]phase[deg] original closed loop system without encryption with encryption(RSA) with encryption(ElGamal) 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 time [s] 0 1 2 3 4 × 107 0 1 2 3 4 5 0 1 2 3 4 × 107 0 1 2 3 4 5 0 1 2 3 4 × 107