Vincenzo Lomonaco
University of Bologna
• Deep Learning state-of-the-art performances
• Mainly supervised training with huge and fixed datasets.
# of possible 227x227 RGB images
3,9 ∙ 10372282
(Hence ubiquitousness and autonomy)
𝑡
𝑋1 𝑌1
𝑓𝜃: 𝑋1 → 𝑌1
𝑡
𝑋2 𝑌2𝑓𝜃: 𝑋1 ∪ 𝑋2 → 𝑌1 ∪ 𝑌2
• Higher and realistic time-scale where data (and tasks)
become available only during time
• No access to previously encountered data.
• Constant computational and memory resources.
• Incremental development of ever more complex
knowledge and skills.
Dataset, Benchmark, code and additional
information freely available at:
vlomonaco.github.io/core50
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
Architectural
Regularization Reharshal
CWR PNN
EWC
SI
LWF
ICARL
GEM
Architectural
Regularization Reharshal
CWR PNN
EWC
SI
LWF
ICARL
GEM
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
?
?
?
?
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
?
?
?
?
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
?
?
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
?
?
𝑊𝑐
𝐿 𝑛
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
𝑊𝑐
𝐿 𝑛
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
LomonacoV. and Maltoni D. CORe50: a New Dataset and Benchmark for ContinuousObject Recognition.CoRL2017.
𝑊𝑐
𝐿 𝑛
𝑊𝑡𝑊𝑏
...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
𝐿 𝜇 = 𝐿 𝜇 + 𝜆
𝑘
Ω 𝑘
𝜇
𝜃 𝑘 − 𝜃 𝑘
2
𝑤 𝑘
𝑣
=
𝑡 𝑣−1
𝑡 𝑣
𝜕𝐿
𝜕𝜃 𝑘
∙
𝜕𝜃 𝑘
𝜕𝑡
Combining Architectural and Regularization
approaches
LomonacoV. and Maltoni D. Continuous Learning in Single-Incremental-TaskScenarios.To be published.
Architectural
Regularization Reharshal
CWR PNN
EWC
SI
LWF
ICARL
GEM
Architectural
Regularization Reharshal
CWR PNN
EWC
SI
LWF
ICARL
GEM
AR1
𝑊𝑡 𝑊𝑐𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛 𝐿 𝑛
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
𝐿 𝜇 = 𝐿 𝜇 + 𝜆
𝑘
Ω 𝑘
𝜇
𝜃 𝑘 − 𝜃 𝑘
2
𝑤 𝑘
𝑣
=
𝑡 𝜇−1
𝑡 𝜇
𝜕𝐿
𝜕𝜃 𝑘
∙
𝜕𝜃 𝑘
𝜕𝑡
𝑊𝑡𝑊𝑏...
𝐿0, … , 𝐿 𝑛−1 𝐿 𝑛
• Computational efficient
(independent from the
number of training
batches)
• Just one Ω 𝑘(running sum
+ max clip)
• CWR with zero-init
• CWR with mean-shift
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
1 2 3 4 5 6 7 8 9
Naive
LwF
EwC
Syn
CwR
AR-1
Cumulative
1. Continuous Unsupervised Learning
2. Continuous Reinforcement Learning
http://continuousai.com
Vincenzo Lomonaco
University of Bologna

Continuous Learning with Deep Architectures

Editor's Notes

  • #20 AR-1 (Aerojet Rocketdyne) name of the booster under development in competition with the blue origin BE-4 to replace Russuan RD-180. Falcon 9 has booster B1029. united lunch alliance atals v