SlideShare a Scribd company logo
1 of 15
Download to read offline
Combining density functional theory calculations,
supercomputing, and data-driven methods to design
new thermoelectric materials
Anubhav Jain
Energy Technologies Area
Lawrence Berkeley National Laboratory
Berkeley, CA
AIChE 2016
Slides posted to http://www.slideshare.net/anubhavster
Using density functional theory to design new materials
2
A. Jain, Y. Shin, and K. A.
Persson, Nat. Rev. Mater.
1, 15004 (2016).
We’ve initiated a search for new bulk thermoelectrics
3
Initial procedure similar to
Madsen (2006)
On top of this traditional
procedure we add:
• thermal conductivity
model of Pohl-Cahill
• targeted defect
calculations to assess
doping
• Today - ~50,000
compounds screened!
Madsen, G. K. H. Automated search for new
thermoelectric materials: the case of LiZnSb.
J. Am. Chem. Soc., 2006, 128, 12140–6
New Materials from screening – TmAgTe2 (calcs)
4
Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A.; White, M. A.; Asta,
M.; Snyder, G. J.; Persson, K.; Ceder, G. Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds, a
new group of thermoelectric materials identified by first-principles high-throughput screening, J. Mater. Chem. C, 2015, 3
TmAgTe2 - experiments
5
Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A.; White, M. A.; Asta,
M.; Snyder, G. J.; Persson, K.; Ceder, G. Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds, a
new group of thermoelectric materials identified by first-principles high-throughput screening, J. Mater. Chem. C, 2015, 3
The limitation - doping
6
p=1020
VB Edge CB Edge
n=1020
1016
E-Ef (eV)
TmAgTe2
600K
Our
Sample
• Calculations indicate TmAg defects are most likely “hole killers”.
• Tm deficient samples so far not successful
• Meanwhile, explore other chemistries
YCuTe2 – friendlier elements, higher zT (0.75)
7
• A combination of intuition
and calculations suggest to
try YCuTe2
• Higher carrier
concentration of ~1019
• Retains very low thermal
conductivity, peak zT ~0.75
• But – unlikely to improve
further
Aydemir, U.; Pöhls, J.-H.; Zhu, H.l Hautier, G.; Bajaj, S.; Gibbs, Z.
M.; Chen, W.; Li, G.; Broberg, D.; Kang, S.D.; White, M. A.; Asta,
M.; Ceder, G.; Persson, K.; Jain, A.; Snyder, G. J. YCuTe2: A
Member of a New Class of Thermoelectric Materials with CuTe4-
Based Layered Structure. J. Mat Chem C, 2016
experiment
computation
Bournonites – CuPbSbS3 and analogues
• Natural mineral
• Measured thermal conductivity for
CuPbSbS3 < 1 W/m*K
– Stereochemical lone pair scattering
mechanisms
• Measured Seebeck coefficient in
the range of 400 µV/K
• BUT electrical conductivity likely
requires improvement – can
calculations help?
• Total of 320 substitutions into
ABCD3 formula computed
• Experimental study is next
8
Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment
of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
Variation of properties with substitution
9
Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment
of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
Variation of properties with substitution
10
Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment
of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
Variation of properties with substitution
11
Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment
of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
Interesting compounds and effect of scattering
12
Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment
of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
Defects – selenide looks slightly better than sulfide
13
(a) (b)
• Multiple defects prevent n-type formation
• p-type limited by SbPb defect. Situation slightly better in sulfide because VSe can help
compensate
• Extrinsic defects calculations (not shown) do not provide clear paths forward
Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment
of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
CuPbSbS3 CuPbSbSe3
Open data and software
14
www.materialsproject.org
www.pymatgen.org
www.github.com/hackingmaterials/MatMethods
www.pythonhosted.org/FireWorksNote: results of 50,000 transport
calcs will eventually be posted here
Poster on automating surface calculations with these tools:
Automating Workflows for Surface Science and Catalysis
Joseph H. Montoya and Kristin Persson
Monday, 6:00 PM - 8:00 PM
Grand Ballroom B (Hilton)
COMSEF Poster session
Thank you!
• Collaborating research groups
– Jeffrey Snyder
– Geoffroy Hautier
– Mary Anne White
– Mark Asta
– Hong Zhu
– Kristin Persson
– Gerbrand Ceder
• Primary researchers
– TmAgTe2 – Prof. Hong Zhu and Dr. Umut Aydemir
– YCuTe2 – Dr. Umut Aydemir and Dr. Jan Pohls
– CuPbSbS3 – Dr. Alireza Faghaninia
• NERSC computing center and staff
• Funding: U.S. Department of Energy, Basic Energy Sciences, Materials
Science Division
15Slides posted to http://www.slideshare.net/anubhavster

More Related Content

What's hot

Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Anubhav Jain
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Anubhav Jain
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...Anubhav Jain
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Anubhav Jain
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignAnubhav Jain
 
Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Anubhav Jain
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Anubhav Jain
 
Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Anubhav Jain
 
Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...Anubhav Jain
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsAnubhav Jain
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Anubhav Jain
 
Data dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNLData dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNLAnubhav Jain
 
Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...Anubhav Jain
 
Machine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsMachine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsAnubhav Jain
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designUniversity of California, San Diego
 

What's hot (20)

Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 
Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...
 
Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...
 
Data dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNLData dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNL
 
Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...
 
Machine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsMachine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methods
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials design
 

Similar to Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials

Organic hybrid thermoelectrics
Organic hybrid thermoelectricsOrganic hybrid thermoelectrics
Organic hybrid thermoelectricsViji Vijitha
 
VASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdfVASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdfDrSyedZulqarnainHaid
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsAnubhav Jain
 
Development of a Machine Learning Algorithm for High Energy Density Materials
Development of a Machine Learning Algorithm for High Energy Density MaterialsDevelopment of a Machine Learning Algorithm for High Energy Density Materials
Development of a Machine Learning Algorithm for High Energy Density MaterialsSvetlana Gelpi
 
Inna Vishik academic CV 20150720
Inna Vishik academic CV 20150720Inna Vishik academic CV 20150720
Inna Vishik academic CV 20150720Inna Vishik
 
Organic thermoelectric generators
Organic thermoelectric generatorsOrganic thermoelectric generators
Organic thermoelectric generatorsViji Vijitha
 
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curveA reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curveSérgio Sacani
 
Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Anubhav Jain
 
Cocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxCocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxRehmanRasheed3
 

Similar to Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials (9)

Organic hybrid thermoelectrics
Organic hybrid thermoelectricsOrganic hybrid thermoelectrics
Organic hybrid thermoelectrics
 
VASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdfVASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdf
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methods
 
Development of a Machine Learning Algorithm for High Energy Density Materials
Development of a Machine Learning Algorithm for High Energy Density MaterialsDevelopment of a Machine Learning Algorithm for High Energy Density Materials
Development of a Machine Learning Algorithm for High Energy Density Materials
 
Inna Vishik academic CV 20150720
Inna Vishik academic CV 20150720Inna Vishik academic CV 20150720
Inna Vishik academic CV 20150720
 
Organic thermoelectric generators
Organic thermoelectric generatorsOrganic thermoelectric generators
Organic thermoelectric generators
 
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curveA reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
 
Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Cocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxCocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptx
 

More from Anubhav Jain

Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignAnubhav Jain
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Anubhav Jain
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Anubhav Jain
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Anubhav Jain
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst DesignAnubhav Jain
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Anubhav Jain
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Anubhav Jain
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAnubhav Jain
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …Anubhav Jain
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials ProjectAnubhav Jain
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Anubhav Jain
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Anubhav Jain
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectAnubhav Jain
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...Anubhav Jain
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...Anubhav Jain
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignAnubhav Jain
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignAnubhav Jain
 

More from Anubhav Jain (20)

Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 

Recently uploaded

STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 

Recently uploaded (20)

STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 

Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials

  • 1. Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA AIChE 2016 Slides posted to http://www.slideshare.net/anubhavster
  • 2. Using density functional theory to design new materials 2 A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
  • 3. We’ve initiated a search for new bulk thermoelectrics 3 Initial procedure similar to Madsen (2006) On top of this traditional procedure we add: • thermal conductivity model of Pohl-Cahill • targeted defect calculations to assess doping • Today - ~50,000 compounds screened! Madsen, G. K. H. Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc., 2006, 128, 12140–6
  • 4. New Materials from screening – TmAgTe2 (calcs) 4 Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A.; White, M. A.; Asta, M.; Snyder, G. J.; Persson, K.; Ceder, G. Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening, J. Mater. Chem. C, 2015, 3
  • 5. TmAgTe2 - experiments 5 Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A.; White, M. A.; Asta, M.; Snyder, G. J.; Persson, K.; Ceder, G. Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening, J. Mater. Chem. C, 2015, 3
  • 6. The limitation - doping 6 p=1020 VB Edge CB Edge n=1020 1016 E-Ef (eV) TmAgTe2 600K Our Sample • Calculations indicate TmAg defects are most likely “hole killers”. • Tm deficient samples so far not successful • Meanwhile, explore other chemistries
  • 7. YCuTe2 – friendlier elements, higher zT (0.75) 7 • A combination of intuition and calculations suggest to try YCuTe2 • Higher carrier concentration of ~1019 • Retains very low thermal conductivity, peak zT ~0.75 • But – unlikely to improve further Aydemir, U.; Pöhls, J.-H.; Zhu, H.l Hautier, G.; Bajaj, S.; Gibbs, Z. M.; Chen, W.; Li, G.; Broberg, D.; Kang, S.D.; White, M. A.; Asta, M.; Ceder, G.; Persson, K.; Jain, A.; Snyder, G. J. YCuTe2: A Member of a New Class of Thermoelectric Materials with CuTe4- Based Layered Structure. J. Mat Chem C, 2016 experiment computation
  • 8. Bournonites – CuPbSbS3 and analogues • Natural mineral • Measured thermal conductivity for CuPbSbS3 < 1 W/m*K – Stereochemical lone pair scattering mechanisms • Measured Seebeck coefficient in the range of 400 µV/K • BUT electrical conductivity likely requires improvement – can calculations help? • Total of 320 substitutions into ABCD3 formula computed • Experimental study is next 8 Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
  • 9. Variation of properties with substitution 9 Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
  • 10. Variation of properties with substitution 10 Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
  • 11. Variation of properties with substitution 11 Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
  • 12. Interesting compounds and effect of scattering 12 Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)
  • 13. Defects – selenide looks slightly better than sulfide 13 (a) (b) • Multiple defects prevent n-type formation • p-type limited by SbPb defect. Situation slightly better in sulfide because VSe can help compensate • Extrinsic defects calculations (not shown) do not provide clear paths forward Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted) CuPbSbS3 CuPbSbSe3
  • 14. Open data and software 14 www.materialsproject.org www.pymatgen.org www.github.com/hackingmaterials/MatMethods www.pythonhosted.org/FireWorksNote: results of 50,000 transport calcs will eventually be posted here Poster on automating surface calculations with these tools: Automating Workflows for Surface Science and Catalysis Joseph H. Montoya and Kristin Persson Monday, 6:00 PM - 8:00 PM Grand Ballroom B (Hilton) COMSEF Poster session
  • 15. Thank you! • Collaborating research groups – Jeffrey Snyder – Geoffroy Hautier – Mary Anne White – Mark Asta – Hong Zhu – Kristin Persson – Gerbrand Ceder • Primary researchers – TmAgTe2 – Prof. Hong Zhu and Dr. Umut Aydemir – YCuTe2 – Dr. Umut Aydemir and Dr. Jan Pohls – CuPbSbS3 – Dr. Alireza Faghaninia • NERSC computing center and staff • Funding: U.S. Department of Energy, Basic Energy Sciences, Materials Science Division 15Slides posted to http://www.slideshare.net/anubhavster