SlideShare a Scribd company logo
1 of 28
Download to read offline
Capturing and leveraging materials science
knowledge from millions of journal articles using
natural language processing techniques
Anubhav Jain
Energy Technologies Area
Lawrence Berkeley National Laboratory
Berkeley, CA
NSF-JST joint workshop on Thermal Transport, Materials
Informatics and Quantum Computing
March 22 2021
Slides (already) posted to hackingmaterials.lbl.gov
2
Useful information is scattered across papers –
how can we make use of this data with NLP?
papers to read “someday”
NLP algorithms
• It is difficult to look up all information any given material
due to the many different ways chemical compositions
are written
– a search for “TiNiSn” will give different results than “NiTiSn”
– a search for “GaSb” won’t match text that reads “Ga0.5Sb0.5”
– a search for “SnBi4Te7” won’t match text that reads “we studied
SnBi4X7 (X=S, Se, Te)”.
– a search for “AgCrSe2”, if it doesn’t have any hits, won’t suggest
“CuCrSe2” as a similar result
• It is difficult to ask questions or compile summaries, e.g.:
– What is the band gap of “Si”?
– What are all the known dopants into GaAs?
– What are all materials studied as thermoelectrics?
3
Traditional search doesn’t answer the questions we want
What is matscholar?
• Matscholar is an attempt to organize the world’s
information on materials science, connecting
together topics of study, synthesis and
characterization methods, and specific materials
compositions
• It is also an effort to use state-of-the-art natural
language processing to make collective use of
the information in millions of articles
One of our main projects concerns named entity
recognition, or automatically labeling text
5
This allows for search
and is crucial to
downstream tasks
6
> 4 million
Papers Collected
31 million
Properties
19 million
Materials Mentions
8.8 million
Characterization Methods
7.5 million
Applications
5 million
Synthesis Methods
•Data Collection: Over 4 million papers
collected from more than 2100 journals.
Note – entities are currently extracted only from the abstracts of the papers
7
Now we can search!
Live on www.matscholar.com
8
How does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• We use the word2vec
algorithm (Google) to turn
each unique word in our
corpus into a 200-
dimensional vector
• These vectors encode the
meaning of each word
meaning based on trying to
predict context words
around the target
9
Step 4a: the word2vec algorithm is used to “featurize” words
Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
• We use the word2vec
algorithm (Google) to turn
each unique word in our
corpus into a 200-
dimensional vector
• These vectors encode the
meaning of each word
meaning based on trying to
predict context words
around the target
10
Step 4a: the word2vec algorithm is used to “featurize” words
Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
“You shall know a word by
the company it keeps”
- John Rupert Firth (1957)
• The classic example is:
– “king” - “man” + “woman” = ? → “queen”
11
Word embeddings trained on ”normal” text learns
relationships between words
12
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• If you read this sentence:
“The band gap of ___ is 4.5 eV”
It is clear that the blank should be filled in with a
material word (not a synthesis method, characterization
method, etc.)
How do we get a neural network to take into account
context (as well as properties of the word itself)?
13
Step 4b: How do we train a model to recognize context?
14
Step 4b.An LSTM neural net classifies words by reading
word sequences
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
15
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
16
Step 5. Let the model label things for you!
Named Entity Recognition
X
• Custom machine learning models to
extract the most valuable materials-related
information.
• Utilizes a long short-term memory (LSTM)
network trained on ~1000 hand-annotated
abstracts.
• f1 scores of ~0.9. f1 score for inorganic
materials extraction is >0.9.
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
17
Could these techniques also be used to predict which
materials we might want to screen for an application?
papers to read “someday”
NLP algorithms
• Dot product of a composition word with
the word “thermoelectric” essentially
predicts how likely that word is to appear
in an abstract with the word
thermoelectric
• Compositions with high dot products are
typically known thermoelectrics
• Sometimes, compositions have a high dot
product with “thermoelectric” but have
never been studied as a thermoelectric
• These compositions usually have high
computed power factors!
(DFT+BoltzTraP)
18
Making predictions: dot products measure likelihood for
words to co-occur
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from
materials science literature. Nature 571, 95–98 (2019).
19
Try ”going back in time” and ranking materials, and follow
what happens in later years
Tshitoyan, V. et al. Unsupervised
word embeddings capture latent
knowledge from materials science
literature. Nature 571, 95–98 (2019).
20
We also published a list of potential new thermoelectrics
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
It is one thing to
retroactively test, but
perhaps another to see
how things go after
publication
21
Two were studied between submission and publication of
manuscript
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
22
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
23
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
24
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
https://arxiv.org/abs/2010.08461
25
Our collaborators also synthesized a prediction, finding a
moderate zT of 0.14
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
26
How is this working?
“Context
words” link
together
information
from different
sources
27
We are creating a comprehensive software library for
materials science NLP research (multiple research groups)
https://github.com/lbnlp
28
The Matscholar team
Kristin Persson
Anubhav Jain
Gerbrand Ceder
John
Dagdelen
Leigh
Weston
Vahe
Tshitoyan
Amalie
Trewartha
Alex
Dunn
Viktoriia
Baibakova
Funding from
(now at Google) (now at Medium)
Slides (already) posted to
hackingmaterials.lbl.gov

More Related Content

What's hot

Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsAnubhav Jain
 
Software tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data miningSoftware tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data miningAnubhav Jain
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsAnubhav Jain
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
Machine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsMachine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsAnubhav Jain
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Anubhav Jain
 
Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...Anubhav Jain
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Anubhav Jain
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Anubhav Jain
 
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...Anubhav Jain
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
Open-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsOpen-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsAnubhav Jain
 
Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Anubhav Jain
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAnubhav Jain
 
Software Tools, Methods and Applications of Machine Learning in Functional Ma...
Software Tools, Methods and Applications of Machine Learning in Functional Ma...Software Tools, Methods and Applications of Machine Learning in Functional Ma...
Software Tools, Methods and Applications of Machine Learning in Functional Ma...Anubhav Jain
 
Atomate: a tool for rapid high-throughput computing and materials discovery
Atomate: a tool for rapid high-throughput computing and materials discoveryAtomate: a tool for rapid high-throughput computing and materials discovery
Atomate: a tool for rapid high-throughput computing and materials discoveryAnubhav Jain
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Anubhav Jain
 
The Materials Project: Experiences from running a million computational scien...
The Materials Project: Experiences from running a million computational scien...The Materials Project: Experiences from running a million computational scien...
The Materials Project: Experiences from running a million computational scien...Anubhav Jain
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 

What's hot (20)

Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Software tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data miningSoftware tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data mining
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methods
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Machine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsMachine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methods
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...Software tools for calculating materials properties in high-throughput (pymat...
Software tools for calculating materials properties in high-throughput (pymat...
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...
 
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
Accelerated Materials Discovery Using Theory, Optimization, and Natural Langu...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Open-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsOpen-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data sets
 
Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design Problems
 
Software Tools, Methods and Applications of Machine Learning in Functional Ma...
Software Tools, Methods and Applications of Machine Learning in Functional Ma...Software Tools, Methods and Applications of Machine Learning in Functional Ma...
Software Tools, Methods and Applications of Machine Learning in Functional Ma...
 
Atomate: a tool for rapid high-throughput computing and materials discovery
Atomate: a tool for rapid high-throughput computing and materials discoveryAtomate: a tool for rapid high-throughput computing and materials discovery
Atomate: a tool for rapid high-throughput computing and materials discovery
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...
 
The Materials Project: Experiences from running a million computational scien...
The Materials Project: Experiences from running a million computational scien...The Materials Project: Experiences from running a million computational scien...
The Materials Project: Experiences from running a million computational scien...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 

Similar to Capturing and leveraging materials science knowledge from millions of journal articles using natural language processing techniques

Natural Language Processing for Materials Design - What Can We Extract From t...
Natural Language Processing for Materials Design - What Can We Extract From t...Natural Language Processing for Materials Design - What Can We Extract From t...
Natural Language Processing for Materials Design - What Can We Extract From t...Anubhav Jain
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignAnubhav Jain
 
Accelerating materials design through natural language processing
Accelerating materials design through natural language processingAccelerating materials design through natural language processing
Accelerating materials design through natural language processingAnubhav Jain
 
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Anubhav Jain
 
Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Anubhav Jain
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainAngelo Salatino
 
An-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-ProcessingAn-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-ProcessingTheodore J. LaGrow
 
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...AI Publications
 
Deep Neural Methods for Retrieval
Deep Neural Methods for RetrievalDeep Neural Methods for Retrieval
Deep Neural Methods for RetrievalBhaskar Mitra
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology:  A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology:  A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research AreasAngelo Salatino
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research AreasAngelo Salatino
 
NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生ysuzuki-naist
 
kakkar2021.pdf
kakkar2021.pdfkakkar2021.pdf
kakkar2021.pdfkaritoIsa2
 
IDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATA
IDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATAIDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATA
IDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATAijistjournal
 
Identifying the semantic relations on
Identifying the semantic relations onIdentifying the semantic relations on
Identifying the semantic relations onijistjournal
 
ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...
ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...
ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...ijaia
 
Natural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual DataNatural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual Datagpano
 

Similar to Capturing and leveraging materials science knowledge from millions of journal articles using natural language processing techniques (20)

Natural Language Processing for Materials Design - What Can We Extract From t...
Natural Language Processing for Materials Design - What Can We Extract From t...Natural Language Processing for Materials Design - What Can We Extract From t...
Natural Language Processing for Materials Design - What Can We Extract From t...
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 
Accelerating materials design through natural language processing
Accelerating materials design through natural language processingAccelerating materials design through natural language processing
Accelerating materials design through natural language processing
 
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
 
Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domain
 
An-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-ProcessingAn-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-Processing
 
NLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextNLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-Text
 
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
Low Resource Domain Subjective Context Feature Extraction via Thematic Meta-l...
 
Deep Neural Methods for Retrieval
Deep Neural Methods for RetrievalDeep Neural Methods for Retrieval
Deep Neural Methods for Retrieval
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology:  A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology:  A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
 
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research AreasThe Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas
 
NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生
 
NLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextNLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-Text
 
kakkar2021.pdf
kakkar2021.pdfkakkar2021.pdf
kakkar2021.pdf
 
IDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATA
IDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATAIDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATA
IDENTIFYING THE SEMANTIC RELATIONS ON UNSTRUCTURED DATA
 
Identifying the semantic relations on
Identifying the semantic relations onIdentifying the semantic relations on
Identifying the semantic relations on
 
ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...
ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...
ESTIMATION OF REGRESSION COEFFICIENTS USING GEOMETRIC MEAN OF SQUARED ERROR F...
 
Natural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual DataNatural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual Data
 
Presentationonline
PresentationonlinePresentationonline
Presentationonline
 

More from Anubhav Jain

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Anubhav Jain
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignAnubhav Jain
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Anubhav Jain
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Anubhav Jain
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Anubhav Jain
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst DesignAnubhav Jain
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Anubhav Jain
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Anubhav Jain
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAnubhav Jain
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …Anubhav Jain
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials ProjectAnubhav Jain
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Anubhav Jain
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Anubhav Jain
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectAnubhav Jain
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...Anubhav Jain
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...Anubhav Jain
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignAnubhav Jain
 

More from Anubhav Jain (20)

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 

Recently uploaded

Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 

Recently uploaded (20)

Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 

Capturing and leveraging materials science knowledge from millions of journal articles using natural language processing techniques

  • 1. Capturing and leveraging materials science knowledge from millions of journal articles using natural language processing techniques Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA NSF-JST joint workshop on Thermal Transport, Materials Informatics and Quantum Computing March 22 2021 Slides (already) posted to hackingmaterials.lbl.gov
  • 2. 2 Useful information is scattered across papers – how can we make use of this data with NLP? papers to read “someday” NLP algorithms
  • 3. • It is difficult to look up all information any given material due to the many different ways chemical compositions are written – a search for “TiNiSn” will give different results than “NiTiSn” – a search for “GaSb” won’t match text that reads “Ga0.5Sb0.5” – a search for “SnBi4Te7” won’t match text that reads “we studied SnBi4X7 (X=S, Se, Te)”. – a search for “AgCrSe2”, if it doesn’t have any hits, won’t suggest “CuCrSe2” as a similar result • It is difficult to ask questions or compile summaries, e.g.: – What is the band gap of “Si”? – What are all the known dopants into GaAs? – What are all materials studied as thermoelectrics? 3 Traditional search doesn’t answer the questions we want
  • 4. What is matscholar? • Matscholar is an attempt to organize the world’s information on materials science, connecting together topics of study, synthesis and characterization methods, and specific materials compositions • It is also an effort to use state-of-the-art natural language processing to make collective use of the information in millions of articles
  • 5. One of our main projects concerns named entity recognition, or automatically labeling text 5 This allows for search and is crucial to downstream tasks
  • 6. 6 > 4 million Papers Collected 31 million Properties 19 million Materials Mentions 8.8 million Characterization Methods 7.5 million Applications 5 million Synthesis Methods •Data Collection: Over 4 million papers collected from more than 2100 journals. Note – entities are currently extracted only from the abstracts of the papers
  • 7. 7 Now we can search! Live on www.matscholar.com
  • 8. 8 How does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 9. • We use the word2vec algorithm (Google) to turn each unique word in our corpus into a 200- dimensional vector • These vectors encode the meaning of each word meaning based on trying to predict context words around the target 9 Step 4a: the word2vec algorithm is used to “featurize” words Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
  • 10. • We use the word2vec algorithm (Google) to turn each unique word in our corpus into a 200- dimensional vector • These vectors encode the meaning of each word meaning based on trying to predict context words around the target 10 Step 4a: the word2vec algorithm is used to “featurize” words Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017 “You shall know a word by the company it keeps” - John Rupert Firth (1957)
  • 11. • The classic example is: – “king” - “man” + “woman” = ? → “queen” 11 Word embeddings trained on ”normal” text learns relationships between words
  • 12. 12 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 13. • If you read this sentence: “The band gap of ___ is 4.5 eV” It is clear that the blank should be filled in with a material word (not a synthesis method, characterization method, etc.) How do we get a neural network to take into account context (as well as properties of the word itself)? 13 Step 4b: How do we train a model to recognize context?
  • 14. 14 Step 4b.An LSTM neural net classifies words by reading word sequences Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 15. 15 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 16. 16 Step 5. Let the model label things for you! Named Entity Recognition X • Custom machine learning models to extract the most valuable materials-related information. • Utilizes a long short-term memory (LSTM) network trained on ~1000 hand-annotated abstracts. • f1 scores of ~0.9. f1 score for inorganic materials extraction is >0.9. Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 17. 17 Could these techniques also be used to predict which materials we might want to screen for an application? papers to read “someday” NLP algorithms
  • 18. • Dot product of a composition word with the word “thermoelectric” essentially predicts how likely that word is to appear in an abstract with the word thermoelectric • Compositions with high dot products are typically known thermoelectrics • Sometimes, compositions have a high dot product with “thermoelectric” but have never been studied as a thermoelectric • These compositions usually have high computed power factors! (DFT+BoltzTraP) 18 Making predictions: dot products measure likelihood for words to co-occur Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 19. 19 Try ”going back in time” and ranking materials, and follow what happens in later years Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 20. 20 We also published a list of potential new thermoelectrics Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019). It is one thing to retroactively test, but perhaps another to see how things go after publication
  • 21. 21 Two were studied between submission and publication of manuscript Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 22. 22 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 23. 23 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 24. 24 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019). https://arxiv.org/abs/2010.08461
  • 25. 25 Our collaborators also synthesized a prediction, finding a moderate zT of 0.14 Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 26. 26 How is this working? “Context words” link together information from different sources
  • 27. 27 We are creating a comprehensive software library for materials science NLP research (multiple research groups) https://github.com/lbnlp
  • 28. 28 The Matscholar team Kristin Persson Anubhav Jain Gerbrand Ceder John Dagdelen Leigh Weston Vahe Tshitoyan Amalie Trewartha Alex Dunn Viktoriia Baibakova Funding from (now at Google) (now at Medium) Slides (already) posted to hackingmaterials.lbl.gov