SlideShare a Scribd company logo
CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC
2013 - 2014
KHẢO SÁT HÀM SỐ
BIÊN SOẠN: LƯU HUY THƯỞNG
HÀ NỘI, 8/2013
HỌ VÀ TÊN: …………………………………………………………………
LỚP :………………………………………………………………….
TRƯỜNG :…………………………………………………………………
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 1
CHUYÊN ĐỀ:
KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ
CÁC BÀI TOÁN LIÊN QUAN ĐẾN KHẢO SÁT HÀM SỐ
VẤN ĐỀ 1: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
1. Đinh nghĩa:
Hàm số f đồng biến trên 1 2 1 2 1 2( , , ( ) ( ))K x x K x x f x f x⇔ ∀ ∈ < ⇒ <
Hàm số f nghịch biến trên 1 2 1 2 1 2( , , ( ) ( ))K x x K x x f x f x⇔ ∀ ∈ < ⇒ >
2. Điều kiện cần:
Giả sử f có đạo hàm trên khoảng I.
a) Nếu f đồng biến trên khoảng I thì '( ) 0,f x x I≥ ∀ ∈
b) Nếu f nghịch biến trên khoảng I thì '( ) 0,f x x I≤ ∀ ∈
3.Điều kiện đủ:
Giả sử f có đạo hàm trên khoảng I.
a) Nếu '( ) 0,f x x I≥ ∀ ∈ ( '( ) 0f x = tại một số hữu hạn điểm) thì f đồng biến trên I.
b) Nếu '( ) 0,f x x I≤ ∀ ∈ ( '( ) 0f x = tại một số hữu hạn điểm) thì f nghịch biến trên I.
c) Nếu '( ) 0,f x x I= ∀ ∈ , ∀x ∈ I thì f không đổi trên I.
Chú ý: Nếu khoảng I được thay bởi đoạn hoặc nửa khoảng thì f phải liên tục trên đó.
Dạng toán 1: Xét tính đơn điệu của hàm số
Phương pháp: Để xét chiều biến thiên của hàm số y = f(x), ta thực hiện các bước như sau:
– Tìm tập xác định của hàm số.
– Tính y′. Tìm các điểm mà tại đó y′ = 0 hoặc y′ không tồn tại (gọi là các điểm tới hạn)
– Lập bảng xét dấu y′ (bảng biến thiên). Từ đó kết luận các khoảng đồng biến, nghịch biến của hàm số.
Bài tập cơ bản
HT 1. Xét tính đơn điệu của các hàm số sau:
1) 3 2
2 2y x x x= − + − 2) 2
(4 )( 1)y x x= − − 3) 3 2
3 4 1y x x x= − + −
4) 4 21
2 1
4
y x x= − − 5) 4 2
2 3y x x= − − + 6) 4 21 1
2
10 10
y x x= + −
7)
2 1
5
x
y
x
−
=
+
8)
1
2
x
y
x
−
=
−
9)
1
1
1
y
x
= −
−
10) 3 2 2y x x= + + − 11) 2 1 3y x x= − − − 12) 2
2y x x= −
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 2
Dạng toán2: Tìm điều kiện để hàm số luôn đồng biến hoặc nghịch biến trên tập xác định
(hoặc trên từng khoảng xác định)
Cho hàm số ( , )y f x m= , m là tham số, có tập xác định D.
• Hàm số f đồng biến trên D ⇔ y′≥ 0, ∀x ∈ D.
• Hàm số f nghịch biến trên D ⇔ y′≤ 0, ∀x ∈ D.
Từ đó suy ra điều kiện của m.
Chú ý:
1) y′ = 0 chỉ xảy ra tại một số hữu hạn điểm.
2) Nếu 2
'y ax bx c= + + thì:
••••
0
0
' 0,
0
0
a b
c
y x R
a
 = =
 ≥≥ ∀ ∈ ⇔  >
∆ ≤
•
0
0
' 0,
0
0
a b
c
y x R
a
 = =
 ≤≤ ∀ ∈ ⇔  <
∆ ≤
3) Định lí về dấu của tam thức bậc hai 2
( )g x ax bx c= + + :
• Nếu ∆< 0 thì g(x) luôn cùng dấu với a.
• Nếu ∆ = 0 thì g(x) luôn cùng dấu với a (trừ x =
2
b
a
− )
• Nếu ∆> 0 thì g(x) có hai nghiệm x1, x2 và trong khoảng hai nghiệm thì g(x) khác dấu với a, ngoài khoảng hai nghiệm
thì g(x) cùng dấu với a.
4) So sánh các nghiệm 1 2,x x của tam thức bậc hai 2
( )g x ax bx c= + + với số 0:
• 1 2
0
0 0
0
x x P
S
∆ >< < ⇔ >
 <
• 1 2
0
0 0
0
x x P
S
∆ >< < ⇔ >
 >
• 1 20 0x x P< < ⇔ <
5) Để hàm số 3 2
y ax bx cx d= + + + có độ dài khoảng đồng biến (nghịch biến) 1 2( ; )x x bằng d thì ta thực hiện các bước
sau:
• Tính y′.
• Tìm điều kiện để hàm số có khoảng đồng biến và nghịch biến:
0
0
a ≠
∆ >
(1)
• Biến đổi 1 2x x d− = thành 2 2
1 2 1 2( ) 4x x x x d+ − = (2)
• Sử dụng định lí Viet đưa (2) thành phương trình theo m.
• Giải phương trình, so với điều kiện (1) để chọn nghiệm.
Bài tập cơ bản
HT 2. Tìm m để các hàm số sau luôn đồng biến trên tập xác định (hoặc từng khoảng xác định) của nó:
1) 3 2
3 ( 2)y x mx m x m= − + + − 2)
3 2
2 1
3 2
x mx
y x= − − +
3)
x m
y
x m
+
=
−
4)
4mx
y
x m
+
=
+
HT 3. Tìm m để hàm số:
1) 3 2
3y x x mx m= + + + nghịch biến trên một khoảng có độ dài bằng 1.
2) 3 21 1
2 3 1
3 2
y x mx mx m= − + − + nghịch biến trên một khoảng có độ dài bằng 3.
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 3
3) 3 21
( 1) ( 3) 4
3
y x m x m x= − + − + + − đồng biến trên một khoảng có độ dài bằng 4.
HT 4. Tìm m để hàm số:
1)
3
2
( 1) ( 1) 1
3
x
y m x m x= + + − + + đồng biến trên khoảng (1; +∞).
2) 3 2
3(2 1) (12 5) 2y x m x m x= − + + + + đồng biến trên khoảng (2; +∞).
3)
4
( 2)
mx
y m
x m
+
= ≠ ±
+
đồng biến trên khoảng (1; +∞).
4)
x m
y
x m
+
=
−
đồng biến trong khoảng (–1; +∞).
BÀI TẬP TỔNG HỢP – NÂNG CAO
HT 5. Cho hàm số (1).Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên
khoảng . Đ/s:
HT 6. Cho hàm số có đồ thị (Cm).Tìm m để hàm số đồng biến trên
khoảng Đ/s:
HT 7. Cho hàm số . Tìm m để hàm đồng biến trên .
Đ/s:
5
4
m ≤
HT 8. Cho hàm số (1), (m là tham số).Tìm m để hàm số (1) đồng biến trên khoảng
(1;2). Đ/s: [ ;1)m ∈ − ∞
HT 9. Cho hàm số 3 2
3(2 1) (12 5) 2y x m x m x= − + + + + đồng biến trên khoảng ( ; 1)−∞ − và (2; )+∞
Đ/s:
7 5
12 12
m− ≤ ≤
HT 10. Cho hàm số 3 2 2
(2 7 7) 2( 1)(2 3)y x mx m m x m m= − − − + + − − . Tìm mđể hàm số đồng biến trên [2; ).+∞
Đ/s:
5
1
2
m− ≤ ≤
---------------------------------------------------------
3 2
3 4y x x mx= + − −
( ;0)−∞ 3m ≤ −
x3 2
2 3(2 1) 6 ( 1) 1y m x m m x= − + + + +
(2; )+∞ 1m ≤
3 2
(1 2 ) (2 ) 2y x m x m x m= + − + − + + ( )0;+∞
4 2
2 3 1y x mx m= − − +
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 4
VẤN ĐỀ 2: CỰC TRỊ CỦA HÀM SỐ
I. KIẾN THỨC CẦN NHỚ
I.Khái niệm cực trị của hàm số
Giả sử hàm số f xác định trên tập ( )D D ⊂ ℝ và 0x D∈
1) 0x – điểm cực đại của f nếu tồn tại khoảng ( ; )a b D⊂ và 0 ( ; )x a b∈ sao cho
0( ) ( )f x f x< , { }0( ; )x a b x∀ ∈ .
Khi đó 0( )f x được gọi là giá trị cực đại (cực đại) của f .
2) 0x – điểm cực tiểu của f nếu tồn tại khoảng ( ; )a b D⊂ và 0 ( ; )x a b∈ sao cho
0( ) ( )f x f x> , { }0( ; )x a b x∀ ∈ .
Khi đó 0( )f x được gọi là giá trị cực tiểu (cực tiểu) của f .
3) Nếu 0x là điểm cực trị của f thì điểm 0 0( ; ( ))x f x được gọi là điểm cực trị của đồ thị hàm số f .
II. Điều kiện cần để hàm số có cực trị
Nếu hàm số f có đạo hàm tại 0x và đạt cực trị tại điểm đó thì 0'( ) 0f x = .
Chú ý: Hàm số f chỉ có thể đạt cực trị tại những điểm mà tại đó đạo hàm bằng 0 hoặc không có đạo hàm.
III. Điểu kiện đủ để hàm số có cực trị
1. Định lí 1: Giả sử hàm số f liên tục trên khoảng ( ; )a b chứa điểm 0x và có đạo hàm trên { }( ; ) oa b x
1) Nếu '( )f x đổi dấu từ âm sang dương khi x đi qua 0x thì f đạt cực tiểu tại 0x .
2) Nếu '( )f x đổi dấu từ dương sang âm khi x đi qua 0x thì f đạt cực đại tại 0x
2. Định lí 2: Giả sử hàm số f có đạo hàm trên khoảng ( ; )a b chứa điểm 0x , 0'( ) 0f x = và có đạo hàm cấp hai khác 0 tại
điểm 0x .
1) Nếu 0"( ) 0f x < thì f đạt cực đại tại 0x .
2) Nếu 0"( ) 0f x > thì f đạt cực tiểu tại 0x .
II. CÁC DẠNG TOÁN
Dạng toán 1: Tìm cực trị của hàm số
Qui tắc 1: Dùng định lí 1.
• Tìm '( )f x .
• Tìm các điểm ( 1,2,...)ix i = mà tại đó đạo hàm bằng 0 hoặc không có đạo hàm.
• Xét dấu '( )f x . Nếu '( )f x đổi dấu khix đi qua ix thì hàm số đạt cực trị tại ix .
Qui tắc 2: Dùng định lí 2.
• Tính '( )f x
• Giải phương trình '( ) 0f x = tìm các nghiệm ( 1,2,...)ix i =
• Tính "( )f x và "( ) ( 1,2,...)if x i = .
Nếu "( ) 0if x < thì hàm số đạt cực đại tại ix . Nếu "( ) 0if x > thì hàm số đạt cực tiểu tại ix
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 5
Bài tập cơ bản
HT 11. Tìm cực trị của các hàm số sau:
1) 2 3
3 2y x x= − 2) 3 2
2 2 1y x x x= − + − 3) 3 21
4 15
3
y x x x= − + −
4)
4
2
3
2
x
y x= − + 5) 4 2
4 5y x x= − + 6)
4
2 3
2 2
x
y x= − + +
7)
2
3 6
2
x x
y
x
− + +
=
+
8)
2
3 4 5
1
x x
y
x
+ +
=
+
9)
2
2 15
3
x x
y
x
− −
=
−
10) 3 4
( 2) ( 1)y x x= − + 11)
2
2
4 2 1
2 3
x x
y
x x
+ −
=
+ −
12)
2
2
3 4 4
1
x x
y
x x
+ +
=
+ +
13) 2
4y x x= − 14) 2
2 5y x x= − + 15) 2
2y x x x= + −
Dạng toán 2: Tìm điều kiện để hàm số có cực trị
1. Nếu hàm số ( )y f x= đạt cực trị tại điểm 0x thì 0'( ) 0f x = hoặc tại 0x không có đạo hàm.
2. Để hàm số ( )y f x= ) đạt cực trị tại điểm 0x thì '( )f x đổi dấu khi x đi qua 0x .
Chú ý:
• Hàm số bậc ba 3 2
y ax bx cx d= + + + có cực trị ⇔ Phương trình ' 0y = có hai nghiệm phân biệt.
Khi đó nếu x0 là điểm cực trị thì ta có thể tính giá trị cực trị y(x0) bằng hai cách:
+ 3 2
0 0 0 0( )y x ax bx cx d= + + +
+ 0 0( )y x Ax B= + , trong đó Ax + B là phần dư trong phép chia y cho y′.
Bài tập cơ bản
HT 12. Tìm m để hàm số:
1) 3 2
( 2) 3 5y m x x mx= + + + − có cực đại, cực tiểu.
2) 3 2 2
3( 1) (2 3 2) ( 1)y x m x m m x m m= − − + − + − − có cực đại, cực tiểu.
3) 3 2 2 3
3 3( 1)y x mx m x m= − + − −
4) 3 2
2 3(2 1) 6 ( 1) 1y x m x m m x= − + + + + 2x =
5) 3 2 2
3 ( 1) 2y x mx m x= − + − + đạt cực đại tại
6) 4 2
2( 2) 5y mx m x m= − + − + − có một cực đại
1
.
2
x =
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 6
HT 13. Tìm , , ,a b c d để hàm số:
1) 3 2
y ax bx cx d= + + + đạt cực tiểu bằng 0 tại 0x = và đạt cực đại bằng
4
27
tại
1
3
x =
2) 4 2
y ax bx c= + + có đồ thị đi qua gốc toạ độ O và đạt cực trị bằng –9 tại 3x = .
HT 14. Tìm m để các hàm số sau không có cực trị:
1) 3 2
3 3 3 4y x x mx m= − + + + 2) 3 2
3 ( 1) 1y mx mx m x= + − − −
HT 15. Tìm m để hàm số :
1) 3 2 2 2
2( 1) ( 4 1) 2( 1)y x m x m m x m= + − + − + − + đạt cực trị tại hai điểm 1 2,x x sao cho:
1 2
1 2
1 1 1
( )
2
x x
x x
+ = + .
2) 3 21
1
3
y x mx mx= − + − đạt cực trị tại hai điểm 1 2,x x 2 sao cho: 1 2 8x x− ≥ .
3) 3 21 1
( 1) 3( 2)
3 3
y mx m x m x= − − + − + đạt cực trị tại hai điểm 1 2,x x sao cho: 1 22 1x x+ = .
HT 16. Tìm m để đồ thị hàm số :
1) 3 2
4y x mx= − + − có hai điểm cực trị là A, B và
2
2 900
729
m
AB = .
2) 4 2
4y x mx x m= − + + có 3 điểm cực trị là A, B, C và tam giác ABC nhận gốc toạ độ O làm trọng tâm.
BÀI TẬP TỔNG HỢP VÀ NÂNG CAO
HT 17. Tìm m để đồ thị hàm số :
1) 3 2
2 12 13y x mx x= + − − có hai điểm cực trị cách đều trục tung. Đ/s: 0m =
2) 3 2 3
3 4y x mx m= − + có các điểm cực đại, cực tiểu đối xứng nhau qua đường phân giác thứ nhất.
Đ/s:
1
2
m = ±
3) 3 2 3
3 4y x mx m= − + có các điểm cực đại, cực tiểu ở về một phía đối với đường thẳng : 3 2 8 0d x y− + = .
Đ/s: {
4
;1  0}
3
m
  ∈ −   
HT 18. Tìm m để đồ thị hàm số:
1) 3 2
3y x x m= + + có 2 điểm cực trị tại A, B sao cho 0
120AOB =
Đ/s:
12 132
0,
3
m m
− +
= =
2) 4 2
2 2y x mx= − + có 3 điểm cực trị tạo thành 1 tam giác có đường tròn ngoại tiếp đi qua
3 9
;
5 5
D
     
Đ/s: 1m =
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 7
3) 4 2 2
2y x mx m m= + + + có 3 điểm cực trị tạo thành 1 tam giác có một góc bằng 0
120 .
Đ/s:
3
1
3
m = −
4) 4 2 4
2 2y x mx m m= − + + có 3 điểm cực trị tạo thành 1 tam giác có diện tích bằng 4.
Đ/s: 3
2m =
HT 19. Tìm m để hàm số:
1) 3
3 2y x mx= − + có hai điểm cực trị và đường tròn qua 2 điểm cực trị cắt đường tròn tâm (1;1)I bán kính
bằng 1 tại hai điểm A, B sao cho diện tích tam giác IAB lớn nhất. Đ/s:
2 3
2
m
±
=
2) 3 2
4 3y x mx x= + − có hai điểm cực trị 1 2,x x thỏa mãn: 1 24 0x x+ = Đ/s:
9
2
m = ±
HT 20. Tìm m để hàm số:
1) 3 2
2 3( 1) 6( 2) 1y x m x m x= + − + − − có đường thẳng đi qua hai điểm cực trị song song với đường thẳng
4 1y x= − − . Đ/s: 5m =
2) 3 2
2 3( 1) 6 (1 2 )y x m x m m x= + − + − có các điểm cực đại, cực tiểu của đồ thị nằm trên đường thẳng 4y x= − .
Đ/s: 1m =
3) 3 2
7 3y x mx x= + + + có đường thẳng đi qua các điểm cực đại, cực tiểu vuông góc với đường thẳng
3 7y x= − . Đ/s:
3 10
2
m = ±
4) 3 2 2
3y x x m x m= − + + có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng (∆):
1 5
2 2
y x= − .
Đ/s: 0m =
-------------------------------------------------------
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 8
VẤN ĐỀ 3: KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ
I. KIẾN THỨC CẦN NHỚ
1. Các bước khảo sát sự biến thiên và vẽ đồ thị của hàm số
• Tìm tập xác định của hàm số.
• Xét sự biến thiên của hàm số:
+ Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận (nếu có).
+ Tính 'y .
+ Tìm các điểm tại đó đạo hàm ' 0y = hoặc không xác định.
+ Lập bảng biến thiên ghi rõ dấu của đạo hàm, chiều biến thiên, cực trị của hàm số.
• Vẽ đồ thị của hàm số:
+ Tìm điểm uốn của đồ thị (đối với hàm số bậc ba và hàm số trùng phương).
+ Vẽ các đường tiệm cận (nếu có) của đồ thị.
+ Xác định một số điểm đặc biệt của đồ thị như giao điểm của đồ thị với các trục toạ độ (trong trường hợp đồ
thị không cắt các trục toạ độ hoặc việc tìm toạ độ giao điểm phức tạp thì có thể bỏ qua). Có thể tìm thêm một số
điểm thuộc đồ thị để có thể vẽ chính xác hơn.
2. Khảo sát sự biến thiên và vẽ đồ thị hàm bậc ba 3 2
( 0)y ax bx cx d a= + + + ≠
• Tập xác định D = ℝ .
• Đồ thị luôn có một điểm uốn và nhận điểm uốn làm tâm đối xứng.
• Các dạng đồ thị:
a > 0 a < 0
' 0y = có 2 nghiệm phân biệt
⇔ 2
' 3 0b ac∆ = − >
' 0y = có nghiệm kép
⇔ 2
' 3 0b ac∆ = − =
' 0y = vô nghiệm
⇔ 2
' 3 0b ac∆ = − <
y
x0
I
y
x0 I
y
x0
I
y
x0
I
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 9
3. Hàm số trùng phương 4 2
( 0)y ax bx c a= + + ≠
• Tập xác định D = ℝ
• Đồ thị luôn nhận trục tung làm trục đối xứng.
• Các dạng đồ thị:
4. Hàm số nhất biến ( 0; 0)
ax b
y c ad bc
cx d
+
= ≠ − ≠
+
• Tập xác định D = 
d
c
   − 
   
ℝ
• Đồ thị có một tiệm cận đứng là và một tiệm cận ngang là . Giao điểm của hai tiệm cận là tâm đối
xứng của đồ thị hàm số.
• Các dạng đồ thị:
Bài tập cơ bản
HT 21. Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau:
1. 3 2
3 1y x x= − + − 2.
3
2
1
3
x
y x x= − + − 3.
3
2
2 1
3
x
y x x= − + − +
4. 4 2
2 2y x x= − + 5. 4 2
1y x x= − − + 6.
1
1
x
y
x
−
=
+
7.
2 1
1
x
y
x
−
=
−
8.
1
2 1
x
y
x
−
=
− +
----------------------------------------------------
d
x
c
= −
a
y
c
=
a > 0 a < 0
có 3 nghiệm phân biệt
⇔
chỉ có 1 nghiệm
⇔
y
x0
y
x0
y
x0
y
x0
0
ad – bc >
x
y
0
ad – bc <
x
y
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 10
VẤN ĐỀ 4: SỰ TƯƠNG GIAO CỦA CÁC ĐỒ THỊ
Dạng toán 1: Dùng đồ thị hàm số biện luận số nghiệm phương trình
• Cơ sở của phương pháp: Xét phương trình: ( ) ( )f x g x= (1)
Số nghiệm của phương trình (1) = Số giao điểm của 1( ) : ( )C y f x= và 2( ) : ( )C y g x=
Nghiệm của phương trình (1) là hoành độ giao điểm của 1( ) : ( )C y f x= và 2( ) : ( )C y g x=
• Để biện luận số nghiệm của phương trình ( , ) 0F x m = (*) bằng đồ thị ta biến đổi (*) về dạng sau:
( , ) 0 ( ) ( )F x m f x g m= ⇔ = (1)
Khi đó (1) có thể xem là phương trình hoành độ
giao điểm của hai đường:
( ) : ( )C y f x= và : ( )d y g m=
•d là đường thẳng cùng phương với trục hoành.
• Dựa vào đồ thị (C) ta biện luận số giao điểm
của (C) và d . Từ đó suy ra số nghiệm của (1)
Bài tập cơ bản
HT 22. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. Dùng đồ thị (C) biện luận theo m số nghiệm của phương
trình:
1) 3 3
3 1; 3 1 0y x x x x m= − + − + − = 2) 3 3
3 1; 3 1 0y x x x x m= − + − − + + =
3) 3 3 2
3 1; 3 2 2 0y x x x x m m= − + − − − − = 4) 3 3
3 1; 3 4 0y x x x x m= − + − − + + =
5)
4
2 4 2
2 2; 4 4 2 0
2
x
y x x x m= − + + − − + = 6) 4 2 4 2
2 2; 2 2 0y x x x x m= − + − − + =
HT 23. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. Dùng đồ thị (C) biện luận theo m số nghiệm của phương
trình:
1) 3 2 3 2
( ) : 3 6; 3 6 3 0C y x x x x m= − + − + − + =
2)
33 2 2
( ) : 2 9 12 4; 2 9 12 0C y x x x x x x m= − + − − + + =
3) 2 2 2
( ) : ( 1) (2 ); ( 1) 2 ( 1) (2 )C y x x x x m m= + − + − = + −
4)
1 11 1 1
( ) : ; ; ;
1 1 1 1 1
x xx x x
C y m m m m
x x x x x
− −− − −
= = = = =
+ + + + +
------------------------------------------------
y
x
g(m A
(C)
(4) : y =
g(m)yCĐ
yCT
xA
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 11
Dạng toán 2: Tìm điều kiện tương giao giữa các đồ thị
1.Cho hai đồ thị 1( ) : ( )C y f x= và 2( ) : ( )C y g x= . Để tìm hoành độ giao điểm của 1( )C và 2( )C ta giải phương trình:
( ) ( )f x g x= (*) (gọi là phương trình hoành độ giao điểm).
Số nghiệm của phương trình (*) bằng số giao điểm của hai đồ thị.
2. Đồ thị hàm số bậc ba 3 2
( 0)y ax bx cx d a= + + + ≠ cắt trục hoành tại 3 điểm phân biệt
⇔ Phương trình 3 2
0ax bx cx d+ + + = có 3 nghiệm phân biệt.
Bài tập cơ bản
HT 24. Tìm toạ độ giao điểm của các đồ thị của các hàm số sau:
1)
2
3
3
2 2
1
2 2
x
y x
x
y
 = − + −
 = +
2)
2
2 4
1
2 4
x
y
x
y x x
 − = −
 = − + +
3)
3
4 3
2
y x x
y x
 = −
 = − +
HT 25. Tìm m để đồ thị các hàm số:
1) 2 2
( 1)( 3)y x x mx m= − − + − cắt trục hoành tại ba điểm phân biệt.
2) 3 2
3 (1 2 ) 1y mx mx m x= + − − − cắt trục hoành tại ba điểm phân biệt.
3) 3 2
2 2 ; 2y x x mx m y x= + + + = + cắt nhau tại ba điểm phân biệt.
4) 3 2 2
2 2 2 1; 2 2y x x x m y x x= + − + − = − + cắt nhau tại ba điểm phân biệt.
HT 26. Tìm m để đồ thị các hàm số:
1) 4 2
2 1;y x x y m= − − = cắt nhau tại bốn điểm phân biệt.
2) 4 2 3
( 1)y x m m x m= − + + cắt trục hoành tại bốn điểm phân biệt.
3) 4 2 2
(2 3) 3y x m x m m= − − + − cắt trục hoành tại bốn điểm phân biệt.
HT 27. Biện luận theo m số giao điểm của các đồ thị của các hàm số sau:
1)
3
3 2
( 2)
y x x
y m x
 = − −
 = −
2)
3
3
3
( 3)
x
y x
y m x
 = − +
 = −
HT 28. Tìm m để đồ thị của các hàm số:
1)
3 1
; 2
4
x
y y x m
x
+
= = +
−
cắt nhau tại hai điểm phân biệt A, B. Khi đó tìm m để đoạn AB ngắn nhất.
2)
4 1
;
2
x
y y x m
x
−
= = − +
−
cắt nhau tại hai điểm phân biệt A, B. Khi đó tìm m để đoạn AB ngắn nhất.
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 12
BÀI TẬP TỔNG HỢP VÀ NÂNG CAO
HT 29. Tìm m để hàm số:
1)
2 1
( )
1
x
y C
x
−
=
+
cắt đường thẳng : y x m∆ = + tại hai điểm phân biệt A, B sao cho 2 2AB = Đ/s: 1; 7m m= − =
2)
1
( )
2
x
y C
x
−
= cắt đường thẳng : y x m∆ = − + tại hai điểm phân biệt A, B sao cho A, B có độ dài nhỏ nhất.
Đ/s:
1
2
m =
3)
2 1
( )
1
x
y C
x
−
=
−
cắt đường thẳng : y x m∆ = + tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O.
Đ/s: 2m = −
4)
2 2 3
( )
2
mx m
y C
x
− −
=
+
cắt đường thẳng : 2y x∆ = − tại hai điểm phân biệt A, B sao cho 0
45AOB =
5)
(1 ) 2(1 )m x m
y
x
+ + −
= cắt đường thẳng : y x∆ = tại hai điểm phân biệt A, B sao cho: 4
OA OB
OB OA
+ =
6)
3 1
1
x
y
x
+
=
−
cắt đường thẳng : ( 1) 2y m x m∆ = + + − tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích
bằng
3
.
2
7)
1
( )
2 1
x
y C
x
+
=
+
cắt đường thẳng : 2 2 1 0,mx y m∆ − + + = cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho biểu
thức 2 2
P OA OB= + đạt giá trị nhỏ nhất.
HT 30. Cho hàm số
2
( )
1
x
y C
x
+
=
−
Gọi I là giao điểm của hai tiệm cận. Tìm trên đồ thị (C) hai điểm A, B sao cho tam giác
IAB nhận (4; 2)H − làm trực tâm. Đ/s: (2;4),( 2;0)−
HT 31. Cho hàm số
1
( )
2 1
x
y C
x
− +
=
−
Xác định m để đường thẳng : y x m∆ = + cắt đồ thị (C) tại hai điểm phân biệt
có hoành độ 1 2,x x sao cho tổng 1 2'( ) '( )f x f x+ đạt giá trị lớn nhất.
HT 32. Cho hàm số
1
( )
2 1
x
y C
x
−
=
+
Xác định m để đường thẳng : y x m∆ = + cắt đồ thị (C) tại hai điểm phân biệt có
hoành độ 1 2,x x sao cho tổng 1 2'( ) '( )f x f x+ đạt giá trị nhỏ nhất.
HT 33. Cho hàm số
3 4
( )
2 3
x
y C
x
−
=
−
Xác định tọa độ các điểm trên đồ thị (C) sao cho tổng khoảng cách từ điểm đó đến
trục hoành gấp 2 lần khoảng cách từ điểm đó đến tiệm cận đứng.
-----------------------------------------------------
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 13
VẤN ĐỀ 5: SỰ TIẾP XÚC CỦA HAI ĐƯỜNG CONG
1. Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số ( )y f x= tại điểm 0x là hệ số góc của tiếp tuyến với đồ thị (C) của
hàm số tại điểm ( )0 0 0; ( )M x f x .
Khi đó phương trình tiếp tuyến của (C) tại điểm ( )0 0 0; ( )M x f x là:
0 0 0'( )( )y y f x x x− = − 0 0( ( ))y f x=
2. Điều kiện cần và đủ để hai đường 1( ) : ( )C y f x= và 2( ) : ( )C y g x= tiếp xúc nhau là hệ phương trình sau có nghiệm:
( ) ( )
'( ) '( )
f x g x
f x g x
 =
 =
(*)
Nghiệm của hệ (*) là hoành độ của tiếp điểm của hai đường đó.
3. Nếu 1( ) :C y px q= + và 2
2( ) :C y ax bx c= + + thì (C1) và (C2) tiếp xúc nhau
⇔ phương trình 2
ax bx c px q+ + = + có nghiệm kép.
Dạng toán 1: Lập phương trình tiếp tuyến của đường cong (C): y = f(x)
Bài toán 1: Viết phương trình tiếp tuyến ∆ của( ) : ( )C y f x= tại điểm ( )0 0 0;M x y :
• Nếu cho 0x thì tìm 0 0( )y f x=
Nếu cho 0y thì tìm 0x là nghiệm của phương trình 0( )f x y= .
• Tính ' '( )y f x= . Suy ra 0 0'( ) '( )y x f x= .
• Phương trình tiếp tuyến ∆ là: 0 0 0'( )( )y y f x x x− = −
Bài toán 2: Viết phương trình tiếp tuyến ∆ của ( ) : ( )C y f x= biết ∆ có hệ số góc k cho trước.
Cách 1: Tìm toạ độ tiếp điểm.
• Gọi M(x0; y0) là tiếp điểm. Tính f′ (x0).
•∆ có hệ số góc k ⇒ f′ (x0) = k (1)
• Giải phương trình (1), tìm được x0 và tính y0 = f(x0). Từ đó viết phương trình của ∆.
Cách 2: Dùng điều kiện tiếp xúc.
• Phương trình đường thẳng ∆ có dạng: y = kx + m.
•∆ tiếp xúc với (C) khi và chỉ khi hệ phương trình sau có nghiệm:
( )
'( )
f x kx m
f x k
 = +
 =
(*)
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 14
• Giải hệ (*), tìm được m. Từ đó viết phương trình của ∆.
Chú ý: Hệ số góc k của tiếp tuyến ∆ có thể được cho gián tiếp như sau:
+ ∆ tạo với chiều dương trục hoành góc α thì k = tanα
+ ∆ song song với đường thẳng d: y = ax + b thì k = a
+ ∆ vuông góc với đường thẳng d: y = ax + b (a ≠ 0) thì k =
1
a
−
+ ∆ tạo với đường thẳng d: y = ax + b một góc α thì tan
1
k a
ka
α
−
=
+
Bài toán 3: Viết phương trình tiếp tuyến ∆ của (C): y = f(x), biết ∆ đi qua điểm ( ; )A AA x y .
Cách 1:Tìm toạ độ tiếp điểm.
• Gọi M(x0; y0) là tiếp điểm. Khi đó: y0 = f(x0), y′0 = f′ (x0).
• Phương trình tiếp tuyến ∆ tại M: y – y0 = f′ (x0).(x – x0)
•∆ đi qua ( ; )A AA x y nên: yA – y0 = f′ (x0).(xA – x0) (2)
• Giải phương trình (2), tìm được x0. Từ đó viết phương trình của ∆.
Cách 2: Dùng điều kiện tiếp xúc.
• Phương trình đường thẳng ∆ đi qua ( ; )A AA x y và có hệ số góc k: y – yA = k(x – x1)
•∆ tiếp xúc với (C) khi và chỉ khi hệ phương trình sau có nghiệm:
( ) ( )
'( )
A Af x k x x y
f x k
 = − +
 =
(*)
• Giải hệ (*), tìm được x (suy ra k). Từ đó viết phương trình tiếp tuyến ∆.
Bài tập cơ bản
HT 34. Viết phương trình tiếp tuyến của (C) tại điểm được chỉ ra:
1) 3 2
( ) : 3 7 1C y x x x= − − + tại A(0; 1) 2) ( ) :C 4 2
2 1y x x= − + tại B(1; 0)
3) (C):
3 4
2 3
x
y
x
+
=
−
tại C(1; –7)
4) (C):
1
2
x
y
x
+
=
−
tại các giao điểm của (C) với trục hoành, trục tung.
5) (C): 2
2 2 1y x x= − + tại các giao điểm của (C) với trục hoành, trục tung.
6) (C): 3
3 1y x x= − + tại điểm uốn của (C).
HT 35. Viết phương trình tiếp tuyến của (C) tại các giao điểm của (C) với đường được chỉ ra:
1) (C): 3 2
2 3 9 4y x x x= − + − và d: 7 4y x= + .
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 15
2) (C): 3 2
2 3 9 4y x x x= − + − và (P): 2
8 3y x x= − + − .
HT 36. Tính diện tích tam giác chắn hai trục toạ độ bởi tiếp tuyến của đồ thị (C) tại điểm được chỉ ra:
(C):
5 11
2 3
x
y
x
+
=
−
tại điểm A có xA = 2 .
HT 37. Tìm m để tiếp tuyến của đồ thị (C) tại điểm được chỉ ra chắn hai trục toạ độ một tam giác có diện tích bằng S
cho trước:
1) (C):
2
1
x m
y
x
+
=
−
tại điểm A có xA = 2 và
1
2
S = .
2) (C):
3
2
x m
y
x
−
=
+
tại điểm B có xB = –1 và S =
9
2
.
3) (C): 3
1 ( 1)y x m x= + − + tại điểm C có xC = 0 và S = 8.
HT 38. Viết phương trình tiếp tuyến ∆ của (C), biết ∆ có hệ số góc k được chỉ ra:
1) (C): 3 2
2 3 5y x x= − + ; k = 12 2) (C):
2 1
2
x
y
x
−
=
−
; k = –3
HT 39. Viết phương trình tiếp tuyến ∆ của (C), biết ∆ song song với đường thẳng d cho trước:
1) (C):
3
2
2 3 1
3
x
y x x= − + + ; d: y = 3x + 2 2) (C):
2 1
2
x
y
x
−
=
−
; d:
3
2
4
y x= − +
HT 40. Viết phương trình tiếp tuyến ∆ của (C), biết ∆ vuông góc với đường thẳng d cho trước:
1) (C):
3
2
2 3 1
3
x
y x x= − + + ; d: 2
8
x
y = − + 2) (C):
2 1
2
x
y
x
−
=
−
; d: y x=
HT 41. Tìm m để tiếp tuyến ∆ của (C) tại điểm được chỉ ra song song với đường thẳng d cho trước:
1) (C):
2
(3 1)
( 0)
m x m m
y m
x m
+ − +
= ≠
+
tại điểm A có yA = 0 và d: 10y x= − .
HT 42. Viết phương trình tiếp tuyến ∆ của (C), biết ∆đi qua điểm được chỉ ra:
1) (C): 3
3 2y x x= − + − ; A(2; –4) 2) (C): 3
3 1y x x= − + ; B(1; –6)
3) (C): ( )
2
2
2y x= − ; C(0; 4) 4) (C): 4 21 3
3
2 2
y x x= − + ;
3
0;
2
D
    
5) (C):
2
2
x
y
x
+
=
−
; E(–6; 5) 6) (C):
3 4
1
x
y
x
+
=
−
; F(2; 3)
HT 43. Tìm m để hai đường (C1), (C2) tiếp xúc nhau:
1) 3 2
1 2( ) : (3 ) 2; ( ) :C y x m x mx C= + + + − trục hoành
2) 3 2
1 2( ) : 2 ( 1) ; ( ) :C y x x m x m C= − − − + trục hoành
3) 3
1 2( ) : ( 1) 1; ( ) : 1C y x m x C y x= + + + = +
4) 3 2
1 2( ) : 2 2 1; ( ) :C y x x x C y x m= + + − = +
HT 44. Tìm m để hai đường (C1), (C2) tiếp xúc nhau:
1) 4 2 2
1 2( ) : 2 1; ( ) : 2C y x x C y mx m= + + = +
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 16
2) 4 2 2
1 2( ) : 1; ( ) :C y x x C y x m= − + − = − +
3) 4 2 2
1 2
1 9
( ) : 2 ; ( ) :
4 4
C y x x C y x m= − + + = − +
4) 2 2 2
1 2( ) : ( 1) ( 1) ; ( ) : 2C y x x C y x m= + − = +
5)
2
1 2
(2 1)
( ) : ; ( ) :
1
m x m
C y C y x
x
− −
= =
−
Dạng toán 2: Tìm những điểm trên đường thẳng d mà từ đó có thể vẽ được 1, 2, 3, … tiếp tuyến với đồ thị (C):
( )y f x=
Giả sử d: ax + by +c = 0. M(xM; yM) ∈ d.
• Phương trình đường thẳng ∆ qua M có hệ số góc k: y = k(x – xM) + yM
•∆ tiếp xúc với (C) khi hệ sau có nghiệm:
( ) ( ) (1)
'( ) (2)
M Mf x k x x y
f x k
 = − +
 =
• Thế k từ (2) vào (1) ta được: f(x) = (x – xM).f′ (x) + yM (C)
• Số tiếp tuyến của (C) vẽ từ M = Số nghiệm x của (C)
Bài tập cơ bản
HT 45. Tìm các điểm trên đồ thị (C) mà từ đó vẽ được đúng một tiếp tuyến với (C):
1) 3 2
( ) : 3 2C y x x= − + − 2) 3
( ) : 3 1C y x x= − +
HT 46. Tìm các điểm trên đường thẳng d mà từ đó vẽ được đúng một tiếp tuyến với (C):
1)
1
( ) :
1
x
C y
x
+
=
−
; d là trục tung 2)
3
( ) :
1
x
C y
x
+
=
−
; d: y = 2x + 1
HT 47. Tìm các điểm trên đường thẳng d mà từ đó vẽ được ít nhất một tiếp tuyến với (C):
1)
2 1
( ) :
2
x
C y
x
+
=
−
; d: x = 3 2)
3 4
( ) :
4 3
x
C y
x
+
=
−
; d: y = 2
HT 48. Tìm các điểm trên đường thẳng d mà từ đó vẽ được ba tiếp tuyến với (C):
1) 3 2
( ) : 3 2C y x x= − + − ; d: y = 2 2) 3
( ) : 3C y x x= − ; d: x = 2
3) 3
( ) : 3 2C y x x= − + + ; d là trục hoành 4) 3
( ) : 12 12C y x x= − + ; d: y = –4
HT 49. Từ điểm A có thể kẻ được bao nhiêu tiếp tuyến với (C):
1) 3 2
( ) : 9 17 2C y x x x= − + + ; A(–2; 5) 2) 3 21 4 4
( ) : 2 3 4; ;
3 9 3
C y x x x A
  = − + +   
HT 50. Từ một điểm bất kì trên đường thẳng d có thể kẻ được bao nhiêu tiếp tuyến với (C):
1) 3 2
( ) : 6 9 1C y x x x= − + − ; : 2d x = 2) 3
( ) : 3C y x x= − ; : 2d x =
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 17
Dạng toán 3: Tìm những điểm mà từ đó có thể vẽ được 2 tiếp tuyến với đồ thị (C): y = f(x) và 2 tiếp tuyến đó
vuông góc với nhau
Gọi M(xM; yM).
• Phương trình đường thẳng ∆ qua M có hệ số góc k: y = k(x – xM) + yM
•∆ tiếp xúc với (C) khi hệ sau có nghiệm:
( ) ( ) (1)
'( ) (2)
M Mf x k x x y
f x k
 = − +
 =
• Thế k từ (2) vào (1) ta được: f(x) = (x – xM).f′ (x) + yM (C)
• Qua M vẽ được 2 tiếp tuyến với (C) ⇔ (C) có 2 nghiệm phân biệt x1, x2.
• Hai tiếp tuyến đó vuông góc với nhau ⇔ f′ (x1).f′ (x2) = –1
Từ đó tìm được M.
Chú ý: Qua M vẽ được 2 tiếp tuyến với (C) sao cho 2 tiếp điểm nằm về hai phía với trục hoành thì
1 2
(3) 2
( ). ( ) 0
coù nghieäm phaân bieät
f x f x

 <
Bài tập cơ bản
HT 51. Chứng minh rằng từ điểm A luôn kẻ được hai tiếp tuyến với (C) vuông góc với nhau. Viết phương trình các tiếp
tuyến đó:
2 1
( ) : 2 3 1; 0;
4
C y x x A
  = − + −  
HT 52. Tìm các điểm trên đường thẳng d mà từ đó có thể vẽ được hai tiếp tuyến với (C) vuông góc với nhau:
1) 3 2
( ) : 3 2C y x x= − + ; d: y = –2 2) 3 2
( ) : 3C y x x= + ; d là trục hoành
Dạng toán 4: Các bài toán khác về tiếp tuyến
HT 53. Cho hypebol (H) và điểm M bất kì thuộc (H). Gọi I là giao điểm của hai tiệm cận. Tiếp tuyến tại M cắt 2 tiệm cận
tại A và B.
1) Chứng minh M là trung điểm của đoạn AB.
2) Chứng minh diện tích của ∆IAB là một hằng số.
3) Tìm điểm M để chu vi ∆IAB là nhỏ nhất.
4) Tìm M để bán kính, chu vi, diện tích đường tròn ngoại tiếp tam giác IAB đạt giá trị nhỏ nhất.
5) Tìm M để bán kính, chu vi, diện tích đường tròn nội tiếp tam giác IAB đạt giá trị lớn nhất.
6) Tìm M để khoảng cách từ I đến tiếp tuyến là lớn nhất.
1)
2 1
( ) :
1
x
H y
x
−
=
−
2)
1
( ) :
1
x
H y
x
+
=
−
3)
4 5
( ) :
2 3
x
H y
x
−
=
− +
HT 54. Tìm m để tiếp tuyến tại điểm M bất kì thuộc hypebol (H) cắt hai đường tiệm cận tạo thành một tam giác có diện
tích bằng S:
1)
2 3
( ) : ; 8
mx
H y S
x m
+
= =
−
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 18
VẤN ĐỀ 7: KHOẢNG CÁCH
Kiến thức cơ bản:
1) Khoảng cách giữa hai điểm A, B: AB = 2 2
( ) ( )B A B Ax x y y− + −
2) Khoảng cách từ điểm M(x0; y0) đến đường thẳng ∆: ax + by + c = 0:
d(M, ∆) = 0 0
2 2
ax by c
a b
+ +
+
3) Diện tích tam giác ABC:
S = ( )
2
2 21 1
. .sin . .
2 2
AB AC A AB AC AB AC= −
Bài tập cơ bản
HT 55. Tìm các điểm M thuộc hypebol (H) sao cho tổng các khoảng cách từ đó đến hai tiệm cận là nhỏ nhất.
1)
2
( ) :
2
x
H y
x
+
=
−
2)
2 1
( ) :
1
x
H y
x
−
=
+
3)
4 9
( ) :
3
x
H y
x
−
=
−
HT 56. Tìm các điểm M thuộc hypebol (H) sao cho tổng các khoảng cách từ đó đến hai trục toạ độ là nhỏ nhất.
1)
1
( ) :
1
x
H y
x
−
=
+
2)
2 1
( ) :
2
x
H y
x
+
=
−
3)
4 9
( ) :
3
x
H y
x
−
=
−
HT 57. Cho hypebol (H). Tìm hai điểm A, B thuộc hai nhánh khác nhau của (H) sao cho độ dài AB là nhỏ nhất.
1)
1
( ) :
1
x
H y
x
−
=
+
2)
2 3
( ) :
2
x
H y
x
+
=
−
3)
4 9
( ) :
3
x
H y
x
−
=
−
HT 58. Cho (C) và đường thẳng d. Tìm m để d cắt (C) tại 2 điểm A, B sao cho độ dài AB là nhỏ nhất.
1
( ) : ; : 2 0
1
x
H y d x y m
x
+
= − + =
−
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 19
ÔN TẬP TỔNG HỢP
PHẦN I: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
HT 1. Cho hàm số 3 21
( 1) (3 2)
3
y m x mx m x= − + + − (1).Tìm tất cả các giá trị của tham số m để hàm số (1) đồng
biến trên tập xác định của nó. Đ/s: 2m ≥
HT 2. Cho hàm số 3 2
3 4y x x mx= + − − (1).Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên
khoảng ( ; 0)−∞ . Đ/s: 3m ≤ −
HT 3. Cho hàm số x3 2
2 3(2 1) 6 ( 1) 1y m x m m x= − + + + + có đồ thị (Cm).Tìm m để hàm số đồng biến trên khoảng
(2; )+∞ Đ/s: 1m ≤
HT 4. Cho hàm số 3 2
(1 2 ) (2 ) 2y x m x m x m= + − + − + + . Tìm m để hàm đồng biến trên ( )0;+∞ . Đ/s:
5
4
m≥
HT 5. Cho hàm số 4 2
2 3 1y x mx m= − − + (1), (m là tham số).Tìm m để hàm số (1) đồng biến trên khoảng (1; 2).
Đ/s: ( ;1m ∈ −∞  .
HT 6. Cho hàm số
4mx
y
x m
+
=
+
(1). Tìm tất cả các giá trị của tham số m để hàm số (1) nghịch biến trên khoảng
( ;1)−∞ .Đ/s: 2 1m− < ≤ − .
HT 7. Cho hàm số 3 2
3y x x mx m= + + + . Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1. Đ/s:⇔
9
4
m =
PHẦN II: CỰC TRỊ CỦA HÀM SỐ
HT 8. Cho hàm số 3 2
(1 – 2 ) (2 – ) 2y x m x m x m= + + + + (m là tham số) (1). Tìm các giá trị của m để đồ thị hàm số
(1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Đ/s:
5 7
4 5
m< < .
HT 9. Cho hàm số 3 2
( 2) 3 5y m x x mx= + + + − , m là tham số.Tìm các giá trị của m để các điểm cực đại, cực tiểu của
đồ thị hàm số đã cho có hoành độ là các số dương. Đ/s: 3 2m− < < −
HT 10. Cho hàm số 3 2 3
2 3( 2) 6(5 1) (4 2).y x m x m x m= − + + + − + Tìm m để hàm số đạt cực tiểu tại (0 1;2x ∈ 
Đ/s:
1
0
3
m− ≤ <
HT 11. Cho hàm số 4 21 3
2 2
y x mx= − + (1).Xác định m để đồ thị của hàm số (1) có cực tiểu mà không có cực đại.
Đ/s: 0m ≤
HT 12. Cho hàm số 4 2
2 4 ( ).my x mx C= − + − Tìm các giá trị của m để tất cả các điểm cực trị của ( )mC đều nằm
trên các trục tọa độ. Đ/s: 2; 0m m= ≤
HT 13. Cho hàm số 3 2 2
(2 1) ( 3 2) 4y x m x m m x= − + + − − + − (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có
các điểm cực đại và cực tiểu nằm về hai phía của trục tung. Đ/s:1 2m< < .
HT 14. Cho hàm số 3 21
(2 1) 3
3
y x mx m x= − + − − (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm
cực đại, cực tiểu nằm về cùng một phía đối với trục tung. Đ/s:
1
1
2
m
m
 ≠
 >
HT 15. Cho hàm số 3 2
3 – 2y x x mx m= + + + (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 20
và cực tiểu nằm về hai phía đối với trục hoành. Đ/s: 3m <
HT 16. Cho hàm số 3 2 31 4
( 1) ( 1) ( ).
3 3
y x m x m C= − + + + Tìm m để các điểm cực trị của hàm số (C) nằm về hai phía
(phía trong và phía ngoài) của đường tròn có phương trình: 2 2
4 3 0.x y x+ − + = Đ/s:
1
2
m <
HT 17. Cho hàm số 3 2 3
3 4y x mx m= − + (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và
cực tiểu đối xứng nhau qua đường thẳng y = x. Đ/s:
2
2
m = ±
HT 18. Cho hàm số 3 2
3 3 1y x mx m= − + − − . Với giá trị nào của m thì đồ thị hàm số có điểm cực đại và điểm cực tiểu
đối xứng với nhau qua đường thẳng : 8 74 0d x y+ − = . Đ/s: 2m =
HT 19. Cho hàm số 3 2 2 3 2
3 3(1 )y x mx m x m m= − + + − + − (1).Viết phương trình đường thẳng qua hai điểm cực trị
của đồ thị hàm số (1). Đ/s: 2
2y x m m= − + .
HT 20. Cho hàm số 3 2
3 2 ( ).my x x mx C= − + + Tìm m để ( )mC có cực đại và cực tiểu, đồng thời các điểm cực trị
của hàm số cách đều đường thẳng : 1 0.d x y− − = Đ/s: 0m =
HT 21. Cho hàm số 3 2
3 2y x x mx= − − + (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và
cực tiểu cách đều đường thẳng 1y x= − . Đ/s:
3
0;
2
m
   = − 
   
HT 22. Cho hàm số 3 2
3y x x mx= − + (1). Với giá trị nào của m thì đồ thị hàm số (1) có các điểm cực đại và điểm
cực tiểu đối xứng với nhau qua đường thẳng : – 2 – 5 0d x y = . Đ/s: 0m =
HT 23. Cho hàm số 3 2
3( 1) 9 2y x m x x m= − + + + − (1) có đồ thị là (Cm). Với giá trị nào của m thì đồ thị hàm số có
điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng
1
:
2
d y x= . Đ/s: 1m = .
HT 24. Cho hàm số 3 21 1
( 1) 3( 2)
3 3
y x m x m x= − − + − + , với m là tham số thực. Xác định m để hàm số đã cho đạt
cực trị tại 1 2,x x sao cho 1 22 1x x+ = . Đ/s:
4 34
4
m
− ±
= .
HT 25. Cho hàm số 3 2
3( 1) 9y x m x x m= − + + − , với m là tham số thực. Xác định m để hàm số đã cho đạt cực trị tại
1 2,x x sao cho 1 2 2x x− ≤ .Đ/s: 3 1 3m− ≤ < − − và 1 3 1.m− + < ≤
HT 26. Cho hàm số 3 2
(1 2 ) (2 ) 2y x m x m x m= + − + − + + , với m là tham số thực. Xác định m để hàm số đã cho đạt
cực trị tại 1 2,x x sao cho 1 2
1
3
x x− > .Đ/s:
3 29
1
8
m m
+
> ∨ < −
HT 27. Cho hàm số 3 2
4 – 3y x mx x= + . Tìm m để hàm số có hai điểm cực trị 1 2,x x thỏa 1 24x x= − . Đ/s:
9
2
m = ±
HT 28. Tìm các giá trị của m để hàm số 3 2 21 1
( 3)
3 2
y x mx m x= − + − có cực đại 1x , cực tiểu 2x đồng thời 1x ; 2x là
độ dài các cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng
5
2
Đ/s:
14
2
m =
HT 29. Cho hàm số 3 2 22
( 1) ( 4 3) 1.
3
y x m x m m x= + + + + + + Tìm m để hàm số có cực trị. Tìm giá trị lớn nhất của
biểu thức 1 2 1 22( )A x x x x= − + với 1 2,x x là các điểm cực trị cửa hàm số.
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 21
Đ/s:
9
2
A ≤ khi 4m = −
HT 30. Cho hàm số 3 2
3( 1) 9 (1)y x m x x m= − + + − với m là tham số thực. Xác định m để hàm số (1) đạt cực đại ,
cực tiểu sao cho 2CD CTy y+ = Đ/s:
1
3
m
m
 =
 = −
HT 31. Cho hàm số (C3 2 21
( 1) 1 ).
3 my x mx m x= − + − + Tìm m để hàm số có cực đại cực tiểu và: D 2C CTy y+ >
Đ/s:
1 0
1
m
m
− < <
 >
HT 32. Cho hàm số 3 2
– 3 2y x x= + (1). Tìm điểm M thuộc đường thẳng : 3 2d y x= − sao tổng khoảng cách từ M
tới hai điểm cực trị nhỏ nhất. Đ/s:
4 2
;
5 5
M
     
HT 33. Cho hàm số 3 2 2 3
3 3( 1)y x mx m x m m= − + − − + (1). Tìm m để hàm số (1) có cực trị đồng thời khoảng
cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số
đến gốc tọa độ O. Đ/s:
3 2 2
3 2 2
m
m
 = − +

 = − −

.
HT 34. Cho hàm số 3 2
3( 1) 3 ( 2) 2 ( )y x m x m m x m C= − + + + − + .Tìm m để đồ thị hàm số (C) có cực trị đồng thời
khoảng cách từ điểm cực đại của đồ thị hàm số (C) tới trục Ox bằng khoảng cách từ điểm cực tiểu của đồ thị hàm số (C)
tới trục .Oy Đ/s: 2; 1; 1; 0m m m m= = = − =
HT 35. Cho hàm số 3 2
3 2y x x mx= − − + có đồ thị là (Cm). Tìm m để (Cm) có các điểm cực đại, cực tiểu và đường
thẳng đi qua các điểm cực trị song song với đường thẳng : 4 3d y x= − + .Đ/s: 3m =
HT 36. Cho hàm số 3 2
3 2y x x mx= − − + có đồ thị là (Cm). Tìm m để (Cm) có các điểm cực đại, cực tiểu và đường
thẳng đi qua các điểm cực trị tạo với đường thẳng : 4 – 5 0d x y+ = một góc 0
45 . Đ/s:
1
2
m = −
HT 37. Cho hàm số 3 2
3y x x m= + + (1).Xác định m để đồ thị của hàm số (1) có hai điểm cực trị A, B sao cho
0
120AOB = . Đ/s:
12 2 3
3
m
− +
=
HT 38. Cho hàm số 3 2 2 3
3 3( 1) 4 1 (1),y x mx m x m m m= − + − − + − là tham số thực. Tìm các giá trị của m để đồ thị
hàm số (1) có hai điểm cực trị ,A B sao cho tam giác OAB vuông tại ,O với O là gốc tọa độ. Đ/s: 1; 2m m= − =
HT 39. Cho hàm số 3 2 3 2
3( 1) 3 ( 2) 3 .y x m x m m x m m= + + + + + + Chứng minh rằng với mọi m hàm số luôn có 2 cực
trị và khoảng cách giữa hai điểm này không phụ thuộc vào vị trí của m.
HT 40. Cho hàm số 3 2
3 2y x x mx= − − + (1) với m là tham số thực. Định m để hàm số (1) có cực trị, đồng thời
đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với hai trục tọa độ một tam giác cân. Đ/s:
3
2
m = −
HT 41. Cho hàm số 4 2 2
( ) 2( 2) 5 5y f x x m x m m= = + − + − + ( )mC . Tìm các giá trị của m để đồ thị ( )mC của hàm số
có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. Đ/s: 1m =
HT 42. Cho hàm số ( )4 2 2
2( 2) 5 5 .my x m x m m C= + − + − + Với những giá trị nào của m thì đồ thị (Cm) có
điểm cực đại và điểm cực tiểu, đồng thời các điểm cực đại và điểm cực tiểu lập thành một tam giác đều. Đ/s:
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 22
3
2 3m = − .
HT 43. Cho hàm số 4 2 2
2y x mx m m= + + + có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm
cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có một góc bằng 0
120 . Đ/s:
3
1
3
m = − .
HT 44. Cho hàm số 4 2
2 1y x mx m= − + − có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực
trị, đồng thời ba điểm cực trị đó lập thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1 .
Đ/s:
5 1
1;
2
m m
−
= =
HT 45. Cho hàm số 4 2 4
2 2y x mx m m= − + + có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm
cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có diện tích bằng 4. Đ/s: 5
16m = .
HT 46. Cho hàm số 4 2
2 2x mx− + có đồ thị ( )mC . Tìm tất cả các giá trị của tham số m để đồ thị ( )mC có ba điểm cực
trị tạo thành một tam giác có đường tròn ngoại tiếp đi qua điểm D
3 9
;
5 5
     
Đ/s: m = 1
PHẦN 3: SỰ TƯƠNG GIAO
HT 47. Cho hàm số 3 2
6 9 6y x x x= − + − có đồ thị là (C). Định m để đường thẳng ( ) : 2 4d y mx m= − − cắt đồ thị (C)
tại ba điểm phân biệt. Đ/s: 3m > −
HT 48. Cho hàm số 3 2
3 2y x m x m= − − (Cm). Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt.
Đ/s: 1m = ±
HT 49. Cho hàm số 3 2
2 6 1y x x= − + + . Tìm m để đường thẳng 1y mx= + cắt (C) tại 3 điểm phân biệt A, B, C sao cho
A(0;1) và B là trung điểm của AC. Đ/s:m = 4
HT 50. Cho hàm số 3 21 2
3 3
y x mx x m= − − + + có đox thị( )mC . Tı̀mm đe| ( )mC ca}ttrụchoànhtại3đie|mphânbiệtcó to|ng
bı̀nhphươngcáchoànhđộlớ nhơn15. Đ/s: 1m >
HT 51. Cho hàm số: 3 2
2 3 1 (1)y x x= − + . Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại
điểm có tung độ bằng 8. Đ/s: ( 1; 4)M − −
HT 52. Cho hàm số 3 2
2 ( 3) 4y x mx m x= + + + + có đồ thị là (Cm) (m là tham số).Cho đường thẳng (d): 4y x= + và
điểm K(1; 3). Tìm các giá trị của m để (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích
bằng 8 2 . Đ/s:
1 137
2
m
±
= .
HT 53. Cho hàm số 3 2
3 4y x x= − + có đồ thị là (C). Gọi kd là đường thẳng đi qua điểm ( 1;0)A − với hệ số góc k
( )k ∈ ℝ . Tìm k để đường thẳng kd cắt đồ thị (C) tại ba điểm phân biệt A, B, C và 2 giao điểm B, C cùng với gốc toạ độ O
tạo thành một tam giác có diện tích bằng 1 . Đ/s: 1k =
HT 54. Cho hàm số 3 2
3 2y x x= − + có đồ thị là (C). Gọi E là tâm đối xứng của đồ thị (C). Viết phương trình đường
thẳng qua E và cắt (C) tại ba điểm E, A, B phân biệt sao cho diện tích tam giác OAB bằng 2 .
Đ/s: ( )1; 1 3 ( 1)y x y x= − + = − ± − .
HT 55. Cho hàm số 3 24 1
(2 1) ( 2)
3 3
y x m x m x= − + + + + có đồ thị ( ),mC m là tham số. Gọi A là giao điểm của
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 23
( )mC với trục tung. Tìm m sao cho tiếp tuyến của ( )mC tại A tạo với hai trục tọa độ một tam giác có diện tích bằng
1
.
3
Đ/s:
13 11
;
6 6
m m= − = −
HT 56. Cho hàm số 3
2y x mx= + + có đồ thị (Cm). Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất.
Đ/s: 3m > − .
HT 57. Cho hàm số 3 2
2 3( 1) 6 2y x m x mx= − + + − có đồ thị (Cm).Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm
duy nhất. Đ/s: 1 3 1 3m− < < +
HT 58. Cho hàm số 3 2
– 3 1y x x= + . Tìm m để đường thẳng (∆): (2 1) – 4 – 1y m x m= − cắt đồ thị (C) tại đúng hai
điểm phân biệt. Đ/s:
5
8
m = − ;
1
2
m = .
HT 59. Cho hàm số 3 2
3 ( 1) 1y x mx m x m= − + − + + có đồ thị là ( )mC . Tìm tất cả các giá trị của m để
: 2 1d y x m= − − cắt đồ thị ( )mC tại ba điểm phân biệt có hoành độ lớn hơn hoặc bằng 1.
Đ/s: không có giá trị m
HT 60. Cho hàm số 3
3 2y x x= − + (C). Viết phương trình đường thẳng cắt đồ thị (C) tại 3 điểm phân biệt A, B, C sao
cho 2Ax = và 2 2BC = Đ/s: : 2d y x= +
HT 61. Cho hàm số 3 2
4 6 1y x mx= − + (C), m là tham số. Tìm m để đường thẳng : 1d y x= − + cắt đồ thị hàm số tại
3 điểm A(0;1), B, C với B, C đối xứng nhau qua đường phân giác thứ nhất. Đ/s:
2
3
m =
HT 62. Cho hàm số 3 2
3 1y x x mx= + + + (m là tham số) (1).Tìm m để đường thẳng : 1d y = cắt đồ thị hàm số (1)
tại ba điểm phân biệt A(0; 1), B, C sao cho các tiếp tuyến của đồ thị hàm số (1) tại B và C vuông góc với nhau.
Đ/s:
9 65 9 65
8 8
m m
− +
= ∨ =
HT 63. Cho hàm số 3
– 3 1y x x= + có đồ thị (C) và đường thẳng (d): 3y mx m= + + . Tìm m để (d) cắt (C) tại
(1; 3)M , N, P sao cho tiếp tuyến của (C) tại N và P vuông góc với nhau. Đ/s:
3 2 2 3 2 2
3 3
m m
− + − −
= ∨ =
HT 64. Cho hàm số 3 2
3 4y x x= − + (C). Gọi (d) là đường thẳng đi qua điểm A(2; 0) có hệ số góc k. Tìm k để (d) cắt
(C) tại ba điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau.
Đ/s:
3 2 2
3
k
− ±
=
HT 65. Cho hàm số 3
1 ( ).my x mx m C= − + − Tìm m để tiếp tuyến của đồ thị hàm số đã cho tại điểm 1x = −
cắt đường tròn (C): 2 2
( 2) ( 3) 4x y− + − = theo một dây cung có độ dài nhỏ nhất. Đ/s: 2m =
HT 66. Cho hàm số ( )3
3 2 .my x mx C= − + Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của( )mC cắt đường
tròn tâm ( )1;1 ,I bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất
Đ/s:
2 3
2
m
±
=
HT 67. Cho hàm số 4 2
1y x mx m= − + − có đồ thị là ( )mC Định m để đồ thị ( )mC cắt trục trục hoành tại bốn điểm
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 24
phân biệt. Đ/s:
1
2
m
m
 >
 ≠
HT 68. Cho hàm số 4 2
2( 1) 2 1 ( ).my x m x m C= − + + + Tìm tất cả các giá trị của tham số m ∈ ℝ để đồ thị hàm số đã
cho cắt trục hoành tại 4 điểm phân biệt , , ,A B C D lần lượt có hoành độ 1 2 3 4, , ,x x x x 1 2 3 4( )x x x x< < < sao cho tam
giác ACK có diện tích bằng 4 biết (3; 2).K − Đ/s: 4m =
HT 69. Cho hàm số ( )4 2
2 1 2 1y x m x m= − + + + có đồ thị là ( )mC . Định m để đồ thị ( )mC cắt trục hoành tại 4 điểm
phân biệt có hoành độ lập thành cấp số cộng. Đ/s:
4
4;
9
m
   = − 
   
HT 70. Cho hàm số 4 2
– (3 2) 3y x m x m= + + có đồ thị là (Cm), m là tham số. Tìm m để đường thẳng 1y = − cắt đồ
thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2. Đ/s:
1
1
3
0
m
m
− < <
 ≠
HT 71. Cho hàm số ( )4 2
2 1 2 1y x m x m= − + + + có đồ thị là (Cm), m là tham số. Tìm m để đồ thị (Cm) cắt trục hoành
tại 3 điểm phân biệt đều có hoành độ nhỏ hơn 3. Đ/s:
1
1
2
m m= − ∨ ≥ .
HT 72. Cho hàm số: 4 2
5 4y x x= − + . Tìm tất cả các điểm M trên đồ thị (C) của hàm số sao cho tiếp tuyến của (C) tại
M cắt (C) tại hai điểm phân biệt khác M. Đ/s:
10 10
2 2
30
6
m
m
− < <
 ≠ ±
HT 73. Cho hàm số
2 1
2
x
y
x
+
=
+
có đồ thị là (C). Chứng minh rằng đường thẳng :d y x m= − + luôn cắt đồ thị (C) tại
hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Đ/s: 0m = .
HT 74. Cho hàm số
3
1
x
y
x
−
=
+
(C). Viết phương trình đường thẳng d qua điểm ( 1;1)I − và cắt đồ thị (C) tại hai điểm
M, N sao cho I là trung điểm của đoạn MN. Đ/s: 1y kx k= + + với 0k < .
HT 75. Cho hàm số
2 4
1
x
y
x
+
=
−
(C). Gọi (d) là đường thẳng qua A(1; 1) và có hệ số góc k. Tìm k để (d) cắt (C) tại hai
điểm M, N sao cho 3 10MN = . Đ/s:
3 41 3 41
3; ;
16 16
k k k
− + − −
= − = =
HT 76. Cho hàm số
2 2
1
x
y
x
−
=
+
(C). Tìm m để đường thẳng (d): 2y x m= + cắt (C) tại hai điểm phân biệt A, B sao cho
5AB = .Đ/s: 10; 2m m= = − .
HT 77. Cho hàm số
1x
y
x m
−
=
+
(1). Tìm các giá trị của tham số m sao cho đường thẳng (d): 2y x= + cắt đồ thị hàm
số (1) tại hai điểm A và B sao cho 2 2AB = . Đ/s: 7m =
HT 78. Cho hàm số
2
( ).
2 2
x
y C
x
+
=
−
Tìm tất cả các giá trị của tham số m ∈ ℝ để đường thẳng :d y x m= + cắt đồ thị
(C) tại hai điểm phân biệt ,A B sao cho 2 2 37
2
OA OB+ =
Đ/s:
5
2
2
m m= − ∨ =
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 25
HT 79. Cho hàm số ( ).
1
x
y C
x
=
−
Tìm tất cả các giá trị của tham số m ∈ ℝ để đường thẳng : 1d y mx m= − − cắt
đồ thị (C) tại hai điểm phân biệt ,A B sao cho 2 2
MA MB+ đạt giá trị nhỏ nhất.Đ/s: 1m = −
HT 80. Cho hàm số
1
( ).
2
x
y C
x
+
=
−
Gọi d là đường thẳng qua (2; 0)M và có hệ số góc là k . Tìm k để d cắt (C) tại hai
điểm phân biệt ,A B sao cho : 2MA MB= − Đ/s:
2
3
k =
HT 81. Cho hàm số
3
2
x
y
x
+
=
+
có đồ thị (H). Tìm m để đường thẳng d :y = 2x + 3m cắt (H) tại hai điểm phân biệt sao
cho . 4OAOB = − với O là gốc tọa độ. Đ/s:
7
12
m =
HT 82. Tìm trên (H) :
1
2
x
y
x
− +
=
−
các điểm A, B sao cho độ dài đoạn thẳng AB bằng 4 và đường thẳng AB vuông góc với
đường thẳng .y x=
Đ/s: (3 2; 2); (3 2; 2) (3 2; 2); (3 2; 2)+ − − + − −A B hoaëc A B
(1 2; 2 2); (1 2; 2 2) (1 2; 2 2); (1 2; 2 2)+ − − − − + − − + + − −A B hoaëc A B
HT 83. Cho hàm số
3
2
x
y
x
+
=
−
có đồ thị (H). Tìm m để đường thẳng : 1d y x m= − + + tại hai điểm phân biệt A, B sao
cho AOB nhọn.Đ/s: 3m > −
HT 84. Cho hàm số
3 2
( )
2
x
y C
x
+
=
+
. Đường thẳng y x= cắt (C) tại hai điểm A, B. Tìm m để đường thẳng
y x m= + cắt (C) tại hai điểm C, D sao cho ABCD là hình bình hành. Đ/s: 10m =
HT 85. Cho hàm số
2 1
1
x
y
x
−
=
−
(C). Tìm m để đường thẳng d: y x m= + cắt (C) tại hai điểm phân biệt A, B sao cho
∆OAB vuông tại O. Đ/s: 2m = −
HT 86. Cho hàm số
2
1
x m
y
mx
−
=
+
(1). Chứng minh rằng với mọi 0m ≠ đồ thị hàm số (1) cắt (d) : 2 2y x m= − tại hai
điểm phân biệt A, B thuộc một đường (H) cố định. Đường thẳng (d) cắt trục Ox, Oy lần lượt tại các điểm M, N. Tìm m để
3OAB OMNS S=
HT 87. Cho hàm số
2 1
( ).
1
x
y C
x
−
=
−
Gọi I là giao điểm của hai tiệm cận của (C). Với giá trị nào của m thì đường thẳng
y x m= − + cắt đồ thị (C) tại hai điểm phân biệt A, B và tam giác IAB đều. Đ/s: 3 6m = ±
HT 88. Cho hàm số ( )
1
x
y C
x
=
−
. Tìm các giá trị của m để đường thẳng y x m= − + cắt đồ thị (C) tại hai điểm phân
biệt ,A B sao cho ,OA OB bằng 0
60 . Với O là gốc tọa độ. Đ/s: 2 6m m= − ∨ =
PHẦN 4: TIẾP TUYẾN
HT 89. Cho hàm so•
2 1
1
x
y
x
−
=
−
. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm (1;2)I đến tiếp tuyến
bằng 2 . Đ/s: 1 0x y+ − = và 5 0x y+ − =
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 26
HT 90. Cho hàm số 3 2
(1 2 ) (2 ) 2y x m x m x m= + − + − + + (1) (m là tham số).Tìm tham số m để đồ thị của hàm
số (1) có tiếp tuyến tạo với đường thẳng d: 7 0x y+ + = góc α , biết
1
cos
26
α = .Đ/s:
1
4
m ≤ − hoặc
1
2
m ≥
HT 91. Cho hàm số 3 2
2 ( ).y x x x C= − + − Tìm tọa độ các điểm trên trục hoành sao cho qua điểm đó kẻ được hai tiếp
tuyến với đồ thị (C) và góc giữa hai tiếp tuyến này bằng 0
45 . Đ/s: ;M O≡
32
;0
27
M
     
HT 92. Cho hàm số 3 2
3 1y x x= − + có đồ thị (C). Tìm hai điểm A, B thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A
và B song song với nhau và độ dài đoạn AB = 4 2 . Đ/s: (3;1), ( 1; 3)A B − − .
HT 93. Cho hàm số
1
1
x
y
x
+
=
−
(C). Tìm trên Oy tất cả các điểm từ đó kẻ được duy nhất một tiếp tuyến tới (C).
Đ/s: (0;1); (0; 1)M M −
HT 94. Cho hàm số 3
3y x x= − (C). Tìm trên đường thẳng :d y x= − các điểm mà từ đó kẻ được đúng 2 tiếp tuyến
phân biệt với đồ thị (C).Đ/s: (2; 2); ( 2;2)A B− −
HT 95. Cho hàm số: 3
3 2y x x= − + . Tìm tất cả điểm trên đường thẳng 4y = , sao cho từ đó kẻ được đúng 2 tiếp
tuyến tới đồ thị (C). Đ/s:
2
( 1;4); ;4 ;(2;4)
3
  − −   
HT 96. Cho hàm số 3 2
3 2y x x= − + − (C). Tìm trên đường thẳng : 2d y = các điểm mà từ đó kẻ được 3 tiếp tuyến
phân biệt với đồ thị (C). Đ/s:
1
5
3
2
m
m
m
 < − > ≠
HT 97. Cho hàm số ( ) ( )
2 2
1 . 1y x x= + − (C). Cho điểm ( ;0)A a . Tìm a để từ A kẻ được 3 tiếp tuyến phân biệt với đồ
thị (C). Đ/s:
3 3
1 1
2 2
− ≠ < − ≠ >a hoaëc a
HT 98. Cho hàm số 3 2
3 2.y x x= − + Tìm trên đường thẳng 2y = các điểm mà từ đó có thể kẻ được 2 tiếp tuyến tới
đồ thị hàm số và 2 tiếp tuyến đó vuông góc với nhau. Đ/s:
1
2;
27
M
  −   
HT 99. Cho hàm số 3 21
( ) ( 1) (4 3 ) 1
3
y f x mx m x m x= = + − + − + có đồ thị là (Cm). Tìm các giá trị m sao cho trên đồ
thị (Cm) tồn tại một điểm duy nhất có hoành độ âm mà tiếp tuyến tại đó vuông góc với đường thẳng : 2 3 0d x y+ − = .
Đ/s: hay
2
0
3
m m< > .
HT 100. Tìm tất cả các giá trị m sao cho trên đồ thị ( )mC : 3 21
( 1) (4 3) 1
3
y mx m x m x= + − + − + tồn tại đúng hai
điểm có hoành độ dương mà tiếp tuyến tại đó vuông góc với đường thẳng (L): 2 3 0x y+ − = Đ/s:
1 1 2
0; ;
2 2 3
m
      ∈ ∪        
HT 101. Cho hàm số
2
2
x
y
x
=
+
(C). Viết phương trình tiếp tuyến của đồ thị (C), biết rằng khoảng cách từ tâm đối
xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Đ/s:y x= và 8y x= + .
HT 102. Cho hàm số
2
2 3
x
y
x
+
=
+
(1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 27
trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O. Đ/s: 2y x= − − .
HT 103. Cho hàm số y =
2 1
1
x
x
−
−
. Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này cắt các trục Ox, Oy
lần lượt tại các điểm A và B thoả mãn OA = 4OB. Đ/s:
1 5
4 4
1 13
4 4
y x
y x

 = − +


 = − +

.
HT 104. Viết phương trình tiếp tuyến của đồ thị hàm số
2
2
x
y
x
=
−
biết tiếp tuyến cắt Ox, Oy lần lượt tại A và B mà tam
giác OAB thỏa mãn: 2AB OA= Đ/s: 8y x= − +
HT 105.Cho hàm số
2 3
2
x
y
x
−
=
−
có đồ thị (C). Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm
cận của (C) tại A, B sao cho AB ngắn nhất. Đ/s: (3;3)M hoặc (1;1)M
HT 106.Cho hàm số
2 3
2
x
y
x
−
=
−
.Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C)
tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có
diện tích nhỏ nhất. Đ/s: (1;1); (3;3)M M
HT 107.Cho hàm số 3 2 2
2 1 ( ).my x mx m x m C= − + − + Tìm m để đồ thị hàm số tiếp xúc với trục hoành.
Đ/s:
3
1 3
2
m m m= ∨ = − ∨ =
HT 108.Cho hàm số
2 1
1
x
y
x
+
=
−
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận. Tìm điểm M thuộc (C) sao cho tiếp
tuyến của (C) tại M cắt 2 tiệm cận tại A và B với chu vi tam giác IAB đạt giá trị nhỏ nhất.
Đ/s: ( )1 1 3;2 3M + + , ( )2 1 3;2 3M − −
HT 109. Cho hàm số:
2
1
x
y
x
+
=
−
(C). Cho điểm (0; )A a . Tìm a để từ A kẻ được 2 tiếp tuyến tới đồ thị (C) sao cho 2
tiếp điểm tương ứng nằm về 2 phía của trục hoành. Đ/s:
2
3
1
a
a
 > −
 ≠
.
HT 110. Cho hàm số y =
2
1
x
x
+
+
. Gọi I là giao điểm của 2 đường tiệm cận, ∆ là một tiếp tuyến bất kỳ của đồ thị (C). d
là khoảng cách từ I đến ∆ . Tìm giá trị lớn nhất của d. Đ/s:GTLN của d bằng 2 khi 0
0
0
2
x
x
 =
 = −
HT 111. Cho hàm số
2 1
1
x
y
x
+
=
+
. Viết phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến cách đều hai điểm
A(2; 4), B(−4; −2). Đ/s:
1 5
; 1; 5
4 4
y x y x y x= + = + = +
HT 112. Cho hàm số
2 3
2
x
y
x
−
=
−
(C). Viết phương trình tiếp tuyến tại điểm M thuộc (C) biết tiếp tuyến đó cắt tiệm
cận đứng và tiệm cận ngang lần lượt tại A, B sao cho côsin góc ABI bằng
4
17
, với I là giao 2 tiệm cận.
Đ/s: Tại
3
0;
2
M
    
:
1 3
4 2
y x= − + ; Tại
5
4;
3
M
    
:
1 7
4 2
y x= − +
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 28
HT 113. Cho hàm số
1
2 1
x
y
x
+
=
−
(C). Tìm giá trị nhỏ nhất của m sao cho tồn tại ít nhất một điểm M ∈(C) mà tiếp tuyến
tại M của (C) tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 2 1y m= − Đ/s:
1
3
m ≥
HT 114. Cho hàm số
2 1
( ).
1
x
y C
x
−
=
−
Tìm các giá trị của m để đồ thị hàm số (C) tiếp xúc với đường thẳng
5.y mx= + Đ/s: 1m = − hoặc 9m = −
PHẦN 5: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH
HT 115. Cho hàm số 3 2
3 1y x x= − + + .
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Tìm m để phương trình 3 2 3 2
3 3x x m m− = − có ba nghiệm phân biệt.
Đ/s: {( 1;3) 0;2}m ∈ −
HT 116.Cho hàm số 4 2
5 4y x x= − + có đồ thị (C).
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Tìm m để phương trình 4 2
2| 5 4 | logx x m− + = có 6 nghiệm.
• Dựa vào đồ thị ta có PT có 6 nghiệm ⇔
9
44
12
9
log 12 144 12
4
m m= ⇔ = = .
HT 117. Cho hàm số: 4 2
2 1y x x= − + .
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Biện luận theo m số nghiệm của phương trình: 4 2
22 1 log 0x x m− + + = (m> 0)
1
0
2
m< <
1
2
m =
1
1
2
m< < 1m = 1m >
2 nghiệm 3 nghiệm 4 nghiệm 2 nghiệm vô nghiệm
HT 118. Cho hàm số 4 2
( ) 8 9 1y f x x x= = − + .
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình:
4 2
8 cos 9 cos 0x x m− + = với [0; ]x π∈
Đ/s:
0m < 0m = 0 1m< <
81
1
32
m≤ <
81
32
m =
81
32
m >
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 29
vô nghiệm 1 nghiệm 2 nghiệm 4 nghiệm 2 nghiệm vô nghiệm
HT 119. Cho hàm số
1
.
1
x
y
x
+
=
−
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Biện luận theo m số nghiệm của phương trình
1
.
1
x
m
x
+
=
−
1; 1m m< − > 1m = − 1 1m− < ≤
2 nghiệm 1 nghiệm vô nghiệm
PHẦN 6: ĐIỂM ĐẶC BIỆT CỦA ĐỒ THỊ
HT 120. Cho hàm số 3
3 2y x x= − + + (C). Tìm 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua tâm
( 1;3)−M . Đ/s:( )1;0− và ( )1;6−
HT 121. Cho hàm số 3
3 2y x x= − + + (C). Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng : 2 – 2 0d x y + = .
Đ/s:
7 1 7 7 1 7
;2 ; ;2
2 2 2 2 2 2
       − − +         
HT 122. Cho hàm số x
3
2 11
3
3 3
x
y x= − + + − . Tìm trên đồ thị (C) hai điểm phân biệt M, N đối xứng nhau qua trục tung.
Đ/s:
16 16
3; , 3;
3 3
M N
      −       
.
HT 123. Cho hàm số
2 1
1
x
y
x
−
=
+
(C).Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M
và giao điểm hai đường tiệm cận có tích các hệ số góc bằng –9.
Đ/s: (0; 3); ( 2;5)M M− −
HT 124. Cho hàm số
2 1
1
x
y
x
+
=
+
(C). Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất.
Đ/s:(0;1);( 2;3)−
HT 125. Cho hàm số
3 4
2
x
y
x
−
=
−
(C). Tìm các điểm thuộc (C) cách đều 2 tiệm cận.
Đ/s: 1 2(1;1); (4;6)M M
HT 126. Cho hàm số 4 21 1
1 ( ).
4 2
y x x C= − + Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ điểm M đến hai trục
tọa độ là nhỏ nhất. Đ/s: (0;1)M
HT 127. Cho hàm số 4 2
0 0 0 02 3 2 1y x x x= − + + có đồ thị là (C) và đường thẳng ( ) 2 1x∆ = − .Tìm trên đồ thị (C) điểm
A có khoảng cách đến ( )∆ là nhỏ nhất Đ/s: 1
3 1
; 3
2 8
A
  − − −    
2
3 1
; ; 3
2 8
A
   − +    
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 30
HT 128. Cho hàm số
1
2
x
y
x
+
=
−
. Tìm trên đồ thị hàm số điểm M sao cho tồng khoảng cách từ M đến hai trục tọa độ là
nhỏ nhất. Đ/s:
1
0;
2
M
  −   
HT 129. Cho hàm số
2 4
1
x
y
x
−
=
+
. Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết
( 3;0); ( 1; 1)M N− − − Đ/s:A(0; –4), B(2; 0).
HT 130. Cho hàm số
2
1
x
y
x
=
−
. Tìm trên đồ thị (C) hai điểm B, C thuộc hai nhánh sao cho tam giác ABC vuông cân tại
đỉnh A với A(2; 0). Đ/s: ( 1;1), (3;3)B C−
HT 131. Cho hàm số
2 1
1
x
y
x
−
=
+
. Tìm tọa độ điểm M ∈ (C) sao cho khoảng cách từ điểm ( 1; 2)I − tới tiếp tuyến của (C)
tại M là lớn nhất. Đ/s: ( )1 3;2 3M − + − hoặc ( )1 3;2 3M − − +
HT 132. Cho hàm số
2
2 1
x
y
x
+
=
−
. Tìm những điểm trên đồ thị (C) cách đều hai điểm (2;0), (0;2)A B .
Đ/s:
1 5 1 5 1 5 1 5
, ; ,
2 2 2 2
    − − + +            
HT 133. Cho hàm số
3
1
x
y
x
−
=
+
. Tìm trên hai nhánh của đồ thị (C) hai điểm A và B sao cho AB ngắn nhất.Đ/s:
( ) ( )4 4 4 4
1 4;1 64 , 1 4;1 64A B− − + − + − .
HT 134. Cho hàm số 4 2
2 1y x x= − + Tìm tọa độ hai điểm P. Q thuộc (C) sao cho đường thẳng PQ song song với trục
hoành và khoảng cách từ điểm cực đại của (C) đến đường thẳng PQ bằng 8
Đ/s:Vậy, P(-2;9), Q(2;9) hoặc P(2;9); Q(-2;9)
HT 135. Cho hàm số
2
(3 1)
.
m x m m
y
x m
+ − +
=
+
Tìm các điểm thuộc đường thẳng 1x = mà không có đồ thị đi qua.
Đ/s:Tập hợp các điểm thuộc đường thẳng 1x = có tung độ bằng a với a thỏa mãn : 2 10a< <
HT 136. Cho hàm số
2 1
( ).
1
x
y C
x
−
=
−
Tìm trên đồ thị (C) hai điểm ,A B phân biệt sao cho ba điểm , , (0; 1)A B I − thẳng
hàng đồng thời thỏa mãn: . 4.IAIB =
Đ/s: ( ) ( )2 2;1 2 ; 2 2;1 2A B− − + + hoặc ( ) ( )1 3; 2 3 ; 1 3; 2 3A B− − + + − −
PHẦN 7: CÁC BÀI TỔNG HỢP
HT 137.Cho hàm số
2 3
( ).
2
x
y C
x
+
=
−
Tìm m để đường thẳng : 2d y x m= + cắt đồ thị tại hai điểm phân biệt sao cho
tiếp tuyến tại hai điểm đó của đồ thị hàm số song song với nhau. Đ/s: 2m = −
HT 138.Cho hàm số 3 2
2 2 1 ( ).y x mx mx C= − + − Tìm m để đồ thị hàm số (C) cắt trục hoành tại 3 điểm phân biệt
(1;0),A B và C sao cho 1 2 . 5k k BC+ = trong đó 1 2,k k lần lượt là hệ số góc tiếp tuyến tại B, C của đồ thị hàm số (C).
Đ/s: 1; 2m m= − =
HT 139.Cho hàm số 3 2
3 2 ( ).my x x mx m C= − + + − Tìm m để ( )mC cắt trục hoành tại 3 điểm phân biệt , ,A B C
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 31
sao cho tổng các hệ số góc của tiếp tuyến của ( )mC tại , ,A B C bằng 3.Đ/s: 2m =
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 32
PHẦN 8: TUYỂN TẬP ĐỀ THI ĐẠI HỌC TỪ NĂM 2009
HT 140.(ĐH A – 2009) Cho hàm số
2
(1)
2 3
x
y
x
+
=
+
. Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến
đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B sao cho tam giác OAB cân tại gốc tọa độ O.
Đ/s: 2y x= − −
HT 141.(ĐH B – 2009) Cho hàm số: 4 2
2 4 (1)y x x= − .Với giá trị nào của ,m phương trình 2 2
2x x m− = có đúng 6
nghiệm thực phân biệt. Đ/s: 0 1m< <
HT 142.(ĐH D – 2009) Cho hàm số 4 2
(3 2) 3y x m x m= − + + có đồ thị là ( )mC với m là tham số. Tìm m để đường
thẳng 1y = − cắt đồ thị ( )mC tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2.
Đ/s:
1
1, 0
3
m m− < < ≠
HT 143.(ĐH A – 2010) Cho hàm số 3 2
2 (1 ) (1),y x x m x m= − + − + với m là tham số thực. Tìm m để đồ thị (1) cắt
trục hoành tại 3 điểm phân biệt có hoành độ 1 2 3, ,x x x thỏa mãn điều kiện: 2 2 2
1 2 3 4x x x+ + <
Đ/s:
1
1
4
m− < < và 0m ≠
HT 144. (ĐH B – 2010) Cho hàm số
2 1
( )
1
x
y C
x
+
=
+
. Tìm m để đường thẳng 2y x m= − + cắt đồ thị ( )C tại hai
điểm A và B sao cho tam giác OAB có diện tích bằng 3 (O là gốc tọa độ). Đ/s: 2m = ±
HT 145. (D – 2010) Cho hàm số 4 2
6 ( )y x x C= − − + . Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến
vuông góc với đường thẳng
1
1
6
y x= − Đ/s: 6 10y x= − +
HT 146. (A – 2011)Cho hàm số
1
( )
2 1
x
y C
x
− +
=
−
. Chứng minh rằng với mọi m đường thẳng y x m= + luôn cắt đồ
thị ( )C tại hai điểm phân biệt A và B. Gọi 1 2,k k lần lượt là hệ số góc của tiếp tuyến với ( )C tại A và B. Tìm m để tổng
1 2k k+ đạt giá trị lớn nhất. Đ/s: 1 2k k+ lớn nhất bằng 2− , khi và chỉ khi 1.m = −
HT 147. (B – 2011) Cho hàm số 4 2
2( 1) (1)y x m x m= − + + (với m là tham số). Tìm m để đồ thị hàm số (1) có ba
điểm cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị
còn lại. Đ/s: 2 2 2m = ±
HT 148. (D – 2011) Cho hàm số
2 1
( )
1
x
y C
x
+
=
+
. Tìm k để đường thẳng 2 1y kx k= + + cắt đồ thị ( )C tại hai điểm
phân biệt ,A B sao cho khoảng cách từ A và B đến trục hoành bằng nhau. Đ/s:
HT 149. (A,A1 – 2012) Cho hàm số 4 2 2
2( 1) (1)y x m x m= − + + , với m là tham số thực. Tìm m để đồ thị hàm số
(1) có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác vuông. Đ/s: 0m =
HT 150. (B – 2012) Cho hàm số 3 2 3
3 3 (1),y x mx m= − + m là tham số thực. Tìm m để đồ thị hàm số (1) có hai
điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48. Đ/s: 2m = ±
HT 151. (D – 2012) Cho hàm số 3 2 22 2
2(3 1) (1),
3 3
y x mx m x m= − − − + là tham số thực. Tìm m để hàm số (1) có
hai điểm cực trị 1 2;x x sao cho: 1 2 1 22( ) 1.x x x x+ + = Đ/s:
2
3
m =
HT 152. (A,A1 – 2013) Cho hàm số 3 2
3 3 1 (1)y x x mx= − + + − , với m là tham số thực. Tìm m để hàm số (1)
3k = −
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 33
nghịch biến trên khoảng (0; )+∞ Đ/s: 1m ≤ −
HT 153. (B – 2013) Cho hàm số 3 2
2 3( 1) 6 (1),y x m x mx= − + + với m là tham số thực. Tìm m để đồ thị hàm số (1)
có hai điểm cực trị A, B sao cho đường thẳng AB vuông góc với đường thẳng 2.y x= + Đ/s: 0; 2m m= =
HT 154. (D – 2013) Cho hàm số 3 2
2 3 ( 1) 1 (1),y x mx m x= − + − + với m là tham số thực. Tìm m để đường thẳng
1y x= − + cắt đồ thị hàm số (1) tại ba điểm phân biệt. Đ/s:
8
0;
9
m m< >
-----------------------------------------------------------HẾT-----------------------------------------------------------
www.VNMATH.com
CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC
2013 - 2014
PHƯƠNG TRÌNH MŨ - LOGARIT
BIÊN SOẠN: LƯU HUY THƯỞNG
HÀ NỘI, 8/2013
HỌ VÀ TÊN: …………………………………………………………………
LỚP :………………………………………………………………….
TRƯỜNG :…………………………………………………………………
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 1
CHUYÊN ĐỀ: PHƯƠNG TRÌNH MŨ – LOGARIT
VẤN ĐỀ I: LŨY THỪA
1. Định nghĩa luỹ thừa
Số mũ αααα Cơ số a Luỹ thừa aα
*
n Nα = ∈ a ∈ R . ......n
a a a a aα
= = (n thừa số a)
0α = 0a ≠ 0
1a aα
= =
*
( )n n Nα = − ∈ 0a ≠
1n
n
a a
a
α −
= =
*
( , )
m
m Z n N
n
α = ∈ ∈ 0a > ( )
m
n nm nna a a a b b aα
= = = ⇔ =
*
lim ( , )n n
r r Q n Nα = ∈ ∈ 0a > lim n
r
a aα
=
2. Tính chất của luỹ thừa
• Với mọi a > 0, b > 0 ta có:
.
. ; ; ( ) ; ( ) . ;
a a a
a a a a a a ab a b
ba b
αα α
α β α β α β α β α β α α α
β α
+ −
  = = = = =   
• a > 1 : a aα β
α β> ⇔ > ; 0 < a < 1 : a aα β
α β> ⇔ <
• Với 0 < a < b ta có:
0m m
a b m< ⇔ > ; 0m m
a b m> ⇔ <
Chú ý: + Khi xét luỹ thừa với số mũ 0 và số mũ nguyên âm thì cơ số a phải khác 0.
+ Khi xét luỹ thừa với số mũ không nguyên thì cơ số a phải dương.
3. Định nghĩa và tính chất của căn thức
• Căn bậc n của a là số b sao cho n
b a= .
• Với a, b ≥ 0, m, n ∈ N*, p, q ∈ Z ta có:
.n n n
ab a b= ; ( 0)
n
n
n
a a
b
b b
= > ; ( ) ( 0)
p
n np
a a a= > ;
m n mn
a a=
( 0)
n mp qp q
Neáu thì a a a
n m
= = > ; Đặc biệt
mnn m
a a=
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 2
• Nếu n là số nguyên dương lẻ và a < b thì n n
a b< .
Nếu n là số nguyên dương chẵn và 0 < a < b thì n n
a b< .
Chú ý:
+ Khi n lẻ, mỗi số thực a chỉ có một căn bậc n. Kí hiệu n
a .
+ Khi n chẵn, mỗi số thực dương a có đúng hai căn bậc n là hai số đối nhau.
4. Công thức lãi kép
Gọi A là số tiền gửi, r là lãi suất mỗi kì, N là số kì.
Số tiền thu được (cả vốn lẫn lãi) là: (1 )N
C A r= +
VẤN ĐỀ II: LOGARIT
1. Định nghĩa
• Với a > 0, a ≠ 1, b > 0 ta có: loga
b a bα
α= ⇔ =
Chú ý: loga
b có nghĩa khi
0, 1
0
a a
b
 > ≠

 >
• Logarit thập phân: 10
lg log logb b b= =
• Logarit tự nhiên (logarit Nepe): ln loge
b b= (với
1
lim 1 2,718281
n
e
n
  = + ≈  
)
2. Tính chất
• log 1 0a
= ; log 1a
a = ; log b
a
a b= ;
log
( 0)a
b
a b b= >
• Cho a > 0, a ≠ 1, b, c > 0. Khi đó:
+ Nếu a > 1 thì log loga a
b c b c> ⇔ >
+ Nếu 0 < a < 1 thì log loga a
b c b c> ⇔ <
3. Các qui tắc tính logarit
Với a > 0, a ≠ 1, b, c > 0, ta có:
• log ( ) log loga a a
bc b c= + • log log loga a a
b
b c
c
   = −  
• log loga a
b bα
α=
4. Đổi cơ số
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 3
Với a, b, c > 0 và a, b ≠ 1, ta có:
•
log
log
log
a
b
a
c
c
b
= hay log .log loga b a
b c c=
•
1
log
loga
b
b
a
= •
1
log log ( 0)aa
c cα α
α
= ≠
Bài tập cơ bản
HT 1: Thực hiện các phép tính sau:
1) 2 1
4
log 4.log 2 2) 5 27
1
log .log 9
25
3)
3
loga
a
4) 32
log 2log 3
4 9+ 5)
2 2
log 8 6) 9 8
log 2 log 27
27 4+
7)
3 4
1/3
7
1
log .log
log
a a
a
a a
a
8) 3 8 6
log 6.log 9.log 2 9) 3 81
2 log 2 4 log 5
9
+
10) 3 9 9
log 5 log 36 4 log 7
81 27 3+ + 11) 75
log 8log 6
25 49+ 12)
2 5
3 log 4
5
−
13) 6 8
1 1
log 3 log 2
9 4+ 14) 9 2 125
1 log 4 2 log 3 log 27
3 4 5
+ −
+ + 15) 36
log 3.log 36
HT 2: So sánh các cặp số sau:
1) 4
vaø log3
1
log 4
3
2) 0,2
vaø log3
0,1
log 2 0,34 3) 5
2
vaø log3
4
2 3
log
5 4
4) 1 1
3 2
1 1
log log
80 15 2
vaø
+
5) 13 17
log 150 log 290vaø 6) vaø
6
6
1
loglog 3 22 3
HT 3: Tính giá trị của biểu thức logarit theo các biểu thức đã cho:
1)Cho 2
log 14 a= . Tính 49
log 32 theo a.
2)Cho 15
log 3 a= . Tính 25
log 15 theo a.
3)Cho lg3 0,477= . Tính lg9000; lg0,000027 ;
81
1
log 100
.
4)Cho 7
log 2 a= . Tính 1
2
log 28 theo a.
HT 4: Tính giá trị của biểu thức logarit theo các biểu thức đã cho:
1)Cho 25
log 7 a= ; 2
log 5 b= . Tính 3
5
49
log
8
theo a, b.
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 4
2)Cho 30
log 3 a= ; 30
log 5 b= . Tính 30
log 1350 theo a, b.
3)Cho 14
log 7 a= ; 14
log 5 b= . Tính 35
log 28 theo a, b.
4)Cho 2
log 3 a= ; 3
log 5 b= ; 7
log 2 c= . Tính 140
log 63 theo a, b, c.
VẤN ĐỀ III: HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LOGARIT
1. Khái niệm
1)Hàm số luỹ thừa y xα
= (α là hằng số)
Số mũ αααα Hàm số y xα
= Tập xác định D
α = n (n nguyên dương) n
y x= D = R
α = n (n nguyên âm hoặc n = 0) n
y x= D = R  {0}
α là số thực không nguyên y xα
= D = (0; +∞)
Chú ý: Hàm số
1
ny x= không đồng nhất với hàm số ( *)n
y x n N= ∈ .
2)Hàm số mũ x
y a= (a > 0, a ≠ 1).
• Tập xác định: D = R.
• Tập giá trị: T = (0; +∞).
• Khi a > 1 hàm số đồng biến, khi 0 < a < 1 hàm số nghịch biến.
• Nhận trục hoành làm tiệm cận ngang.
• Đồ thị:
0<a<1
y=ax
y
x
1
a>1
y=ax
y
x1
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 5
3)Hàm số logarit loga
y x= (a > 0, a ≠ 1)
• Tập xác định: D = (0; +∞).
• Tập giá trị: T = R.
• Khi a > 1 hàm số đồng biến, khi 0 < a < 1 hàm số nghịch biến.
• Nhận trục tung làm tiệm cận đứng.
• Đồ thị:
2. Giới hạn đặc biệt
•
1
0
1
lim(1 ) lim 1
x
x
x x
x e
x→ →±∞
  + = + =  
•
0
ln(1 )
lim 1
x
x
x→
+
= •
0
1
lim 1
x
x
e
x→
−
=
3. Đạo hàm
• ( ) 1
( 0)x x xα α
α −′
= > ; ( ) 1
.u u uα α
α −′
′=
Chú ý: ( )
1
01
0−
 >′  =  ≠  
n
n n
vôùi x neáu n chaün
x
vôùi x neáu n leûn x
. ( )
1
n
n n
u
u
n u −
′
=
′
• ( ) lnx x
a a a
′
= ; ( ) ln .u u
a a a u
′
= ′
( )x x
e e
′
= ; ( ) .u u
e e u
′
= ′
• ( ) 1
log
lna
x
x a
′
= ; ( )log
lna
u
u
u a
′
=
′
( ) 1
ln x
x
′
= (x > 0); ( )ln
u
u
u
′
=
′
0<a<1
y=logax
1 x
y
O
a>1
y=logax
1
y
x
O
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 6
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 7
Bài tập cơ bản
HT 5: Tính các giới hạn sau:
1) lim
1
x
x
x
x→+∞
    +
2)
1
1
lim 1
x
x
x x
+
→+∞
  +  
3)
2 1
1
lim
2
x
x
x
x
−
→+∞
 +    −
4)
1
33 4
lim
3 2
x
x
x
x
+
→+∞
 −    +
5)
1
lim
2 1
x
x
x
x→+∞
 +    −
6)
2 1
lim
1
x
x
x
x→+∞
 +    −
7)
ln 1
lim
x e
x
x e→
−
−
8)
2
0
1
lim
3
x
x
e
x→
−
i)
1
lim
1
x
x
e e
x→
−
−
k)
0
lim
sin
x x
x
e e
x
−
→
−
l)
sin 2 sin
0
lim
x x
x
e e
x→
−
m) ( )1
lim 1x
x
x e
→+∞
−
HT 6: Tính đạo hàm của các hàm số sau:
1)
3 2
1y x x= + + 2) 4
1
1
x
y
x
+
=
−
3)
2
5
2
2
1
x x
y
x
+ −
=
+
4) 3
sin(2 1)y x= + 5)
3 2
cot 1y x= + 6)
3
3
1 2
1 2
x
y
x
−
=
+
7) 3
3
sin
4
x
y
+
= 8)
11 5 9
9 6y x= + 9)
2
4
2
1
1
x x
y
x x
+ +
=
− +
HT 7: Tính đạo hàm của các hàm số sau:
1) 2
( 2 2) x
y x x e= − + 2) 2
( 2 ) x
y x x e−
= + 3) 2
.sinx
y e x−
=
4)
2
2x x
y e +
= 5)
1
3.
x x
y x e
−
= 6)
2
2
x x
x x
e e
y
e e
+
=
−
7) cos
2 .x x
y e= 8) 2
3
1
x
y
x x
=
− +
i) cot
cos . x
y x e=
HT 8: Tính đạo hàm của các hàm số sau:
1) 2
ln(2 3)y x x= + + 2) 2
log (cos )y x= 3) .ln(cos )x
y e x=
4) 2
(2 1)ln(3 )y x x x= − + 5) 3
1
2
log ( cos )y x x= − 6) 3
log (cos )y x=
7)
ln(2 1)
2 1
x
y
x
+
=
+
8)
ln(2 1)
1
x
y
x
+
=
+
9) ( )2
ln 1y x x= + +
HT 9: Chứng minh hàm số đã cho thoả mãn hệ thức được chỉ ra:
1)
2
22. ; (1 )
x
y x e xy x y
−
= ′ = − 2) ( 1) ;x x
y x e y y e= + ′ − =
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 8
3) 4
2 ; 13 12 0x x
y e e y y y−
′′′= + − − =′ 4) 2
. . ; 3 2 0x x
y a e be y y y− −
′′= + + + =′
5) .sin ; 2 2 0x
y e x y y y−
′′ ′= + + = 6)
( )4
.cos ; 4 0x
y e x y y−
= + =
HT 10: Chứng minh hàm số đã cho thoả mãn hệ thức được chỉ ra:
1)
1
ln ; 1
1
y
y xy e
x
  = + =   + 
′ 2)
1
; ln 1
1 ln
y xy y y x
x x
 = ′ = − + +
3) 2
sin(ln ) cos(ln ); 0y x x y xy x y= + + ′ + ′′ = 4) 2 2 21 ln
; 2 ( 1)
(1 ln )
x
y x y x y
x x
+
= ′ = +
−
HT 11: Giải phương trình, bất phương trình sau với hàm số được chỉ ra:
1) 2
'( ) 2 ( ); ( ) ( 3 1)x
f x f x f x e x x= = + +
2) 31
'( ) ( ) 0; ( ) lnf x f x f x x x
x
+ = =
3) 2 1 1 2
'( ) 0; ( ) 2. 7 5x x
f x f x e e x− −
= = + + −
VẤN ĐỀ IV: PHƯƠNG TRÌNH MŨ
1. Phương trình mũ cơ bản: Với 0, 1> ≠a a :
0
log
x
a
b
a b
x b
 >= ⇔
 =
2. Một số phương pháp giải phương trình mũ
1) Đưa về cùng cơ số: Với 0, 1> ≠a a : ( ) ( )
( ) ( )f x g x
a a f x g x= ⇔ =
Chú ý: Trong trường hợp cơ số có chứa ẩn số thì: ( 1)( ) 0M N
a a a M N= ⇔ − − =
2) Logarit hoá: ( )( ) ( )
( ) log . ( )f x g x
a
a b f x b g x= ⇔ =
3) Đặt ẩn phụ:
• Dạng 1: ( )
( ) 0f x
P a = ⇔
( )
, 0
( ) 0
f x
t a t
P t
 = >
 =
, trong đó P(t) là đa thức theo t.
• Dạng 2: 2 ( ) ( ) 2 ( )
( ) 0f x f x f x
a ab bα β γ+ + =
Chia 2 vế cho 2 ( )f x
b , rồi đặt ẩn phụ
( )f x
a
t
b
  =   
• Dạng 3: ( ) ( )f x f x
a b m+ = , với 1ab = . Đặt ( ) ( ) 1f x f x
t a b
t
= ⇒ =
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 9
4) Sử dụng tính đơn điệu của hàm số
Xét phương trình: f(x) = g(x) (1)
• Đoán nhận x0 là một nghiệm của (1).
• Dựa vào tính đồng biến, nghịch biến của f(x) và g(x) để kết luận x0 là nghiệm duy nhất:
ñoàng bieán vaø nghòch bieán (hoaëc ñoàng bieán nhöng nghieâm ngaët).
ñôn ñieäu vaø haèng soá
( ) ( )
( ) ( )
f x g x
f x g x c


 =
• Nếu f(x) đồng biến (hoặc nghịch biến) thì ( ) ( )f u f v u v= ⇔ =
5) Đưa về phương trình các phương trình đặc biệt
• Phương trình tích A.B = 0 ⇔
0
0
A
B
 =
 =
• Phương trình 2 2
0
0
0
A
A B
B
 =+ = ⇔ 
 =
6) Phương pháp đối lập
Xét phương trình: f(x) = g(x) (1)
Nếu ta chứng minh được:
( )
( )
f x M
g x M
 ≥

 ≤
thì (1)
( )
( )
f x M
g x M
 =⇔ 
 =
Bài tập cơ bản
HT 12: Giải các phương trình sau (đưa về cùng cơ số hoặc logarit hoá):
1) 3 1 8 2
9 3x x− −
= 2) ( )
2
3 2 2 3 2 2
x
− = +
3)
2 2 2
3 2 6 5 2 3 7
4 4 4 1x x x x x x− + + + + +
+ = + 4) 2 2
5 7 5 .35 7 .35 0x x x x
− − + =
5)
2 2 2 2
1 2 1
2 2 3 3x x x x− + −
+ = + 6)
2
4
5 25x x− +
=
7)
2
2
4 31
2
2
x
x
−
−
   =   
8)
7 1 2
1 1
. 2
2 2
x x+ −
       =        
9) 1
3 .2 72x x +
= 10) 1 1
5 6. 5 – 3. 5 52x x x+ −
+ =
11)
10 5
10 1516 0,125.8
x x
x x
+ +
− −= 12) ( ) ( )
1
1
1
5 2 5 2
x
x
x
−
−
+
+ = −
HT 13: Giải các phương trình sau (đưa về cùng cơ số hoặc logarit hoá):
1)
4 1 3 2
2 1
5 7
x x+ +
      =        
2)
2 1
15 .2 50
x
x x
−
+ = 3)
3
23 .2 6
x
x x + =
4) 23 .8 6
x
x x+ = 5) 1 2 1
4.9 3 2x x− +
= 6)
2
2
2 .3 1,5x x x−
=
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 10
7)
2
5 .3 1x x
= 8) 3 2
2 3
x x
= 9)
2
3 .2 1x x
=
HT 14: Giải các phương trình sau (đặt ẩn phụ dạng 1):
1) 1
4 2 8 0x x +
+ − = 2) 1 1
4 6.2 8 0x x+ +
− + = 3) 4 8 2 5
3 4.3 27 0x x+ +
− + =
4) 16 17.4 16 0x x
− + = 5) 1
49 7 8 0x x +
+ − = 6)
2 2
2
2 2 3.x x x x− + −
− =
7) ( ) ( )7 4 3 2 3 6
x x
+ + + = 8)
2
cos2 cos
4 4 3x x
+ = 9) 2 5 1
3 36.3 9 0x x+ +
− + =
10)
2 2
2 2 1
3 28.3 9 0x x x x+ + +
− + = 11)
2 2
2 2
4 9.2 8 0x x+ +
− + = 12) 2 1 1
3.5 2.5 0,2x x− −
− =
HT 15: Giải các phương trình sau (đặt ẩn phụ dạng 1):
1) 25 2(3 ).5 2 7 0x x
x x− − + − = 2) 2 2
3.25 (3 10).5 3 0x x
x x− −
+ − + − =
3) 3.4 (3 10).2 3 0x x
x x+ − + − = 4) 9 2( 2).3 2 5 0x x
x x+ − + − =
5) 2 1 2
4 .3 3 2.3 . 2 6x x x
x x x x+
+ + = + + 6) 2 2
3.25 (3 10).5 3 0x x
x x− −
+ − + − =
7) 4 +( 8 2 +12 2– ) – 0x x
x x = 8) 4 9 5 3 1( ). ( ). 0x x
x x+ − + + =
9)
2 22 2
4 ( 7).2 12 4 0x x
x x+ − + − = 10) 9 ( 2).3 2( 4) 0x x
x x− −
− + − + =
HT 16: Giải các phương trình sau (đặt ẩn phụ dạng 2):
1) 64.9 84.12 27.16 0x x x
− + = 2) 3.16 2.81 5.36x x x
+ = 3) 2 2
6.3 13.6 6.2 0x x x
− + =
4) 2 1
25 10 2x x x+
+ = 5) 27 12 2.8x x x
+ = 6) 3.16 2.81 5.36x x x
+ =
7)
1 1 1
6.9 13.6 6.4 0x x x− + = 8)
1 1 1
4 6 9x x x
− − −
+ = 9)
1 1 1
2.4 6 9x x x+ =
10) ( ) ( )( ) ( )7 5 2 2 5 3 2 2 3 1 2 1 2 0.
x x x
+ + − + + + + − =
HT 17: Giải các phương trình sau (đặt ẩn phụ dạng 3):
1) ( ) ( )2 3 2 3 14
x x
− + + = 2) ( ) ( )2 3 2 3 4
x x
+ + − =
3) (2 3) (7 4 3)(2 3) 4(2 3)x x
+ + + − = + 4) ( ) ( ) 3
5 21 7 5 21 2
x x
x+
− + + =
5) ( ) ( )5 24 5 24 10
x x
+ + − = 6)
7 3 5 7 3 5
7 8
2 2
x x
   +  −    + =         
7) ( ) ( )6 35 6 35 12
x x
− + + = 8) ( ) ( )
2 2
( 1) 2 1 4
2 3 2 3
2 3
x x x− − −
+ + − =
−
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 11
9) ( ) ( ) 3
3 5 16 3 5 2
x x
x +
+ + − = 10) ( ) ( )3 5 3 5 7.2 0
x x
x
+ + − − =
11) ( ) ( )7 4 3 3 2 3 2 0
x x
+ − − + = 12) ( ) ( )3 3
3 8 3 8 6.
x x
+ + − =
HT 18: Giải các phương trình sau (sử dụng tính đơn điệu):
1)( ) ( )2 3 2 3 4
x x
x
− + + = 2) ( ) ( ) ( )3 2 3 2 10
x x x
− + + =
3) ( ) ( )3 2 2 3 2 2 6
x x
x
+ + − = 4) ( ) ( ) 3
3 5 16. 3 5 2
x x
x+
+ + − =
5)
3 7
2
5 5
x
x
   + =   
6) ( ) ( )2 3 2 3 2
x x
x
+ + − =
7) 2 3 5 10x x x x
+ + = 8) 2 3 5x x x
+ = 9)
2
1 2
2 2 ( 1)x x x
x− −
− = −
10) 3 5 2x
x= − 11) 2 3x
x= − 12) 1
2 4 1x x
x+
− = −
HT 19: Giải các phương trình sau (đưa về phương trình tích):
1) 8.3 3.2 24 6x x x
+ = + 2) 1
12.3 3.15 5 20x x x +
+ − =
3) 3
8 .2 2 0x x
x x−
− + − = 4) 2 3 1 6x x x
+ = +
5)
2 2 2
3 2 6 5 2. 3 7
4 4 4 1x x x x x x− + + + + +
+ = + 6)
( )
2
2 2 11
4 2 2 1
xx x x ++ −
+ = +
7) 2 3 2
.3 3 (12 7 ) 8 19 12x x
x x x x x+ − = − + − + 8) 2 1 1
.3 (3 2 ) 2(2 3 )x x x x x
x x− −
+ − = −
9) sin 1 sin
4 2 cos( ) 2 0yx x
xy+
− + = 10)
2 2 2 2
2( ) 1 2( ) 1
2 2 2 .2 1 0x x x x x x+ − + −
+ − − =
HT 20: Giải các phương trình sau (phương pháp đối lập):
1) 4
2 cos ,x
x= với x ≥ 0 2)
2
6 10 2
3 6 6x x
x x− +
= − + − 3) sin
3 cosx
x=
4)
3
2
2.cos 3 3
2
x xx x −
 −   = +  
5)
sin
cos
x
xπ = 6)
2
2
2 1
2 x x x
x
− +
=
7)
2
3 cos2x
x= 8)
2
5 cos3x
x=
HT 21: Tìm m để các phương trình sau có nghiệm:
1) 9 3 0x x
m+ + = 2) 9 3 1 0x x
m+ − = 3) 1
4 2x x
m+
− =
4) 2
3 2.3 ( 3).2 0x x x
m+ − + = 5) 2 ( 1).2 0x x
m m−
+ + + = 6) 25 2.5 2 0x x
m− − − =
7) 2
16 ( 1).2 1 0x x
m m− − + − = 8) 25 .5 1 2 0x x
m m+ + − =
9)
2 2
sin os
81 81x c x
m+ = 10)
2 2
4 2 2
3 2.3 2 3 0x x
m− −
− + − =
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 12
11) 1 3 1 3
4 14.2 8x x x x
m+ + − + + −
− + =
12)
2 211
9 8.3 4x xx x
m+ −+ −
− + =
HT 22: Tìm m để các phương trình sau có nghiệm duy nhất:
1) .2 2 5 0x x
m −
+ − = 2) .16 2.81 5.36x x x
m + =
3) ( ) ( )5 1 5 1 2
x x
x
m+ + − = 4)
7 3 5 7 3 5
8
2 2
x x
m
   +  −    + =       
5) 3
4 2 3x x
m+
− + = 6) 9 3 1 0x x
m+ + =
HT 23: Tìm m để các phương trình sau có 2 nghiệm trái dấu:
1) 1
( 1).4 (3 2).2 3 1 0x x
m m m+
+ + − − + = 2) 2
49 ( 1).7 2 0x x
m m m+ − + − =
3) 9 3( 1).3 5 2 0x x
m m+ − − + = 4) ( 3).16 (2 1).4 1 0x x
m m m+ + − + + =
5) ( )4 2 1 2 +3 8. 0x x
m m− + − = 6) 4 2 6x x
m− + =
HT 24: Tìm m để các phương trình sau:
1) .16 2.81 5.36x x x
m + = có 2 nghiệm dương phân biệt.
2) 16 .8 (2 1).4 .2x x x x
m m m− + − = có 3 nghiệm phân biệt.
3)
2 2 2
4 2 6x x
m+
− + = có 3 nghiệm phân biệt.
4)
2 2
9 4.3 8x x m− + = có 3 nghiệm phân biệt.
fb.com/huynhict
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 13
VẤN ĐỀ V: PHƯƠNG TRÌNH LOGARIT
1. Phương trình logarit cơ bản
Với a > 0, a ≠ 1: log b
a
x b x a= ⇔ =
2. Một số phương pháp giải phương trình logarit
1) Đưa về cùng cơ số
Với a > 0, a ≠ 1:
( ) ( )
log ( ) log ( )
( ) 0 ( ( ) 0)a a
f x g x
f x g x
f x hoaëc g x
 == ⇔ 
 > >
2) Mũ hoá
Với a > 0, a ≠ 1:
log ( )
log ( ) a
f x b
a
f x b a a= ⇔ =
3) Đặt ẩn phụ
4) Sử dụng tính đơn điệu của hàm số
5) Đưa về phương trình đặc biệt
6) Phương pháp đối lập
Chú ý:
• Khi giải phương trình logarit cần chú ý điều kiện để biểu thức có nghĩa.
• Với a, b, c > 0 và a, b, c ≠ 1:
log logb b
c a
a c=
Bài tập cơ bản
HT 25: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá):
1) 2
log ( 1) 1x x − =  
2) 2 2
log log ( 1) 1x x+ − =
3) 2 1/8
log ( 2) 6.log 3 5 2x x− − − = 4) 2 2
log ( 3) log ( 1) 3x x− + − =
5) 4 4 4
log ( 3) log ( 1) 2 log 8x x+ − − = − 6) lg( 2) lg( 3) 1 lg5x x− + − = −
7) 8 8
2
2log ( 2) log ( 3)
3
x x− − − = 8) lg 5 4 lg 1 2 lg0,18x x− + + = +
9) 2
3 3
log ( 6) log ( 2) 1x x− = − + 10) 2 2 5
log ( 3) log ( 1) 1/ log 2x x+ + − =
11) 4 4
log log (10 ) 2x x+ − = 12) 5 1/5
log ( 1) log ( 2) 0x x− − + =
www.VNMATH.com
GV.Lưu Huy Thưởng 0968.393.899
BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 14
13) 2 2 2
log ( 1) log ( 3) log 10 1x x− + + = − 14) 9 3
log ( 8) log ( 26) 2 0x x+ − + + =
HT 26: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá):
1) 3 1/33
log log log 6x x x+ + = 2) 2 2
1 lg( 2 1) lg( 1) 2lg(1 )x x x x+ − + − + = −
3) 4 1/16 8
log log log 5x x x+ + = 4) 2 2
2 lg(4 4 1) lg( 19) 2lg(1 2 )x x x x+ − + − + = −
5) 2 4 8
log log log 11x x x+ + = 6) 1/2 1/2 1/ 2
log ( 1) log ( 1) 1 log (7 )x x x− + + = + −
7) 2 2 3 3
log log log logx x= 8) 2 3 3 2
log log log logx x=
9) 2 3 3 2 3 3
log log log log log logx x x+ = 10) 2 3 4 4 3 2
log log log log log logx x=
HT 27: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá):
1) 2
log (9 2 ) 3x
x− = − 2) 3
log (3 8) 2x
x− = −
3) 7
log (6 7 ) 1x
x−
+ = + 4) 1
3
log (4.3 1) 2 1x
x−
− = −
5) 5
log (3 )
2
log (9 2 ) 5
xx −
− = 6) 2
log (3.2 1) 2 1 0x
x− − − =
7) 2
log (12 2 ) 5x
x− = − 8) 5
log (26 3 ) 2x
− =
9) 1
2
log (5 25 ) 2x x+
− = 10) 1
4
log (3.2 5)x
x+
− =
11) 1
1
6
log (5 25 ) 2x x+
− = − 12) 1
1
5
log (6 36 ) 2x x+
− = −
HT 28: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá):
1) 2
5
log ( 2 65) 2x
x x−
− + = 2) 2
1
log ( 4 5) 1x
x x−
− + =
3) 2
log (5 8 3) 2x
x x− + = 4) 3 2
1
log (2 2 3 1) 3x
x x x+
+ − + =
5) 3
log ( 1) 2x
x−
− = 6) log ( 2) 2x
x + =
7) 2
2
log ( 5 6) 2x
x x− + = 8) 2
3
log ( ) 1x
x x+
− =
9) 2
log (2 7 12) 2x
x x− + = 10) 2
log (2 3 4) 2x
x x− − =
11) 2
2
log ( 5 6) 2x
x x− + = 12) 2
log ( 2) 1x
x − =
13) 2
3 5
log (9 8 2) 2x
x x+
+ + = 14) 2
2 4
log ( 1) 1x
x+
+ =
15)
15
log 2
1 2x
x
= −
−
16) 2log (3 2 ) 1
x
x− =
fb.com/huynhict
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014
Chuyên đề luyện thi đại học môn toán năm 2014

More Related Content

What's hot

Chuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủChuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủ
tuituhoc
 
Khảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời GiảiKhảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời GiảiHải Finiks Huỳnh
 
PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU
PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂUPHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU
PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU
SoM
 
40 Bài Hàm Số Chọn Lọc 2013
40 Bài Hàm Số Chọn Lọc 201340 Bài Hàm Số Chọn Lọc 2013
40 Bài Hàm Số Chọn Lọc 2013Hải Finiks Huỳnh
 
Tiếp tuyến của đồ thị hàm số
Tiếp tuyến của đồ thị hàm sốTiếp tuyến của đồ thị hàm số
Tiếp tuyến của đồ thị hàm số
tuituhoc
 
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comMathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
nghiafff
 
B1 tinh don dieu cua ham so
B1 tinh don dieu cua ham soB1 tinh don dieu cua ham so
B1 tinh don dieu cua ham so
khoilien24
 
Cực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
hai tran
 
Biện luận phương trình chứa dấu giá trị tuyệt đối
Biện luận phương trình chứa dấu giá trị tuyệt đốiBiện luận phương trình chứa dấu giá trị tuyệt đối
Biện luận phương trình chứa dấu giá trị tuyệt đối
Thopeo Kool
 
245 Đề thi đại học môn toán 1996 - 2005
245 Đề thi đại học môn toán 1996 - 2005245 Đề thi đại học môn toán 1996 - 2005
245 Đề thi đại học môn toán 1996 - 2005
Anh Pham Duy
 
Ham so bac nhat - toán lớp 10 online
Ham so bac nhat - toán lớp 10 onlineHam so bac nhat - toán lớp 10 online
Ham so bac nhat - toán lớp 10 online
hai tran
 
64 bài khảo sát hàm số có đáp án
64 bài khảo sát hàm số có đáp án64 bài khảo sát hàm số có đáp án
64 bài khảo sát hàm số có đáp án
tuituhoc
 
100 bai toan ks cua thay tran si tung
100 bai toan ks cua thay tran si tung100 bai toan ks cua thay tran si tung
100 bai toan ks cua thay tran si tungtrongphuckhtn
 
Tính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phân
Tính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phânTính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phân
Tính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phânChien Dang
 
Hàm số - 8. Bài toán tương giao của hai đồ thị hàm số
Hàm số - 8. Bài toán tương giao của hai đồ thị hàm sốHàm số - 8. Bài toán tương giao của hai đồ thị hàm số
Hàm số - 8. Bài toán tương giao của hai đồ thị hàm số
lovestem
 

What's hot (20)

Chuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủChuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủ
 
Chuong02
Chuong02Chuong02
Chuong02
 
Khảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời GiảiKhảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời Giải
 
100 cau hoi phu kshs
100 cau hoi phu kshs100 cau hoi phu kshs
100 cau hoi phu kshs
 
Btppt
BtpptBtppt
Btppt
 
PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU
PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂUPHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU
PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU
 
40 Bài Hàm Số Chọn Lọc 2013
40 Bài Hàm Số Chọn Lọc 201340 Bài Hàm Số Chọn Lọc 2013
40 Bài Hàm Số Chọn Lọc 2013
 
Tiếp tuyến của đồ thị hàm số
Tiếp tuyến của đồ thị hàm sốTiếp tuyến của đồ thị hàm số
Tiếp tuyến của đồ thị hàm số
 
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comMathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
 
B1 tinh don dieu cua ham so
B1 tinh don dieu cua ham soB1 tinh don dieu cua ham so
B1 tinh don dieu cua ham so
 
Cực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
 
Biện luận phương trình chứa dấu giá trị tuyệt đối
Biện luận phương trình chứa dấu giá trị tuyệt đốiBiện luận phương trình chứa dấu giá trị tuyệt đối
Biện luận phương trình chứa dấu giá trị tuyệt đối
 
245 Đề thi đại học môn toán 1996 - 2005
245 Đề thi đại học môn toán 1996 - 2005245 Đề thi đại học môn toán 1996 - 2005
245 Đề thi đại học môn toán 1996 - 2005
 
Bam may
Bam mayBam may
Bam may
 
Ham so bac nhat - toán lớp 10 online
Ham so bac nhat - toán lớp 10 onlineHam so bac nhat - toán lớp 10 online
Ham so bac nhat - toán lớp 10 online
 
64 bài khảo sát hàm số có đáp án
64 bài khảo sát hàm số có đáp án64 bài khảo sát hàm số có đáp án
64 bài khảo sát hàm số có đáp án
 
100 bai toan ks cua thay tran si tung
100 bai toan ks cua thay tran si tung100 bai toan ks cua thay tran si tung
100 bai toan ks cua thay tran si tung
 
Tính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phân
Tính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phânTính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phân
Tính toán khoa học - Chương 5: Tính gần đúng đạo hàm và tích phân
 
Hàm số - 8. Bài toán tương giao của hai đồ thị hàm số
Hàm số - 8. Bài toán tương giao của hai đồ thị hàm sốHàm số - 8. Bài toán tương giao của hai đồ thị hàm số
Hàm số - 8. Bài toán tương giao của hai đồ thị hàm số
 
Chuong03
Chuong03Chuong03
Chuong03
 

Viewers also liked

Phương pháp giải Hình Học Không Gian hiệu quả
Phương pháp giải Hình Học Không Gian hiệu quảPhương pháp giải Hình Học Không Gian hiệu quả
Phương pháp giải Hình Học Không Gian hiệu quả
Trần Đình Khánh
 
Blue Jacket of The Quarter Award
Blue Jacket of The Quarter Award Blue Jacket of The Quarter Award
Blue Jacket of The Quarter Award Marquis Forno
 
Carta1
Carta1Carta1
Carta1
BRY4N258
 
Manual de usuario actas de finiquito
Manual de usuario   actas de finiquitoManual de usuario   actas de finiquito
Manual de usuario actas de finiquitoMarybel Chuquiana
 
Mod COSTUME
Mod COSTUMEMod COSTUME
Mod COSTUME
Zach Wilkins
 
Tecnicasdeestudio
TecnicasdeestudioTecnicasdeestudio
Tecnicasdeestudio
jessicamariarojas
 
Basic principles of curriculum development
Basic principles of curriculum developmentBasic principles of curriculum development
Basic principles of curriculum development
Jhoanne Rafon
 
Servicio Tecnológico DUHAST
Servicio Tecnológico DUHASTServicio Tecnológico DUHAST
Servicio Tecnológico DUHAST
Ignacio Jara Valdebenito
 
Thuong mai dien tu
Thuong mai dien tuThuong mai dien tu
Thuong mai dien tu
Phi Phi
 
从 Oracle 合并到 my sql npr 实例分析
从 Oracle 合并到 my sql   npr 实例分析从 Oracle 合并到 my sql   npr 实例分析
从 Oracle 合并到 my sql npr 实例分析
YUCHENG HU
 
Snrg2011 6.15.1.114 herold_scott
Snrg2011 6.15.1.114 herold_scottSnrg2011 6.15.1.114 herold_scott
Snrg2011 6.15.1.114 herold_scott
Kalyan Sundar Samanta
 
Gemma Flannery Teaching CV
Gemma Flannery Teaching CVGemma Flannery Teaching CV
Gemma Flannery Teaching CVGemma Flannery
 
Plan de Social Media
Plan de Social MediaPlan de Social Media
Plan de Social Media
carolpalgar
 
Borang cuti rehat staf sokongan
Borang cuti rehat staf sokonganBorang cuti rehat staf sokongan
Borang cuti rehat staf sokongan
Sudirman Abd wahab
 
Amnhaccoban102
Amnhaccoban102Amnhaccoban102
Amnhaccoban102
Phi Phi
 
corrección evaluacion 1° periodo
corrección evaluacion 1° periodocorrección evaluacion 1° periodo
corrección evaluacion 1° periodo
scriftogame
 

Viewers also liked (20)

Phương pháp giải Hình Học Không Gian hiệu quả
Phương pháp giải Hình Học Không Gian hiệu quảPhương pháp giải Hình Học Không Gian hiệu quả
Phương pháp giải Hình Học Không Gian hiệu quả
 
Blue Jacket of The Quarter Award
Blue Jacket of The Quarter Award Blue Jacket of The Quarter Award
Blue Jacket of The Quarter Award
 
Carta1
Carta1Carta1
Carta1
 
CheeseStory
CheeseStoryCheeseStory
CheeseStory
 
cerebro
cerebrocerebro
cerebro
 
Manual de usuario actas de finiquito
Manual de usuario   actas de finiquitoManual de usuario   actas de finiquito
Manual de usuario actas de finiquito
 
Mod COSTUME
Mod COSTUMEMod COSTUME
Mod COSTUME
 
Tecnicasdeestudio
TecnicasdeestudioTecnicasdeestudio
Tecnicasdeestudio
 
Basic principles of curriculum development
Basic principles of curriculum developmentBasic principles of curriculum development
Basic principles of curriculum development
 
Servicio Tecnológico DUHAST
Servicio Tecnológico DUHASTServicio Tecnológico DUHAST
Servicio Tecnológico DUHAST
 
Thuong mai dien tu
Thuong mai dien tuThuong mai dien tu
Thuong mai dien tu
 
从 Oracle 合并到 my sql npr 实例分析
从 Oracle 合并到 my sql   npr 实例分析从 Oracle 合并到 my sql   npr 实例分析
从 Oracle 合并到 my sql npr 实例分析
 
Final Poster.
Final Poster.Final Poster.
Final Poster.
 
Snrg2011 6.15.1.114 herold_scott
Snrg2011 6.15.1.114 herold_scottSnrg2011 6.15.1.114 herold_scott
Snrg2011 6.15.1.114 herold_scott
 
Content Lesson
Content LessonContent Lesson
Content Lesson
 
Gemma Flannery Teaching CV
Gemma Flannery Teaching CVGemma Flannery Teaching CV
Gemma Flannery Teaching CV
 
Plan de Social Media
Plan de Social MediaPlan de Social Media
Plan de Social Media
 
Borang cuti rehat staf sokongan
Borang cuti rehat staf sokonganBorang cuti rehat staf sokongan
Borang cuti rehat staf sokongan
 
Amnhaccoban102
Amnhaccoban102Amnhaccoban102
Amnhaccoban102
 
corrección evaluacion 1° periodo
corrección evaluacion 1° periodocorrección evaluacion 1° periodo
corrección evaluacion 1° periodo
 

Similar to Chuyên đề luyện thi đại học môn toán năm 2014

Bai tap giai tich 12 htv
Bai tap giai tich 12 htvBai tap giai tich 12 htv
Bai tap giai tich 12 htv
Hoàng Thái Việt
 
Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998
Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998
Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998
Zome VN
 
Chuyên đề 2 hàm số bậc i và ii
Chuyên đề 2 hàm số bậc i và iiChuyên đề 2 hàm số bậc i và ii
Chuyên đề 2 hàm số bậc i và ii
phamchidac
 
02 cuc tri ham bac ba tlbg_p1
02 cuc tri ham bac ba tlbg_p102 cuc tri ham bac ba tlbg_p1
02 cuc tri ham bac ba tlbg_p1Huynh ICT
 
Khao sat ham so 50 cau
Khao sat ham so 50 cauKhao sat ham so 50 cau
Khao sat ham so 50 cauHuynh ICT
 
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comMathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comHuynh ICT
 
[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung
[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung
[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung
Đức Mạnh Ngô
 
02 cuc tri ham bac ba tl tham khao
02 cuc tri ham bac ba tl tham khao02 cuc tri ham bac ba tl tham khao
02 cuc tri ham bac ba tl tham khaoHuynh ICT
 
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânPhương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânHajunior9x
 
Bat phuong trinh vo ti
Bat phuong trinh vo tiBat phuong trinh vo ti
Bat phuong trinh vo tiphongmathbmt
 
Khao sat ve_do_thi
Khao sat ve_do_thiKhao sat ve_do_thi
Khao sat ve_do_thiHuynh ICT
 
Ky thuat khao sat ham so va ve do thi
Ky thuat khao sat ham so va ve do thiKy thuat khao sat ham so va ve do thi
Ky thuat khao sat ham so va ve do thiNguyễn Quốc Bảo
 
01 khao sat va ve do thi ham so p1
01 khao sat va ve do thi ham so p101 khao sat va ve do thi ham so p1
01 khao sat va ve do thi ham so p1
diemthic3
 
Khao sat ham_so_luyen_thi_dai_hoc_dtn
Khao sat ham_so_luyen_thi_dai_hoc_dtnKhao sat ham_so_luyen_thi_dai_hoc_dtn
Khao sat ham_so_luyen_thi_dai_hoc_dtnHuynh ICT
 

Similar to Chuyên đề luyện thi đại học môn toán năm 2014 (20)

Chuyên đề khao sat ham so
Chuyên đề khao sat ham soChuyên đề khao sat ham so
Chuyên đề khao sat ham so
 
Chuyên đề khao sat ham so
Chuyên đề khao sat ham soChuyên đề khao sat ham so
Chuyên đề khao sat ham so
 
Bai tap giai tich 12 htv
Bai tap giai tich 12 htvBai tap giai tich 12 htv
Bai tap giai tich 12 htv
 
Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998
Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998
Chuyen de on_thi_cao_hoc_2012_ham_so_va_cuc_tri_1998
 
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thptChuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
 
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thptChuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
 
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thptChuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
 
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thptChuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
 
Chuyên đề 2 hàm số bậc i và ii
Chuyên đề 2 hàm số bậc i và iiChuyên đề 2 hàm số bậc i và ii
Chuyên đề 2 hàm số bậc i và ii
 
02 cuc tri ham bac ba tlbg_p1
02 cuc tri ham bac ba tlbg_p102 cuc tri ham bac ba tlbg_p1
02 cuc tri ham bac ba tlbg_p1
 
Khao sat ham so 50 cau
Khao sat ham so 50 cauKhao sat ham so 50 cau
Khao sat ham so 50 cau
 
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.comMathvn.com   50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
Mathvn.com 50 cau hoi phu kshs dai hoc 2011 - www.mathvn.com
 
[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung
[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung
[Vnmath.com] bai giang-trong_tam_ve_ham_so_thay_dang_viet_hung
 
02 cuc tri ham bac ba tl tham khao
02 cuc tri ham bac ba tl tham khao02 cuc tri ham bac ba tl tham khao
02 cuc tri ham bac ba tl tham khao
 
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânPhương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
 
Bat phuong trinh vo ti
Bat phuong trinh vo tiBat phuong trinh vo ti
Bat phuong trinh vo ti
 
Khao sat ve_do_thi
Khao sat ve_do_thiKhao sat ve_do_thi
Khao sat ve_do_thi
 
Ky thuat khao sat ham so va ve do thi
Ky thuat khao sat ham so va ve do thiKy thuat khao sat ham so va ve do thi
Ky thuat khao sat ham so va ve do thi
 
01 khao sat va ve do thi ham so p1
01 khao sat va ve do thi ham so p101 khao sat va ve do thi ham so p1
01 khao sat va ve do thi ham so p1
 
Khao sat ham_so_luyen_thi_dai_hoc_dtn
Khao sat ham_so_luyen_thi_dai_hoc_dtnKhao sat ham_so_luyen_thi_dai_hoc_dtn
Khao sat ham_so_luyen_thi_dai_hoc_dtn
 

Recently uploaded

98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...
98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...
98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...
Nguyen Thanh Tu Collection
 
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...
Nguyen Thanh Tu Collection
 
Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...
Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...
Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...
https://www.facebook.com/garmentspace
 
GIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdf
GIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdfGIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdf
GIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdf
Điện Lạnh Bách Khoa Hà Nội
 
30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf
30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf
30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf
ngocnguyensp1
 
Ảnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nay
Ảnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nayẢnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nay
Ảnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nay
chinhkt50
 
AV6 - PIE CHART WRITING skill in english
AV6 - PIE CHART WRITING skill in englishAV6 - PIE CHART WRITING skill in english
AV6 - PIE CHART WRITING skill in english
Qucbo964093
 
BAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdf
BAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdfBAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdf
BAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdf
phamthuhoai20102005
 
Chương III (Nội dung vẽ sơ đồ tư duy chương 3)
Chương III (Nội dung vẽ sơ đồ tư duy chương 3)Chương III (Nội dung vẽ sơ đồ tư duy chương 3)
Chương III (Nội dung vẽ sơ đồ tư duy chương 3)
duykhoacao
 
Dẫn luận ngôn ngữ - Tu vung ngu nghia.pptx
Dẫn luận ngôn ngữ - Tu vung ngu nghia.pptxDẫn luận ngôn ngữ - Tu vung ngu nghia.pptx
Dẫn luận ngôn ngữ - Tu vung ngu nghia.pptx
nvlinhchi1612
 

Recently uploaded (10)

98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...
98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...
98 BÀI LUYỆN NGHE TUYỂN SINH VÀO LỚP 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ ...
 
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI KHOA HỌC TỰ NHIÊN 9 CHƯƠNG TRÌNH MỚI - PHẦN...
 
Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...
Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...
Khoá luận tốt nghiệp ngành Truyền thông đa phương tiện Xây dựng kế hoạch truy...
 
GIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdf
GIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdfGIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdf
GIÁO TRÌNH 2-TÀI LIỆU SỬA CHỮA BOARD MONO TỦ LẠNH MÁY GIẶT ĐIỀU HÒA.pdf
 
30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf
30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf
30 - ĐỀ THI HSG - HÓA HỌC 9 - NĂM HỌC 2021 - 2022.pdf
 
Ảnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nay
Ảnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nayẢnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nay
Ảnh hưởng của nhân sinh quan Phật giáo đến đời sống tinh thần Việt Nam hiện nay
 
AV6 - PIE CHART WRITING skill in english
AV6 - PIE CHART WRITING skill in englishAV6 - PIE CHART WRITING skill in english
AV6 - PIE CHART WRITING skill in english
 
BAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdf
BAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdfBAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdf
BAI TAP ON HE LOP 2 LEN 3 MON TIENG VIET.pdf
 
Chương III (Nội dung vẽ sơ đồ tư duy chương 3)
Chương III (Nội dung vẽ sơ đồ tư duy chương 3)Chương III (Nội dung vẽ sơ đồ tư duy chương 3)
Chương III (Nội dung vẽ sơ đồ tư duy chương 3)
 
Dẫn luận ngôn ngữ - Tu vung ngu nghia.pptx
Dẫn luận ngôn ngữ - Tu vung ngu nghia.pptxDẫn luận ngôn ngữ - Tu vung ngu nghia.pptx
Dẫn luận ngôn ngữ - Tu vung ngu nghia.pptx
 

Chuyên đề luyện thi đại học môn toán năm 2014

  • 1. CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC 2013 - 2014 KHẢO SÁT HÀM SỐ BIÊN SOẠN: LƯU HUY THƯỞNG HÀ NỘI, 8/2013 HỌ VÀ TÊN: ………………………………………………………………… LỚP :…………………………………………………………………. TRƯỜNG :………………………………………………………………… fb.com/huynhict
  • 2. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 1 CHUYÊN ĐỀ: KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ CÁC BÀI TOÁN LIÊN QUAN ĐẾN KHẢO SÁT HÀM SỐ VẤN ĐỀ 1: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 1. Đinh nghĩa: Hàm số f đồng biến trên 1 2 1 2 1 2( , , ( ) ( ))K x x K x x f x f x⇔ ∀ ∈ < ⇒ < Hàm số f nghịch biến trên 1 2 1 2 1 2( , , ( ) ( ))K x x K x x f x f x⇔ ∀ ∈ < ⇒ > 2. Điều kiện cần: Giả sử f có đạo hàm trên khoảng I. a) Nếu f đồng biến trên khoảng I thì '( ) 0,f x x I≥ ∀ ∈ b) Nếu f nghịch biến trên khoảng I thì '( ) 0,f x x I≤ ∀ ∈ 3.Điều kiện đủ: Giả sử f có đạo hàm trên khoảng I. a) Nếu '( ) 0,f x x I≥ ∀ ∈ ( '( ) 0f x = tại một số hữu hạn điểm) thì f đồng biến trên I. b) Nếu '( ) 0,f x x I≤ ∀ ∈ ( '( ) 0f x = tại một số hữu hạn điểm) thì f nghịch biến trên I. c) Nếu '( ) 0,f x x I= ∀ ∈ , ∀x ∈ I thì f không đổi trên I. Chú ý: Nếu khoảng I được thay bởi đoạn hoặc nửa khoảng thì f phải liên tục trên đó. Dạng toán 1: Xét tính đơn điệu của hàm số Phương pháp: Để xét chiều biến thiên của hàm số y = f(x), ta thực hiện các bước như sau: – Tìm tập xác định của hàm số. – Tính y′. Tìm các điểm mà tại đó y′ = 0 hoặc y′ không tồn tại (gọi là các điểm tới hạn) – Lập bảng xét dấu y′ (bảng biến thiên). Từ đó kết luận các khoảng đồng biến, nghịch biến của hàm số. Bài tập cơ bản HT 1. Xét tính đơn điệu của các hàm số sau: 1) 3 2 2 2y x x x= − + − 2) 2 (4 )( 1)y x x= − − 3) 3 2 3 4 1y x x x= − + − 4) 4 21 2 1 4 y x x= − − 5) 4 2 2 3y x x= − − + 6) 4 21 1 2 10 10 y x x= + − 7) 2 1 5 x y x − = + 8) 1 2 x y x − = − 9) 1 1 1 y x = − − 10) 3 2 2y x x= + + − 11) 2 1 3y x x= − − − 12) 2 2y x x= − www.VNMATH.com
  • 3. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 2 Dạng toán2: Tìm điều kiện để hàm số luôn đồng biến hoặc nghịch biến trên tập xác định (hoặc trên từng khoảng xác định) Cho hàm số ( , )y f x m= , m là tham số, có tập xác định D. • Hàm số f đồng biến trên D ⇔ y′≥ 0, ∀x ∈ D. • Hàm số f nghịch biến trên D ⇔ y′≤ 0, ∀x ∈ D. Từ đó suy ra điều kiện của m. Chú ý: 1) y′ = 0 chỉ xảy ra tại một số hữu hạn điểm. 2) Nếu 2 'y ax bx c= + + thì: •••• 0 0 ' 0, 0 0 a b c y x R a  = =  ≥≥ ∀ ∈ ⇔  > ∆ ≤ • 0 0 ' 0, 0 0 a b c y x R a  = =  ≤≤ ∀ ∈ ⇔  < ∆ ≤ 3) Định lí về dấu của tam thức bậc hai 2 ( )g x ax bx c= + + : • Nếu ∆< 0 thì g(x) luôn cùng dấu với a. • Nếu ∆ = 0 thì g(x) luôn cùng dấu với a (trừ x = 2 b a − ) • Nếu ∆> 0 thì g(x) có hai nghiệm x1, x2 và trong khoảng hai nghiệm thì g(x) khác dấu với a, ngoài khoảng hai nghiệm thì g(x) cùng dấu với a. 4) So sánh các nghiệm 1 2,x x của tam thức bậc hai 2 ( )g x ax bx c= + + với số 0: • 1 2 0 0 0 0 x x P S ∆ >< < ⇔ >  < • 1 2 0 0 0 0 x x P S ∆ >< < ⇔ >  > • 1 20 0x x P< < ⇔ < 5) Để hàm số 3 2 y ax bx cx d= + + + có độ dài khoảng đồng biến (nghịch biến) 1 2( ; )x x bằng d thì ta thực hiện các bước sau: • Tính y′. • Tìm điều kiện để hàm số có khoảng đồng biến và nghịch biến: 0 0 a ≠ ∆ > (1) • Biến đổi 1 2x x d− = thành 2 2 1 2 1 2( ) 4x x x x d+ − = (2) • Sử dụng định lí Viet đưa (2) thành phương trình theo m. • Giải phương trình, so với điều kiện (1) để chọn nghiệm. Bài tập cơ bản HT 2. Tìm m để các hàm số sau luôn đồng biến trên tập xác định (hoặc từng khoảng xác định) của nó: 1) 3 2 3 ( 2)y x mx m x m= − + + − 2) 3 2 2 1 3 2 x mx y x= − − + 3) x m y x m + = − 4) 4mx y x m + = + HT 3. Tìm m để hàm số: 1) 3 2 3y x x mx m= + + + nghịch biến trên một khoảng có độ dài bằng 1. 2) 3 21 1 2 3 1 3 2 y x mx mx m= − + − + nghịch biến trên một khoảng có độ dài bằng 3. fb.com/huynhict
  • 4. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 3 3) 3 21 ( 1) ( 3) 4 3 y x m x m x= − + − + + − đồng biến trên một khoảng có độ dài bằng 4. HT 4. Tìm m để hàm số: 1) 3 2 ( 1) ( 1) 1 3 x y m x m x= + + − + + đồng biến trên khoảng (1; +∞). 2) 3 2 3(2 1) (12 5) 2y x m x m x= − + + + + đồng biến trên khoảng (2; +∞). 3) 4 ( 2) mx y m x m + = ≠ ± + đồng biến trên khoảng (1; +∞). 4) x m y x m + = − đồng biến trong khoảng (–1; +∞). BÀI TẬP TỔNG HỢP – NÂNG CAO HT 5. Cho hàm số (1).Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên khoảng . Đ/s: HT 6. Cho hàm số có đồ thị (Cm).Tìm m để hàm số đồng biến trên khoảng Đ/s: HT 7. Cho hàm số . Tìm m để hàm đồng biến trên . Đ/s: 5 4 m ≤ HT 8. Cho hàm số (1), (m là tham số).Tìm m để hàm số (1) đồng biến trên khoảng (1;2). Đ/s: [ ;1)m ∈ − ∞ HT 9. Cho hàm số 3 2 3(2 1) (12 5) 2y x m x m x= − + + + + đồng biến trên khoảng ( ; 1)−∞ − và (2; )+∞ Đ/s: 7 5 12 12 m− ≤ ≤ HT 10. Cho hàm số 3 2 2 (2 7 7) 2( 1)(2 3)y x mx m m x m m= − − − + + − − . Tìm mđể hàm số đồng biến trên [2; ).+∞ Đ/s: 5 1 2 m− ≤ ≤ --------------------------------------------------------- 3 2 3 4y x x mx= + − − ( ;0)−∞ 3m ≤ − x3 2 2 3(2 1) 6 ( 1) 1y m x m m x= − + + + + (2; )+∞ 1m ≤ 3 2 (1 2 ) (2 ) 2y x m x m x m= + − + − + + ( )0;+∞ 4 2 2 3 1y x mx m= − − + www.VNMATH.com
  • 5. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 4 VẤN ĐỀ 2: CỰC TRỊ CỦA HÀM SỐ I. KIẾN THỨC CẦN NHỚ I.Khái niệm cực trị của hàm số Giả sử hàm số f xác định trên tập ( )D D ⊂ ℝ và 0x D∈ 1) 0x – điểm cực đại của f nếu tồn tại khoảng ( ; )a b D⊂ và 0 ( ; )x a b∈ sao cho 0( ) ( )f x f x< , { }0( ; )x a b x∀ ∈ . Khi đó 0( )f x được gọi là giá trị cực đại (cực đại) của f . 2) 0x – điểm cực tiểu của f nếu tồn tại khoảng ( ; )a b D⊂ và 0 ( ; )x a b∈ sao cho 0( ) ( )f x f x> , { }0( ; )x a b x∀ ∈ . Khi đó 0( )f x được gọi là giá trị cực tiểu (cực tiểu) của f . 3) Nếu 0x là điểm cực trị của f thì điểm 0 0( ; ( ))x f x được gọi là điểm cực trị của đồ thị hàm số f . II. Điều kiện cần để hàm số có cực trị Nếu hàm số f có đạo hàm tại 0x và đạt cực trị tại điểm đó thì 0'( ) 0f x = . Chú ý: Hàm số f chỉ có thể đạt cực trị tại những điểm mà tại đó đạo hàm bằng 0 hoặc không có đạo hàm. III. Điểu kiện đủ để hàm số có cực trị 1. Định lí 1: Giả sử hàm số f liên tục trên khoảng ( ; )a b chứa điểm 0x và có đạo hàm trên { }( ; ) oa b x 1) Nếu '( )f x đổi dấu từ âm sang dương khi x đi qua 0x thì f đạt cực tiểu tại 0x . 2) Nếu '( )f x đổi dấu từ dương sang âm khi x đi qua 0x thì f đạt cực đại tại 0x 2. Định lí 2: Giả sử hàm số f có đạo hàm trên khoảng ( ; )a b chứa điểm 0x , 0'( ) 0f x = và có đạo hàm cấp hai khác 0 tại điểm 0x . 1) Nếu 0"( ) 0f x < thì f đạt cực đại tại 0x . 2) Nếu 0"( ) 0f x > thì f đạt cực tiểu tại 0x . II. CÁC DẠNG TOÁN Dạng toán 1: Tìm cực trị của hàm số Qui tắc 1: Dùng định lí 1. • Tìm '( )f x . • Tìm các điểm ( 1,2,...)ix i = mà tại đó đạo hàm bằng 0 hoặc không có đạo hàm. • Xét dấu '( )f x . Nếu '( )f x đổi dấu khix đi qua ix thì hàm số đạt cực trị tại ix . Qui tắc 2: Dùng định lí 2. • Tính '( )f x • Giải phương trình '( ) 0f x = tìm các nghiệm ( 1,2,...)ix i = • Tính "( )f x và "( ) ( 1,2,...)if x i = . Nếu "( ) 0if x < thì hàm số đạt cực đại tại ix . Nếu "( ) 0if x > thì hàm số đạt cực tiểu tại ix fb.com/huynhict
  • 6. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 5 Bài tập cơ bản HT 11. Tìm cực trị của các hàm số sau: 1) 2 3 3 2y x x= − 2) 3 2 2 2 1y x x x= − + − 3) 3 21 4 15 3 y x x x= − + − 4) 4 2 3 2 x y x= − + 5) 4 2 4 5y x x= − + 6) 4 2 3 2 2 x y x= − + + 7) 2 3 6 2 x x y x − + + = + 8) 2 3 4 5 1 x x y x + + = + 9) 2 2 15 3 x x y x − − = − 10) 3 4 ( 2) ( 1)y x x= − + 11) 2 2 4 2 1 2 3 x x y x x + − = + − 12) 2 2 3 4 4 1 x x y x x + + = + + 13) 2 4y x x= − 14) 2 2 5y x x= − + 15) 2 2y x x x= + − Dạng toán 2: Tìm điều kiện để hàm số có cực trị 1. Nếu hàm số ( )y f x= đạt cực trị tại điểm 0x thì 0'( ) 0f x = hoặc tại 0x không có đạo hàm. 2. Để hàm số ( )y f x= ) đạt cực trị tại điểm 0x thì '( )f x đổi dấu khi x đi qua 0x . Chú ý: • Hàm số bậc ba 3 2 y ax bx cx d= + + + có cực trị ⇔ Phương trình ' 0y = có hai nghiệm phân biệt. Khi đó nếu x0 là điểm cực trị thì ta có thể tính giá trị cực trị y(x0) bằng hai cách: + 3 2 0 0 0 0( )y x ax bx cx d= + + + + 0 0( )y x Ax B= + , trong đó Ax + B là phần dư trong phép chia y cho y′. Bài tập cơ bản HT 12. Tìm m để hàm số: 1) 3 2 ( 2) 3 5y m x x mx= + + + − có cực đại, cực tiểu. 2) 3 2 2 3( 1) (2 3 2) ( 1)y x m x m m x m m= − − + − + − − có cực đại, cực tiểu. 3) 3 2 2 3 3 3( 1)y x mx m x m= − + − − 4) 3 2 2 3(2 1) 6 ( 1) 1y x m x m m x= − + + + + 2x = 5) 3 2 2 3 ( 1) 2y x mx m x= − + − + đạt cực đại tại 6) 4 2 2( 2) 5y mx m x m= − + − + − có một cực đại 1 . 2 x = www.VNMATH.com
  • 7. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 6 HT 13. Tìm , , ,a b c d để hàm số: 1) 3 2 y ax bx cx d= + + + đạt cực tiểu bằng 0 tại 0x = và đạt cực đại bằng 4 27 tại 1 3 x = 2) 4 2 y ax bx c= + + có đồ thị đi qua gốc toạ độ O và đạt cực trị bằng –9 tại 3x = . HT 14. Tìm m để các hàm số sau không có cực trị: 1) 3 2 3 3 3 4y x x mx m= − + + + 2) 3 2 3 ( 1) 1y mx mx m x= + − − − HT 15. Tìm m để hàm số : 1) 3 2 2 2 2( 1) ( 4 1) 2( 1)y x m x m m x m= + − + − + − + đạt cực trị tại hai điểm 1 2,x x sao cho: 1 2 1 2 1 1 1 ( ) 2 x x x x + = + . 2) 3 21 1 3 y x mx mx= − + − đạt cực trị tại hai điểm 1 2,x x 2 sao cho: 1 2 8x x− ≥ . 3) 3 21 1 ( 1) 3( 2) 3 3 y mx m x m x= − − + − + đạt cực trị tại hai điểm 1 2,x x sao cho: 1 22 1x x+ = . HT 16. Tìm m để đồ thị hàm số : 1) 3 2 4y x mx= − + − có hai điểm cực trị là A, B và 2 2 900 729 m AB = . 2) 4 2 4y x mx x m= − + + có 3 điểm cực trị là A, B, C và tam giác ABC nhận gốc toạ độ O làm trọng tâm. BÀI TẬP TỔNG HỢP VÀ NÂNG CAO HT 17. Tìm m để đồ thị hàm số : 1) 3 2 2 12 13y x mx x= + − − có hai điểm cực trị cách đều trục tung. Đ/s: 0m = 2) 3 2 3 3 4y x mx m= − + có các điểm cực đại, cực tiểu đối xứng nhau qua đường phân giác thứ nhất. Đ/s: 1 2 m = ± 3) 3 2 3 3 4y x mx m= − + có các điểm cực đại, cực tiểu ở về một phía đối với đường thẳng : 3 2 8 0d x y− + = . Đ/s: { 4 ;1 0} 3 m   ∈ −    HT 18. Tìm m để đồ thị hàm số: 1) 3 2 3y x x m= + + có 2 điểm cực trị tại A, B sao cho 0 120AOB = Đ/s: 12 132 0, 3 m m − + = = 2) 4 2 2 2y x mx= − + có 3 điểm cực trị tạo thành 1 tam giác có đường tròn ngoại tiếp đi qua 3 9 ; 5 5 D       Đ/s: 1m = fb.com/huynhict
  • 8. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 7 3) 4 2 2 2y x mx m m= + + + có 3 điểm cực trị tạo thành 1 tam giác có một góc bằng 0 120 . Đ/s: 3 1 3 m = − 4) 4 2 4 2 2y x mx m m= − + + có 3 điểm cực trị tạo thành 1 tam giác có diện tích bằng 4. Đ/s: 3 2m = HT 19. Tìm m để hàm số: 1) 3 3 2y x mx= − + có hai điểm cực trị và đường tròn qua 2 điểm cực trị cắt đường tròn tâm (1;1)I bán kính bằng 1 tại hai điểm A, B sao cho diện tích tam giác IAB lớn nhất. Đ/s: 2 3 2 m ± = 2) 3 2 4 3y x mx x= + − có hai điểm cực trị 1 2,x x thỏa mãn: 1 24 0x x+ = Đ/s: 9 2 m = ± HT 20. Tìm m để hàm số: 1) 3 2 2 3( 1) 6( 2) 1y x m x m x= + − + − − có đường thẳng đi qua hai điểm cực trị song song với đường thẳng 4 1y x= − − . Đ/s: 5m = 2) 3 2 2 3( 1) 6 (1 2 )y x m x m m x= + − + − có các điểm cực đại, cực tiểu của đồ thị nằm trên đường thẳng 4y x= − . Đ/s: 1m = 3) 3 2 7 3y x mx x= + + + có đường thẳng đi qua các điểm cực đại, cực tiểu vuông góc với đường thẳng 3 7y x= − . Đ/s: 3 10 2 m = ± 4) 3 2 2 3y x x m x m= − + + có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng (∆): 1 5 2 2 y x= − . Đ/s: 0m = ------------------------------------------------------- www.VNMATH.com
  • 9. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 8 VẤN ĐỀ 3: KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ I. KIẾN THỨC CẦN NHỚ 1. Các bước khảo sát sự biến thiên và vẽ đồ thị của hàm số • Tìm tập xác định của hàm số. • Xét sự biến thiên của hàm số: + Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận (nếu có). + Tính 'y . + Tìm các điểm tại đó đạo hàm ' 0y = hoặc không xác định. + Lập bảng biến thiên ghi rõ dấu của đạo hàm, chiều biến thiên, cực trị của hàm số. • Vẽ đồ thị của hàm số: + Tìm điểm uốn của đồ thị (đối với hàm số bậc ba và hàm số trùng phương). + Vẽ các đường tiệm cận (nếu có) của đồ thị. + Xác định một số điểm đặc biệt của đồ thị như giao điểm của đồ thị với các trục toạ độ (trong trường hợp đồ thị không cắt các trục toạ độ hoặc việc tìm toạ độ giao điểm phức tạp thì có thể bỏ qua). Có thể tìm thêm một số điểm thuộc đồ thị để có thể vẽ chính xác hơn. 2. Khảo sát sự biến thiên và vẽ đồ thị hàm bậc ba 3 2 ( 0)y ax bx cx d a= + + + ≠ • Tập xác định D = ℝ . • Đồ thị luôn có một điểm uốn và nhận điểm uốn làm tâm đối xứng. • Các dạng đồ thị: a > 0 a < 0 ' 0y = có 2 nghiệm phân biệt ⇔ 2 ' 3 0b ac∆ = − > ' 0y = có nghiệm kép ⇔ 2 ' 3 0b ac∆ = − = ' 0y = vô nghiệm ⇔ 2 ' 3 0b ac∆ = − < y x0 I y x0 I y x0 I y x0 I fb.com/huynhict
  • 10. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 9 3. Hàm số trùng phương 4 2 ( 0)y ax bx c a= + + ≠ • Tập xác định D = ℝ • Đồ thị luôn nhận trục tung làm trục đối xứng. • Các dạng đồ thị: 4. Hàm số nhất biến ( 0; 0) ax b y c ad bc cx d + = ≠ − ≠ + • Tập xác định D = d c    −      ℝ • Đồ thị có một tiệm cận đứng là và một tiệm cận ngang là . Giao điểm của hai tiệm cận là tâm đối xứng của đồ thị hàm số. • Các dạng đồ thị: Bài tập cơ bản HT 21. Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: 1. 3 2 3 1y x x= − + − 2. 3 2 1 3 x y x x= − + − 3. 3 2 2 1 3 x y x x= − + − + 4. 4 2 2 2y x x= − + 5. 4 2 1y x x= − − + 6. 1 1 x y x − = + 7. 2 1 1 x y x − = − 8. 1 2 1 x y x − = − + ---------------------------------------------------- d x c = − a y c = a > 0 a < 0 có 3 nghiệm phân biệt ⇔ chỉ có 1 nghiệm ⇔ y x0 y x0 y x0 y x0 0 ad – bc > x y 0 ad – bc < x y www.VNMATH.com
  • 11. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 10 VẤN ĐỀ 4: SỰ TƯƠNG GIAO CỦA CÁC ĐỒ THỊ Dạng toán 1: Dùng đồ thị hàm số biện luận số nghiệm phương trình • Cơ sở của phương pháp: Xét phương trình: ( ) ( )f x g x= (1) Số nghiệm của phương trình (1) = Số giao điểm của 1( ) : ( )C y f x= và 2( ) : ( )C y g x= Nghiệm của phương trình (1) là hoành độ giao điểm của 1( ) : ( )C y f x= và 2( ) : ( )C y g x= • Để biện luận số nghiệm của phương trình ( , ) 0F x m = (*) bằng đồ thị ta biến đổi (*) về dạng sau: ( , ) 0 ( ) ( )F x m f x g m= ⇔ = (1) Khi đó (1) có thể xem là phương trình hoành độ giao điểm của hai đường: ( ) : ( )C y f x= và : ( )d y g m= •d là đường thẳng cùng phương với trục hoành. • Dựa vào đồ thị (C) ta biện luận số giao điểm của (C) và d . Từ đó suy ra số nghiệm của (1) Bài tập cơ bản HT 22. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. Dùng đồ thị (C) biện luận theo m số nghiệm của phương trình: 1) 3 3 3 1; 3 1 0y x x x x m= − + − + − = 2) 3 3 3 1; 3 1 0y x x x x m= − + − − + + = 3) 3 3 2 3 1; 3 2 2 0y x x x x m m= − + − − − − = 4) 3 3 3 1; 3 4 0y x x x x m= − + − − + + = 5) 4 2 4 2 2 2; 4 4 2 0 2 x y x x x m= − + + − − + = 6) 4 2 4 2 2 2; 2 2 0y x x x x m= − + − − + = HT 23. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. Dùng đồ thị (C) biện luận theo m số nghiệm của phương trình: 1) 3 2 3 2 ( ) : 3 6; 3 6 3 0C y x x x x m= − + − + − + = 2) 33 2 2 ( ) : 2 9 12 4; 2 9 12 0C y x x x x x x m= − + − − + + = 3) 2 2 2 ( ) : ( 1) (2 ); ( 1) 2 ( 1) (2 )C y x x x x m m= + − + − = + − 4) 1 11 1 1 ( ) : ; ; ; 1 1 1 1 1 x xx x x C y m m m m x x x x x − −− − − = = = = = + + + + + ------------------------------------------------ y x g(m A (C) (4) : y = g(m)yCĐ yCT xA fb.com/huynhict
  • 12. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 11 Dạng toán 2: Tìm điều kiện tương giao giữa các đồ thị 1.Cho hai đồ thị 1( ) : ( )C y f x= và 2( ) : ( )C y g x= . Để tìm hoành độ giao điểm của 1( )C và 2( )C ta giải phương trình: ( ) ( )f x g x= (*) (gọi là phương trình hoành độ giao điểm). Số nghiệm của phương trình (*) bằng số giao điểm của hai đồ thị. 2. Đồ thị hàm số bậc ba 3 2 ( 0)y ax bx cx d a= + + + ≠ cắt trục hoành tại 3 điểm phân biệt ⇔ Phương trình 3 2 0ax bx cx d+ + + = có 3 nghiệm phân biệt. Bài tập cơ bản HT 24. Tìm toạ độ giao điểm của các đồ thị của các hàm số sau: 1) 2 3 3 2 2 1 2 2 x y x x y  = − + −  = + 2) 2 2 4 1 2 4 x y x y x x  − = −  = − + + 3) 3 4 3 2 y x x y x  = −  = − + HT 25. Tìm m để đồ thị các hàm số: 1) 2 2 ( 1)( 3)y x x mx m= − − + − cắt trục hoành tại ba điểm phân biệt. 2) 3 2 3 (1 2 ) 1y mx mx m x= + − − − cắt trục hoành tại ba điểm phân biệt. 3) 3 2 2 2 ; 2y x x mx m y x= + + + = + cắt nhau tại ba điểm phân biệt. 4) 3 2 2 2 2 2 1; 2 2y x x x m y x x= + − + − = − + cắt nhau tại ba điểm phân biệt. HT 26. Tìm m để đồ thị các hàm số: 1) 4 2 2 1;y x x y m= − − = cắt nhau tại bốn điểm phân biệt. 2) 4 2 3 ( 1)y x m m x m= − + + cắt trục hoành tại bốn điểm phân biệt. 3) 4 2 2 (2 3) 3y x m x m m= − − + − cắt trục hoành tại bốn điểm phân biệt. HT 27. Biện luận theo m số giao điểm của các đồ thị của các hàm số sau: 1) 3 3 2 ( 2) y x x y m x  = − −  = − 2) 3 3 3 ( 3) x y x y m x  = − +  = − HT 28. Tìm m để đồ thị của các hàm số: 1) 3 1 ; 2 4 x y y x m x + = = + − cắt nhau tại hai điểm phân biệt A, B. Khi đó tìm m để đoạn AB ngắn nhất. 2) 4 1 ; 2 x y y x m x − = = − + − cắt nhau tại hai điểm phân biệt A, B. Khi đó tìm m để đoạn AB ngắn nhất. www.VNMATH.com
  • 13. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 12 BÀI TẬP TỔNG HỢP VÀ NÂNG CAO HT 29. Tìm m để hàm số: 1) 2 1 ( ) 1 x y C x − = + cắt đường thẳng : y x m∆ = + tại hai điểm phân biệt A, B sao cho 2 2AB = Đ/s: 1; 7m m= − = 2) 1 ( ) 2 x y C x − = cắt đường thẳng : y x m∆ = − + tại hai điểm phân biệt A, B sao cho A, B có độ dài nhỏ nhất. Đ/s: 1 2 m = 3) 2 1 ( ) 1 x y C x − = − cắt đường thẳng : y x m∆ = + tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O. Đ/s: 2m = − 4) 2 2 3 ( ) 2 mx m y C x − − = + cắt đường thẳng : 2y x∆ = − tại hai điểm phân biệt A, B sao cho 0 45AOB = 5) (1 ) 2(1 )m x m y x + + − = cắt đường thẳng : y x∆ = tại hai điểm phân biệt A, B sao cho: 4 OA OB OB OA + = 6) 3 1 1 x y x + = − cắt đường thẳng : ( 1) 2y m x m∆ = + + − tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 3 . 2 7) 1 ( ) 2 1 x y C x + = + cắt đường thẳng : 2 2 1 0,mx y m∆ − + + = cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho biểu thức 2 2 P OA OB= + đạt giá trị nhỏ nhất. HT 30. Cho hàm số 2 ( ) 1 x y C x + = − Gọi I là giao điểm của hai tiệm cận. Tìm trên đồ thị (C) hai điểm A, B sao cho tam giác IAB nhận (4; 2)H − làm trực tâm. Đ/s: (2;4),( 2;0)− HT 31. Cho hàm số 1 ( ) 2 1 x y C x − + = − Xác định m để đường thẳng : y x m∆ = + cắt đồ thị (C) tại hai điểm phân biệt có hoành độ 1 2,x x sao cho tổng 1 2'( ) '( )f x f x+ đạt giá trị lớn nhất. HT 32. Cho hàm số 1 ( ) 2 1 x y C x − = + Xác định m để đường thẳng : y x m∆ = + cắt đồ thị (C) tại hai điểm phân biệt có hoành độ 1 2,x x sao cho tổng 1 2'( ) '( )f x f x+ đạt giá trị nhỏ nhất. HT 33. Cho hàm số 3 4 ( ) 2 3 x y C x − = − Xác định tọa độ các điểm trên đồ thị (C) sao cho tổng khoảng cách từ điểm đó đến trục hoành gấp 2 lần khoảng cách từ điểm đó đến tiệm cận đứng. ----------------------------------------------------- fb.com/huynhict
  • 14. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 13 VẤN ĐỀ 5: SỰ TIẾP XÚC CỦA HAI ĐƯỜNG CONG 1. Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số ( )y f x= tại điểm 0x là hệ số góc của tiếp tuyến với đồ thị (C) của hàm số tại điểm ( )0 0 0; ( )M x f x . Khi đó phương trình tiếp tuyến của (C) tại điểm ( )0 0 0; ( )M x f x là: 0 0 0'( )( )y y f x x x− = − 0 0( ( ))y f x= 2. Điều kiện cần và đủ để hai đường 1( ) : ( )C y f x= và 2( ) : ( )C y g x= tiếp xúc nhau là hệ phương trình sau có nghiệm: ( ) ( ) '( ) '( ) f x g x f x g x  =  = (*) Nghiệm của hệ (*) là hoành độ của tiếp điểm của hai đường đó. 3. Nếu 1( ) :C y px q= + và 2 2( ) :C y ax bx c= + + thì (C1) và (C2) tiếp xúc nhau ⇔ phương trình 2 ax bx c px q+ + = + có nghiệm kép. Dạng toán 1: Lập phương trình tiếp tuyến của đường cong (C): y = f(x) Bài toán 1: Viết phương trình tiếp tuyến ∆ của( ) : ( )C y f x= tại điểm ( )0 0 0;M x y : • Nếu cho 0x thì tìm 0 0( )y f x= Nếu cho 0y thì tìm 0x là nghiệm của phương trình 0( )f x y= . • Tính ' '( )y f x= . Suy ra 0 0'( ) '( )y x f x= . • Phương trình tiếp tuyến ∆ là: 0 0 0'( )( )y y f x x x− = − Bài toán 2: Viết phương trình tiếp tuyến ∆ của ( ) : ( )C y f x= biết ∆ có hệ số góc k cho trước. Cách 1: Tìm toạ độ tiếp điểm. • Gọi M(x0; y0) là tiếp điểm. Tính f′ (x0). •∆ có hệ số góc k ⇒ f′ (x0) = k (1) • Giải phương trình (1), tìm được x0 và tính y0 = f(x0). Từ đó viết phương trình của ∆. Cách 2: Dùng điều kiện tiếp xúc. • Phương trình đường thẳng ∆ có dạng: y = kx + m. •∆ tiếp xúc với (C) khi và chỉ khi hệ phương trình sau có nghiệm: ( ) '( ) f x kx m f x k  = +  = (*) www.VNMATH.com
  • 15. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 14 • Giải hệ (*), tìm được m. Từ đó viết phương trình của ∆. Chú ý: Hệ số góc k của tiếp tuyến ∆ có thể được cho gián tiếp như sau: + ∆ tạo với chiều dương trục hoành góc α thì k = tanα + ∆ song song với đường thẳng d: y = ax + b thì k = a + ∆ vuông góc với đường thẳng d: y = ax + b (a ≠ 0) thì k = 1 a − + ∆ tạo với đường thẳng d: y = ax + b một góc α thì tan 1 k a ka α − = + Bài toán 3: Viết phương trình tiếp tuyến ∆ của (C): y = f(x), biết ∆ đi qua điểm ( ; )A AA x y . Cách 1:Tìm toạ độ tiếp điểm. • Gọi M(x0; y0) là tiếp điểm. Khi đó: y0 = f(x0), y′0 = f′ (x0). • Phương trình tiếp tuyến ∆ tại M: y – y0 = f′ (x0).(x – x0) •∆ đi qua ( ; )A AA x y nên: yA – y0 = f′ (x0).(xA – x0) (2) • Giải phương trình (2), tìm được x0. Từ đó viết phương trình của ∆. Cách 2: Dùng điều kiện tiếp xúc. • Phương trình đường thẳng ∆ đi qua ( ; )A AA x y và có hệ số góc k: y – yA = k(x – x1) •∆ tiếp xúc với (C) khi và chỉ khi hệ phương trình sau có nghiệm: ( ) ( ) '( ) A Af x k x x y f x k  = − +  = (*) • Giải hệ (*), tìm được x (suy ra k). Từ đó viết phương trình tiếp tuyến ∆. Bài tập cơ bản HT 34. Viết phương trình tiếp tuyến của (C) tại điểm được chỉ ra: 1) 3 2 ( ) : 3 7 1C y x x x= − − + tại A(0; 1) 2) ( ) :C 4 2 2 1y x x= − + tại B(1; 0) 3) (C): 3 4 2 3 x y x + = − tại C(1; –7) 4) (C): 1 2 x y x + = − tại các giao điểm của (C) với trục hoành, trục tung. 5) (C): 2 2 2 1y x x= − + tại các giao điểm của (C) với trục hoành, trục tung. 6) (C): 3 3 1y x x= − + tại điểm uốn của (C). HT 35. Viết phương trình tiếp tuyến của (C) tại các giao điểm của (C) với đường được chỉ ra: 1) (C): 3 2 2 3 9 4y x x x= − + − và d: 7 4y x= + . fb.com/huynhict
  • 16. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 15 2) (C): 3 2 2 3 9 4y x x x= − + − và (P): 2 8 3y x x= − + − . HT 36. Tính diện tích tam giác chắn hai trục toạ độ bởi tiếp tuyến của đồ thị (C) tại điểm được chỉ ra: (C): 5 11 2 3 x y x + = − tại điểm A có xA = 2 . HT 37. Tìm m để tiếp tuyến của đồ thị (C) tại điểm được chỉ ra chắn hai trục toạ độ một tam giác có diện tích bằng S cho trước: 1) (C): 2 1 x m y x + = − tại điểm A có xA = 2 và 1 2 S = . 2) (C): 3 2 x m y x − = + tại điểm B có xB = –1 và S = 9 2 . 3) (C): 3 1 ( 1)y x m x= + − + tại điểm C có xC = 0 và S = 8. HT 38. Viết phương trình tiếp tuyến ∆ của (C), biết ∆ có hệ số góc k được chỉ ra: 1) (C): 3 2 2 3 5y x x= − + ; k = 12 2) (C): 2 1 2 x y x − = − ; k = –3 HT 39. Viết phương trình tiếp tuyến ∆ của (C), biết ∆ song song với đường thẳng d cho trước: 1) (C): 3 2 2 3 1 3 x y x x= − + + ; d: y = 3x + 2 2) (C): 2 1 2 x y x − = − ; d: 3 2 4 y x= − + HT 40. Viết phương trình tiếp tuyến ∆ của (C), biết ∆ vuông góc với đường thẳng d cho trước: 1) (C): 3 2 2 3 1 3 x y x x= − + + ; d: 2 8 x y = − + 2) (C): 2 1 2 x y x − = − ; d: y x= HT 41. Tìm m để tiếp tuyến ∆ của (C) tại điểm được chỉ ra song song với đường thẳng d cho trước: 1) (C): 2 (3 1) ( 0) m x m m y m x m + − + = ≠ + tại điểm A có yA = 0 và d: 10y x= − . HT 42. Viết phương trình tiếp tuyến ∆ của (C), biết ∆đi qua điểm được chỉ ra: 1) (C): 3 3 2y x x= − + − ; A(2; –4) 2) (C): 3 3 1y x x= − + ; B(1; –6) 3) (C): ( ) 2 2 2y x= − ; C(0; 4) 4) (C): 4 21 3 3 2 2 y x x= − + ; 3 0; 2 D      5) (C): 2 2 x y x + = − ; E(–6; 5) 6) (C): 3 4 1 x y x + = − ; F(2; 3) HT 43. Tìm m để hai đường (C1), (C2) tiếp xúc nhau: 1) 3 2 1 2( ) : (3 ) 2; ( ) :C y x m x mx C= + + + − trục hoành 2) 3 2 1 2( ) : 2 ( 1) ; ( ) :C y x x m x m C= − − − + trục hoành 3) 3 1 2( ) : ( 1) 1; ( ) : 1C y x m x C y x= + + + = + 4) 3 2 1 2( ) : 2 2 1; ( ) :C y x x x C y x m= + + − = + HT 44. Tìm m để hai đường (C1), (C2) tiếp xúc nhau: 1) 4 2 2 1 2( ) : 2 1; ( ) : 2C y x x C y mx m= + + = + www.VNMATH.com
  • 17. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 16 2) 4 2 2 1 2( ) : 1; ( ) :C y x x C y x m= − + − = − + 3) 4 2 2 1 2 1 9 ( ) : 2 ; ( ) : 4 4 C y x x C y x m= − + + = − + 4) 2 2 2 1 2( ) : ( 1) ( 1) ; ( ) : 2C y x x C y x m= + − = + 5) 2 1 2 (2 1) ( ) : ; ( ) : 1 m x m C y C y x x − − = = − Dạng toán 2: Tìm những điểm trên đường thẳng d mà từ đó có thể vẽ được 1, 2, 3, … tiếp tuyến với đồ thị (C): ( )y f x= Giả sử d: ax + by +c = 0. M(xM; yM) ∈ d. • Phương trình đường thẳng ∆ qua M có hệ số góc k: y = k(x – xM) + yM •∆ tiếp xúc với (C) khi hệ sau có nghiệm: ( ) ( ) (1) '( ) (2) M Mf x k x x y f x k  = − +  = • Thế k từ (2) vào (1) ta được: f(x) = (x – xM).f′ (x) + yM (C) • Số tiếp tuyến của (C) vẽ từ M = Số nghiệm x của (C) Bài tập cơ bản HT 45. Tìm các điểm trên đồ thị (C) mà từ đó vẽ được đúng một tiếp tuyến với (C): 1) 3 2 ( ) : 3 2C y x x= − + − 2) 3 ( ) : 3 1C y x x= − + HT 46. Tìm các điểm trên đường thẳng d mà từ đó vẽ được đúng một tiếp tuyến với (C): 1) 1 ( ) : 1 x C y x + = − ; d là trục tung 2) 3 ( ) : 1 x C y x + = − ; d: y = 2x + 1 HT 47. Tìm các điểm trên đường thẳng d mà từ đó vẽ được ít nhất một tiếp tuyến với (C): 1) 2 1 ( ) : 2 x C y x + = − ; d: x = 3 2) 3 4 ( ) : 4 3 x C y x + = − ; d: y = 2 HT 48. Tìm các điểm trên đường thẳng d mà từ đó vẽ được ba tiếp tuyến với (C): 1) 3 2 ( ) : 3 2C y x x= − + − ; d: y = 2 2) 3 ( ) : 3C y x x= − ; d: x = 2 3) 3 ( ) : 3 2C y x x= − + + ; d là trục hoành 4) 3 ( ) : 12 12C y x x= − + ; d: y = –4 HT 49. Từ điểm A có thể kẻ được bao nhiêu tiếp tuyến với (C): 1) 3 2 ( ) : 9 17 2C y x x x= − + + ; A(–2; 5) 2) 3 21 4 4 ( ) : 2 3 4; ; 3 9 3 C y x x x A   = − + +    HT 50. Từ một điểm bất kì trên đường thẳng d có thể kẻ được bao nhiêu tiếp tuyến với (C): 1) 3 2 ( ) : 6 9 1C y x x x= − + − ; : 2d x = 2) 3 ( ) : 3C y x x= − ; : 2d x = fb.com/huynhict
  • 18. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 17 Dạng toán 3: Tìm những điểm mà từ đó có thể vẽ được 2 tiếp tuyến với đồ thị (C): y = f(x) và 2 tiếp tuyến đó vuông góc với nhau Gọi M(xM; yM). • Phương trình đường thẳng ∆ qua M có hệ số góc k: y = k(x – xM) + yM •∆ tiếp xúc với (C) khi hệ sau có nghiệm: ( ) ( ) (1) '( ) (2) M Mf x k x x y f x k  = − +  = • Thế k từ (2) vào (1) ta được: f(x) = (x – xM).f′ (x) + yM (C) • Qua M vẽ được 2 tiếp tuyến với (C) ⇔ (C) có 2 nghiệm phân biệt x1, x2. • Hai tiếp tuyến đó vuông góc với nhau ⇔ f′ (x1).f′ (x2) = –1 Từ đó tìm được M. Chú ý: Qua M vẽ được 2 tiếp tuyến với (C) sao cho 2 tiếp điểm nằm về hai phía với trục hoành thì 1 2 (3) 2 ( ). ( ) 0 coù nghieäm phaân bieät f x f x   < Bài tập cơ bản HT 51. Chứng minh rằng từ điểm A luôn kẻ được hai tiếp tuyến với (C) vuông góc với nhau. Viết phương trình các tiếp tuyến đó: 2 1 ( ) : 2 3 1; 0; 4 C y x x A   = − + −   HT 52. Tìm các điểm trên đường thẳng d mà từ đó có thể vẽ được hai tiếp tuyến với (C) vuông góc với nhau: 1) 3 2 ( ) : 3 2C y x x= − + ; d: y = –2 2) 3 2 ( ) : 3C y x x= + ; d là trục hoành Dạng toán 4: Các bài toán khác về tiếp tuyến HT 53. Cho hypebol (H) và điểm M bất kì thuộc (H). Gọi I là giao điểm của hai tiệm cận. Tiếp tuyến tại M cắt 2 tiệm cận tại A và B. 1) Chứng minh M là trung điểm của đoạn AB. 2) Chứng minh diện tích của ∆IAB là một hằng số. 3) Tìm điểm M để chu vi ∆IAB là nhỏ nhất. 4) Tìm M để bán kính, chu vi, diện tích đường tròn ngoại tiếp tam giác IAB đạt giá trị nhỏ nhất. 5) Tìm M để bán kính, chu vi, diện tích đường tròn nội tiếp tam giác IAB đạt giá trị lớn nhất. 6) Tìm M để khoảng cách từ I đến tiếp tuyến là lớn nhất. 1) 2 1 ( ) : 1 x H y x − = − 2) 1 ( ) : 1 x H y x + = − 3) 4 5 ( ) : 2 3 x H y x − = − + HT 54. Tìm m để tiếp tuyến tại điểm M bất kì thuộc hypebol (H) cắt hai đường tiệm cận tạo thành một tam giác có diện tích bằng S: 1) 2 3 ( ) : ; 8 mx H y S x m + = = − www.VNMATH.com
  • 19. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 18 VẤN ĐỀ 7: KHOẢNG CÁCH Kiến thức cơ bản: 1) Khoảng cách giữa hai điểm A, B: AB = 2 2 ( ) ( )B A B Ax x y y− + − 2) Khoảng cách từ điểm M(x0; y0) đến đường thẳng ∆: ax + by + c = 0: d(M, ∆) = 0 0 2 2 ax by c a b + + + 3) Diện tích tam giác ABC: S = ( ) 2 2 21 1 . .sin . . 2 2 AB AC A AB AC AB AC= − Bài tập cơ bản HT 55. Tìm các điểm M thuộc hypebol (H) sao cho tổng các khoảng cách từ đó đến hai tiệm cận là nhỏ nhất. 1) 2 ( ) : 2 x H y x + = − 2) 2 1 ( ) : 1 x H y x − = + 3) 4 9 ( ) : 3 x H y x − = − HT 56. Tìm các điểm M thuộc hypebol (H) sao cho tổng các khoảng cách từ đó đến hai trục toạ độ là nhỏ nhất. 1) 1 ( ) : 1 x H y x − = + 2) 2 1 ( ) : 2 x H y x + = − 3) 4 9 ( ) : 3 x H y x − = − HT 57. Cho hypebol (H). Tìm hai điểm A, B thuộc hai nhánh khác nhau của (H) sao cho độ dài AB là nhỏ nhất. 1) 1 ( ) : 1 x H y x − = + 2) 2 3 ( ) : 2 x H y x + = − 3) 4 9 ( ) : 3 x H y x − = − HT 58. Cho (C) và đường thẳng d. Tìm m để d cắt (C) tại 2 điểm A, B sao cho độ dài AB là nhỏ nhất. 1 ( ) : ; : 2 0 1 x H y d x y m x + = − + = − fb.com/huynhict
  • 20. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 19 ÔN TẬP TỔNG HỢP PHẦN I: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ HT 1. Cho hàm số 3 21 ( 1) (3 2) 3 y m x mx m x= − + + − (1).Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó. Đ/s: 2m ≥ HT 2. Cho hàm số 3 2 3 4y x x mx= + − − (1).Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên khoảng ( ; 0)−∞ . Đ/s: 3m ≤ − HT 3. Cho hàm số x3 2 2 3(2 1) 6 ( 1) 1y m x m m x= − + + + + có đồ thị (Cm).Tìm m để hàm số đồng biến trên khoảng (2; )+∞ Đ/s: 1m ≤ HT 4. Cho hàm số 3 2 (1 2 ) (2 ) 2y x m x m x m= + − + − + + . Tìm m để hàm đồng biến trên ( )0;+∞ . Đ/s: 5 4 m≥ HT 5. Cho hàm số 4 2 2 3 1y x mx m= − − + (1), (m là tham số).Tìm m để hàm số (1) đồng biến trên khoảng (1; 2). Đ/s: ( ;1m ∈ −∞  . HT 6. Cho hàm số 4mx y x m + = + (1). Tìm tất cả các giá trị của tham số m để hàm số (1) nghịch biến trên khoảng ( ;1)−∞ .Đ/s: 2 1m− < ≤ − . HT 7. Cho hàm số 3 2 3y x x mx m= + + + . Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1. Đ/s:⇔ 9 4 m = PHẦN II: CỰC TRỊ CỦA HÀM SỐ HT 8. Cho hàm số 3 2 (1 – 2 ) (2 – ) 2y x m x m x m= + + + + (m là tham số) (1). Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Đ/s: 5 7 4 5 m< < . HT 9. Cho hàm số 3 2 ( 2) 3 5y m x x mx= + + + − , m là tham số.Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hoành độ là các số dương. Đ/s: 3 2m− < < − HT 10. Cho hàm số 3 2 3 2 3( 2) 6(5 1) (4 2).y x m x m x m= − + + + − + Tìm m để hàm số đạt cực tiểu tại (0 1;2x ∈  Đ/s: 1 0 3 m− ≤ < HT 11. Cho hàm số 4 21 3 2 2 y x mx= − + (1).Xác định m để đồ thị của hàm số (1) có cực tiểu mà không có cực đại. Đ/s: 0m ≤ HT 12. Cho hàm số 4 2 2 4 ( ).my x mx C= − + − Tìm các giá trị của m để tất cả các điểm cực trị của ( )mC đều nằm trên các trục tọa độ. Đ/s: 2; 0m m= ≤ HT 13. Cho hàm số 3 2 2 (2 1) ( 3 2) 4y x m x m m x= − + + − − + − (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung. Đ/s:1 2m< < . HT 14. Cho hàm số 3 21 (2 1) 3 3 y x mx m x= − + − − (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại, cực tiểu nằm về cùng một phía đối với trục tung. Đ/s: 1 1 2 m m  ≠  > HT 15. Cho hàm số 3 2 3 – 2y x x mx m= + + + (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại www.VNMATH.com
  • 21. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 20 và cực tiểu nằm về hai phía đối với trục hoành. Đ/s: 3m < HT 16. Cho hàm số 3 2 31 4 ( 1) ( 1) ( ). 3 3 y x m x m C= − + + + Tìm m để các điểm cực trị của hàm số (C) nằm về hai phía (phía trong và phía ngoài) của đường tròn có phương trình: 2 2 4 3 0.x y x+ − + = Đ/s: 1 2 m < HT 17. Cho hàm số 3 2 3 3 4y x mx m= − + (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng y = x. Đ/s: 2 2 m = ± HT 18. Cho hàm số 3 2 3 3 1y x mx m= − + − − . Với giá trị nào của m thì đồ thị hàm số có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng : 8 74 0d x y+ − = . Đ/s: 2m = HT 19. Cho hàm số 3 2 2 3 2 3 3(1 )y x mx m x m m= − + + − + − (1).Viết phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số (1). Đ/s: 2 2y x m m= − + . HT 20. Cho hàm số 3 2 3 2 ( ).my x x mx C= − + + Tìm m để ( )mC có cực đại và cực tiểu, đồng thời các điểm cực trị của hàm số cách đều đường thẳng : 1 0.d x y− − = Đ/s: 0m = HT 21. Cho hàm số 3 2 3 2y x x mx= − − + (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu cách đều đường thẳng 1y x= − . Đ/s: 3 0; 2 m    = −      HT 22. Cho hàm số 3 2 3y x x mx= − + (1). Với giá trị nào của m thì đồ thị hàm số (1) có các điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng : – 2 – 5 0d x y = . Đ/s: 0m = HT 23. Cho hàm số 3 2 3( 1) 9 2y x m x x m= − + + + − (1) có đồ thị là (Cm). Với giá trị nào của m thì đồ thị hàm số có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng 1 : 2 d y x= . Đ/s: 1m = . HT 24. Cho hàm số 3 21 1 ( 1) 3( 2) 3 3 y x m x m x= − − + − + , với m là tham số thực. Xác định m để hàm số đã cho đạt cực trị tại 1 2,x x sao cho 1 22 1x x+ = . Đ/s: 4 34 4 m − ± = . HT 25. Cho hàm số 3 2 3( 1) 9y x m x x m= − + + − , với m là tham số thực. Xác định m để hàm số đã cho đạt cực trị tại 1 2,x x sao cho 1 2 2x x− ≤ .Đ/s: 3 1 3m− ≤ < − − và 1 3 1.m− + < ≤ HT 26. Cho hàm số 3 2 (1 2 ) (2 ) 2y x m x m x m= + − + − + + , với m là tham số thực. Xác định m để hàm số đã cho đạt cực trị tại 1 2,x x sao cho 1 2 1 3 x x− > .Đ/s: 3 29 1 8 m m + > ∨ < − HT 27. Cho hàm số 3 2 4 – 3y x mx x= + . Tìm m để hàm số có hai điểm cực trị 1 2,x x thỏa 1 24x x= − . Đ/s: 9 2 m = ± HT 28. Tìm các giá trị của m để hàm số 3 2 21 1 ( 3) 3 2 y x mx m x= − + − có cực đại 1x , cực tiểu 2x đồng thời 1x ; 2x là độ dài các cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 2 Đ/s: 14 2 m = HT 29. Cho hàm số 3 2 22 ( 1) ( 4 3) 1. 3 y x m x m m x= + + + + + + Tìm m để hàm số có cực trị. Tìm giá trị lớn nhất của biểu thức 1 2 1 22( )A x x x x= − + với 1 2,x x là các điểm cực trị cửa hàm số. fb.com/huynhict
  • 22. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 21 Đ/s: 9 2 A ≤ khi 4m = − HT 30. Cho hàm số 3 2 3( 1) 9 (1)y x m x x m= − + + − với m là tham số thực. Xác định m để hàm số (1) đạt cực đại , cực tiểu sao cho 2CD CTy y+ = Đ/s: 1 3 m m  =  = − HT 31. Cho hàm số (C3 2 21 ( 1) 1 ). 3 my x mx m x= − + − + Tìm m để hàm số có cực đại cực tiểu và: D 2C CTy y+ > Đ/s: 1 0 1 m m − < <  > HT 32. Cho hàm số 3 2 – 3 2y x x= + (1). Tìm điểm M thuộc đường thẳng : 3 2d y x= − sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất. Đ/s: 4 2 ; 5 5 M       HT 33. Cho hàm số 3 2 2 3 3 3( 1)y x mx m x m m= − + − − + (1). Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O. Đ/s: 3 2 2 3 2 2 m m  = − +   = − −  . HT 34. Cho hàm số 3 2 3( 1) 3 ( 2) 2 ( )y x m x m m x m C= − + + + − + .Tìm m để đồ thị hàm số (C) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số (C) tới trục Ox bằng khoảng cách từ điểm cực tiểu của đồ thị hàm số (C) tới trục .Oy Đ/s: 2; 1; 1; 0m m m m= = = − = HT 35. Cho hàm số 3 2 3 2y x x mx= − − + có đồ thị là (Cm). Tìm m để (Cm) có các điểm cực đại, cực tiểu và đường thẳng đi qua các điểm cực trị song song với đường thẳng : 4 3d y x= − + .Đ/s: 3m = HT 36. Cho hàm số 3 2 3 2y x x mx= − − + có đồ thị là (Cm). Tìm m để (Cm) có các điểm cực đại, cực tiểu và đường thẳng đi qua các điểm cực trị tạo với đường thẳng : 4 – 5 0d x y+ = một góc 0 45 . Đ/s: 1 2 m = − HT 37. Cho hàm số 3 2 3y x x m= + + (1).Xác định m để đồ thị của hàm số (1) có hai điểm cực trị A, B sao cho 0 120AOB = . Đ/s: 12 2 3 3 m − + = HT 38. Cho hàm số 3 2 2 3 3 3( 1) 4 1 (1),y x mx m x m m m= − + − − + − là tham số thực. Tìm các giá trị của m để đồ thị hàm số (1) có hai điểm cực trị ,A B sao cho tam giác OAB vuông tại ,O với O là gốc tọa độ. Đ/s: 1; 2m m= − = HT 39. Cho hàm số 3 2 3 2 3( 1) 3 ( 2) 3 .y x m x m m x m m= + + + + + + Chứng minh rằng với mọi m hàm số luôn có 2 cực trị và khoảng cách giữa hai điểm này không phụ thuộc vào vị trí của m. HT 40. Cho hàm số 3 2 3 2y x x mx= − − + (1) với m là tham số thực. Định m để hàm số (1) có cực trị, đồng thời đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với hai trục tọa độ một tam giác cân. Đ/s: 3 2 m = − HT 41. Cho hàm số 4 2 2 ( ) 2( 2) 5 5y f x x m x m m= = + − + − + ( )mC . Tìm các giá trị của m để đồ thị ( )mC của hàm số có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. Đ/s: 1m = HT 42. Cho hàm số ( )4 2 2 2( 2) 5 5 .my x m x m m C= + − + − + Với những giá trị nào của m thì đồ thị (Cm) có điểm cực đại và điểm cực tiểu, đồng thời các điểm cực đại và điểm cực tiểu lập thành một tam giác đều. Đ/s: www.VNMATH.com
  • 23. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 22 3 2 3m = − . HT 43. Cho hàm số 4 2 2 2y x mx m m= + + + có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có một góc bằng 0 120 . Đ/s: 3 1 3 m = − . HT 44. Cho hàm số 4 2 2 1y x mx m= − + − có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1 . Đ/s: 5 1 1; 2 m m − = = HT 45. Cho hàm số 4 2 4 2 2y x mx m m= − + + có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có diện tích bằng 4. Đ/s: 5 16m = . HT 46. Cho hàm số 4 2 2 2x mx− + có đồ thị ( )mC . Tìm tất cả các giá trị của tham số m để đồ thị ( )mC có ba điểm cực trị tạo thành một tam giác có đường tròn ngoại tiếp đi qua điểm D 3 9 ; 5 5       Đ/s: m = 1 PHẦN 3: SỰ TƯƠNG GIAO HT 47. Cho hàm số 3 2 6 9 6y x x x= − + − có đồ thị là (C). Định m để đường thẳng ( ) : 2 4d y mx m= − − cắt đồ thị (C) tại ba điểm phân biệt. Đ/s: 3m > − HT 48. Cho hàm số 3 2 3 2y x m x m= − − (Cm). Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt. Đ/s: 1m = ± HT 49. Cho hàm số 3 2 2 6 1y x x= − + + . Tìm m để đường thẳng 1y mx= + cắt (C) tại 3 điểm phân biệt A, B, C sao cho A(0;1) và B là trung điểm của AC. Đ/s:m = 4 HT 50. Cho hàm số 3 21 2 3 3 y x mx x m= − − + + có đox thị( )mC . Tı̀mm đe| ( )mC ca}ttrụchoànhtại3đie|mphânbiệtcó to|ng bı̀nhphươngcáchoànhđộlớ nhơn15. Đ/s: 1m > HT 51. Cho hàm số: 3 2 2 3 1 (1)y x x= − + . Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8. Đ/s: ( 1; 4)M − − HT 52. Cho hàm số 3 2 2 ( 3) 4y x mx m x= + + + + có đồ thị là (Cm) (m là tham số).Cho đường thẳng (d): 4y x= + và điểm K(1; 3). Tìm các giá trị của m để (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Đ/s: 1 137 2 m ± = . HT 53. Cho hàm số 3 2 3 4y x x= − + có đồ thị là (C). Gọi kd là đường thẳng đi qua điểm ( 1;0)A − với hệ số góc k ( )k ∈ ℝ . Tìm k để đường thẳng kd cắt đồ thị (C) tại ba điểm phân biệt A, B, C và 2 giao điểm B, C cùng với gốc toạ độ O tạo thành một tam giác có diện tích bằng 1 . Đ/s: 1k = HT 54. Cho hàm số 3 2 3 2y x x= − + có đồ thị là (C). Gọi E là tâm đối xứng của đồ thị (C). Viết phương trình đường thẳng qua E và cắt (C) tại ba điểm E, A, B phân biệt sao cho diện tích tam giác OAB bằng 2 . Đ/s: ( )1; 1 3 ( 1)y x y x= − + = − ± − . HT 55. Cho hàm số 3 24 1 (2 1) ( 2) 3 3 y x m x m x= − + + + + có đồ thị ( ),mC m là tham số. Gọi A là giao điểm của fb.com/huynhict
  • 24. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 23 ( )mC với trục tung. Tìm m sao cho tiếp tuyến của ( )mC tại A tạo với hai trục tọa độ một tam giác có diện tích bằng 1 . 3 Đ/s: 13 11 ; 6 6 m m= − = − HT 56. Cho hàm số 3 2y x mx= + + có đồ thị (Cm). Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất. Đ/s: 3m > − . HT 57. Cho hàm số 3 2 2 3( 1) 6 2y x m x mx= − + + − có đồ thị (Cm).Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất. Đ/s: 1 3 1 3m− < < + HT 58. Cho hàm số 3 2 – 3 1y x x= + . Tìm m để đường thẳng (∆): (2 1) – 4 – 1y m x m= − cắt đồ thị (C) tại đúng hai điểm phân biệt. Đ/s: 5 8 m = − ; 1 2 m = . HT 59. Cho hàm số 3 2 3 ( 1) 1y x mx m x m= − + − + + có đồ thị là ( )mC . Tìm tất cả các giá trị của m để : 2 1d y x m= − − cắt đồ thị ( )mC tại ba điểm phân biệt có hoành độ lớn hơn hoặc bằng 1. Đ/s: không có giá trị m HT 60. Cho hàm số 3 3 2y x x= − + (C). Viết phương trình đường thẳng cắt đồ thị (C) tại 3 điểm phân biệt A, B, C sao cho 2Ax = và 2 2BC = Đ/s: : 2d y x= + HT 61. Cho hàm số 3 2 4 6 1y x mx= − + (C), m là tham số. Tìm m để đường thẳng : 1d y x= − + cắt đồ thị hàm số tại 3 điểm A(0;1), B, C với B, C đối xứng nhau qua đường phân giác thứ nhất. Đ/s: 2 3 m = HT 62. Cho hàm số 3 2 3 1y x x mx= + + + (m là tham số) (1).Tìm m để đường thẳng : 1d y = cắt đồ thị hàm số (1) tại ba điểm phân biệt A(0; 1), B, C sao cho các tiếp tuyến của đồ thị hàm số (1) tại B và C vuông góc với nhau. Đ/s: 9 65 9 65 8 8 m m − + = ∨ = HT 63. Cho hàm số 3 – 3 1y x x= + có đồ thị (C) và đường thẳng (d): 3y mx m= + + . Tìm m để (d) cắt (C) tại (1; 3)M , N, P sao cho tiếp tuyến của (C) tại N và P vuông góc với nhau. Đ/s: 3 2 2 3 2 2 3 3 m m − + − − = ∨ = HT 64. Cho hàm số 3 2 3 4y x x= − + (C). Gọi (d) là đường thẳng đi qua điểm A(2; 0) có hệ số góc k. Tìm k để (d) cắt (C) tại ba điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau. Đ/s: 3 2 2 3 k − ± = HT 65. Cho hàm số 3 1 ( ).my x mx m C= − + − Tìm m để tiếp tuyến của đồ thị hàm số đã cho tại điểm 1x = − cắt đường tròn (C): 2 2 ( 2) ( 3) 4x y− + − = theo một dây cung có độ dài nhỏ nhất. Đ/s: 2m = HT 66. Cho hàm số ( )3 3 2 .my x mx C= − + Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của( )mC cắt đường tròn tâm ( )1;1 ,I bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất Đ/s: 2 3 2 m ± = HT 67. Cho hàm số 4 2 1y x mx m= − + − có đồ thị là ( )mC Định m để đồ thị ( )mC cắt trục trục hoành tại bốn điểm www.VNMATH.com
  • 25. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 24 phân biệt. Đ/s: 1 2 m m  >  ≠ HT 68. Cho hàm số 4 2 2( 1) 2 1 ( ).my x m x m C= − + + + Tìm tất cả các giá trị của tham số m ∈ ℝ để đồ thị hàm số đã cho cắt trục hoành tại 4 điểm phân biệt , , ,A B C D lần lượt có hoành độ 1 2 3 4, , ,x x x x 1 2 3 4( )x x x x< < < sao cho tam giác ACK có diện tích bằng 4 biết (3; 2).K − Đ/s: 4m = HT 69. Cho hàm số ( )4 2 2 1 2 1y x m x m= − + + + có đồ thị là ( )mC . Định m để đồ thị ( )mC cắt trục hoành tại 4 điểm phân biệt có hoành độ lập thành cấp số cộng. Đ/s: 4 4; 9 m    = −      HT 70. Cho hàm số 4 2 – (3 2) 3y x m x m= + + có đồ thị là (Cm), m là tham số. Tìm m để đường thẳng 1y = − cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2. Đ/s: 1 1 3 0 m m − < <  ≠ HT 71. Cho hàm số ( )4 2 2 1 2 1y x m x m= − + + + có đồ thị là (Cm), m là tham số. Tìm m để đồ thị (Cm) cắt trục hoành tại 3 điểm phân biệt đều có hoành độ nhỏ hơn 3. Đ/s: 1 1 2 m m= − ∨ ≥ . HT 72. Cho hàm số: 4 2 5 4y x x= − + . Tìm tất cả các điểm M trên đồ thị (C) của hàm số sao cho tiếp tuyến của (C) tại M cắt (C) tại hai điểm phân biệt khác M. Đ/s: 10 10 2 2 30 6 m m − < <  ≠ ± HT 73. Cho hàm số 2 1 2 x y x + = + có đồ thị là (C). Chứng minh rằng đường thẳng :d y x m= − + luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Đ/s: 0m = . HT 74. Cho hàm số 3 1 x y x − = + (C). Viết phương trình đường thẳng d qua điểm ( 1;1)I − và cắt đồ thị (C) tại hai điểm M, N sao cho I là trung điểm của đoạn MN. Đ/s: 1y kx k= + + với 0k < . HT 75. Cho hàm số 2 4 1 x y x + = − (C). Gọi (d) là đường thẳng qua A(1; 1) và có hệ số góc k. Tìm k để (d) cắt (C) tại hai điểm M, N sao cho 3 10MN = . Đ/s: 3 41 3 41 3; ; 16 16 k k k − + − − = − = = HT 76. Cho hàm số 2 2 1 x y x − = + (C). Tìm m để đường thẳng (d): 2y x m= + cắt (C) tại hai điểm phân biệt A, B sao cho 5AB = .Đ/s: 10; 2m m= = − . HT 77. Cho hàm số 1x y x m − = + (1). Tìm các giá trị của tham số m sao cho đường thẳng (d): 2y x= + cắt đồ thị hàm số (1) tại hai điểm A và B sao cho 2 2AB = . Đ/s: 7m = HT 78. Cho hàm số 2 ( ). 2 2 x y C x + = − Tìm tất cả các giá trị của tham số m ∈ ℝ để đường thẳng :d y x m= + cắt đồ thị (C) tại hai điểm phân biệt ,A B sao cho 2 2 37 2 OA OB+ = Đ/s: 5 2 2 m m= − ∨ = fb.com/huynhict
  • 26. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 25 HT 79. Cho hàm số ( ). 1 x y C x = − Tìm tất cả các giá trị của tham số m ∈ ℝ để đường thẳng : 1d y mx m= − − cắt đồ thị (C) tại hai điểm phân biệt ,A B sao cho 2 2 MA MB+ đạt giá trị nhỏ nhất.Đ/s: 1m = − HT 80. Cho hàm số 1 ( ). 2 x y C x + = − Gọi d là đường thẳng qua (2; 0)M và có hệ số góc là k . Tìm k để d cắt (C) tại hai điểm phân biệt ,A B sao cho : 2MA MB= − Đ/s: 2 3 k = HT 81. Cho hàm số 3 2 x y x + = + có đồ thị (H). Tìm m để đường thẳng d :y = 2x + 3m cắt (H) tại hai điểm phân biệt sao cho . 4OAOB = − với O là gốc tọa độ. Đ/s: 7 12 m = HT 82. Tìm trên (H) : 1 2 x y x − + = − các điểm A, B sao cho độ dài đoạn thẳng AB bằng 4 và đường thẳng AB vuông góc với đường thẳng .y x= Đ/s: (3 2; 2); (3 2; 2) (3 2; 2); (3 2; 2)+ − − + − −A B hoaëc A B (1 2; 2 2); (1 2; 2 2) (1 2; 2 2); (1 2; 2 2)+ − − − − + − − + + − −A B hoaëc A B HT 83. Cho hàm số 3 2 x y x + = − có đồ thị (H). Tìm m để đường thẳng : 1d y x m= − + + tại hai điểm phân biệt A, B sao cho AOB nhọn.Đ/s: 3m > − HT 84. Cho hàm số 3 2 ( ) 2 x y C x + = + . Đường thẳng y x= cắt (C) tại hai điểm A, B. Tìm m để đường thẳng y x m= + cắt (C) tại hai điểm C, D sao cho ABCD là hình bình hành. Đ/s: 10m = HT 85. Cho hàm số 2 1 1 x y x − = − (C). Tìm m để đường thẳng d: y x m= + cắt (C) tại hai điểm phân biệt A, B sao cho ∆OAB vuông tại O. Đ/s: 2m = − HT 86. Cho hàm số 2 1 x m y mx − = + (1). Chứng minh rằng với mọi 0m ≠ đồ thị hàm số (1) cắt (d) : 2 2y x m= − tại hai điểm phân biệt A, B thuộc một đường (H) cố định. Đường thẳng (d) cắt trục Ox, Oy lần lượt tại các điểm M, N. Tìm m để 3OAB OMNS S= HT 87. Cho hàm số 2 1 ( ). 1 x y C x − = − Gọi I là giao điểm của hai tiệm cận của (C). Với giá trị nào của m thì đường thẳng y x m= − + cắt đồ thị (C) tại hai điểm phân biệt A, B và tam giác IAB đều. Đ/s: 3 6m = ± HT 88. Cho hàm số ( ) 1 x y C x = − . Tìm các giá trị của m để đường thẳng y x m= − + cắt đồ thị (C) tại hai điểm phân biệt ,A B sao cho ,OA OB bằng 0 60 . Với O là gốc tọa độ. Đ/s: 2 6m m= − ∨ = PHẦN 4: TIẾP TUYẾN HT 89. Cho hàm so• 2 1 1 x y x − = − . Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm (1;2)I đến tiếp tuyến bằng 2 . Đ/s: 1 0x y+ − = và 5 0x y+ − = www.VNMATH.com
  • 27. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 26 HT 90. Cho hàm số 3 2 (1 2 ) (2 ) 2y x m x m x m= + − + − + + (1) (m là tham số).Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: 7 0x y+ + = góc α , biết 1 cos 26 α = .Đ/s: 1 4 m ≤ − hoặc 1 2 m ≥ HT 91. Cho hàm số 3 2 2 ( ).y x x x C= − + − Tìm tọa độ các điểm trên trục hoành sao cho qua điểm đó kẻ được hai tiếp tuyến với đồ thị (C) và góc giữa hai tiếp tuyến này bằng 0 45 . Đ/s: ;M O≡ 32 ;0 27 M       HT 92. Cho hàm số 3 2 3 1y x x= − + có đồ thị (C). Tìm hai điểm A, B thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A và B song song với nhau và độ dài đoạn AB = 4 2 . Đ/s: (3;1), ( 1; 3)A B − − . HT 93. Cho hàm số 1 1 x y x + = − (C). Tìm trên Oy tất cả các điểm từ đó kẻ được duy nhất một tiếp tuyến tới (C). Đ/s: (0;1); (0; 1)M M − HT 94. Cho hàm số 3 3y x x= − (C). Tìm trên đường thẳng :d y x= − các điểm mà từ đó kẻ được đúng 2 tiếp tuyến phân biệt với đồ thị (C).Đ/s: (2; 2); ( 2;2)A B− − HT 95. Cho hàm số: 3 3 2y x x= − + . Tìm tất cả điểm trên đường thẳng 4y = , sao cho từ đó kẻ được đúng 2 tiếp tuyến tới đồ thị (C). Đ/s: 2 ( 1;4); ;4 ;(2;4) 3   − −    HT 96. Cho hàm số 3 2 3 2y x x= − + − (C). Tìm trên đường thẳng : 2d y = các điểm mà từ đó kẻ được 3 tiếp tuyến phân biệt với đồ thị (C). Đ/s: 1 5 3 2 m m m  < − > ≠ HT 97. Cho hàm số ( ) ( ) 2 2 1 . 1y x x= + − (C). Cho điểm ( ;0)A a . Tìm a để từ A kẻ được 3 tiếp tuyến phân biệt với đồ thị (C). Đ/s: 3 3 1 1 2 2 − ≠ < − ≠ >a hoaëc a HT 98. Cho hàm số 3 2 3 2.y x x= − + Tìm trên đường thẳng 2y = các điểm mà từ đó có thể kẻ được 2 tiếp tuyến tới đồ thị hàm số và 2 tiếp tuyến đó vuông góc với nhau. Đ/s: 1 2; 27 M   −    HT 99. Cho hàm số 3 21 ( ) ( 1) (4 3 ) 1 3 y f x mx m x m x= = + − + − + có đồ thị là (Cm). Tìm các giá trị m sao cho trên đồ thị (Cm) tồn tại một điểm duy nhất có hoành độ âm mà tiếp tuyến tại đó vuông góc với đường thẳng : 2 3 0d x y+ − = . Đ/s: hay 2 0 3 m m< > . HT 100. Tìm tất cả các giá trị m sao cho trên đồ thị ( )mC : 3 21 ( 1) (4 3) 1 3 y mx m x m x= + − + − + tồn tại đúng hai điểm có hoành độ dương mà tiếp tuyến tại đó vuông góc với đường thẳng (L): 2 3 0x y+ − = Đ/s: 1 1 2 0; ; 2 2 3 m       ∈ ∪         HT 101. Cho hàm số 2 2 x y x = + (C). Viết phương trình tiếp tuyến của đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Đ/s:y x= và 8y x= + . HT 102. Cho hàm số 2 2 3 x y x + = + (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt fb.com/huynhict
  • 28. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 27 trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O. Đ/s: 2y x= − − . HT 103. Cho hàm số y = 2 1 1 x x − − . Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này cắt các trục Ox, Oy lần lượt tại các điểm A và B thoả mãn OA = 4OB. Đ/s: 1 5 4 4 1 13 4 4 y x y x   = − +    = − +  . HT 104. Viết phương trình tiếp tuyến của đồ thị hàm số 2 2 x y x = − biết tiếp tuyến cắt Ox, Oy lần lượt tại A và B mà tam giác OAB thỏa mãn: 2AB OA= Đ/s: 8y x= − + HT 105.Cho hàm số 2 3 2 x y x − = − có đồ thị (C). Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất. Đ/s: (3;3)M hoặc (1;1)M HT 106.Cho hàm số 2 3 2 x y x − = − .Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Đ/s: (1;1); (3;3)M M HT 107.Cho hàm số 3 2 2 2 1 ( ).my x mx m x m C= − + − + Tìm m để đồ thị hàm số tiếp xúc với trục hoành. Đ/s: 3 1 3 2 m m m= ∨ = − ∨ = HT 108.Cho hàm số 2 1 1 x y x + = − có đồ thị (C). Gọi I là giao điểm của hai tiệm cận. Tìm điểm M thuộc (C) sao cho tiếp tuyến của (C) tại M cắt 2 tiệm cận tại A và B với chu vi tam giác IAB đạt giá trị nhỏ nhất. Đ/s: ( )1 1 3;2 3M + + , ( )2 1 3;2 3M − − HT 109. Cho hàm số: 2 1 x y x + = − (C). Cho điểm (0; )A a . Tìm a để từ A kẻ được 2 tiếp tuyến tới đồ thị (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía của trục hoành. Đ/s: 2 3 1 a a  > −  ≠ . HT 110. Cho hàm số y = 2 1 x x + + . Gọi I là giao điểm của 2 đường tiệm cận, ∆ là một tiếp tuyến bất kỳ của đồ thị (C). d là khoảng cách từ I đến ∆ . Tìm giá trị lớn nhất của d. Đ/s:GTLN của d bằng 2 khi 0 0 0 2 x x  =  = − HT 111. Cho hàm số 2 1 1 x y x + = + . Viết phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến cách đều hai điểm A(2; 4), B(−4; −2). Đ/s: 1 5 ; 1; 5 4 4 y x y x y x= + = + = + HT 112. Cho hàm số 2 3 2 x y x − = − (C). Viết phương trình tiếp tuyến tại điểm M thuộc (C) biết tiếp tuyến đó cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A, B sao cho côsin góc ABI bằng 4 17 , với I là giao 2 tiệm cận. Đ/s: Tại 3 0; 2 M      : 1 3 4 2 y x= − + ; Tại 5 4; 3 M      : 1 7 4 2 y x= − + www.VNMATH.com
  • 29. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 28 HT 113. Cho hàm số 1 2 1 x y x + = − (C). Tìm giá trị nhỏ nhất của m sao cho tồn tại ít nhất một điểm M ∈(C) mà tiếp tuyến tại M của (C) tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 2 1y m= − Đ/s: 1 3 m ≥ HT 114. Cho hàm số 2 1 ( ). 1 x y C x − = − Tìm các giá trị của m để đồ thị hàm số (C) tiếp xúc với đường thẳng 5.y mx= + Đ/s: 1m = − hoặc 9m = − PHẦN 5: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH HT 115. Cho hàm số 3 2 3 1y x x= − + + . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm m để phương trình 3 2 3 2 3 3x x m m− = − có ba nghiệm phân biệt. Đ/s: {( 1;3) 0;2}m ∈ − HT 116.Cho hàm số 4 2 5 4y x x= − + có đồ thị (C). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm m để phương trình 4 2 2| 5 4 | logx x m− + = có 6 nghiệm. • Dựa vào đồ thị ta có PT có 6 nghiệm ⇔ 9 44 12 9 log 12 144 12 4 m m= ⇔ = = . HT 117. Cho hàm số: 4 2 2 1y x x= − + . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Biện luận theo m số nghiệm của phương trình: 4 2 22 1 log 0x x m− + + = (m> 0) 1 0 2 m< < 1 2 m = 1 1 2 m< < 1m = 1m > 2 nghiệm 3 nghiệm 4 nghiệm 2 nghiệm vô nghiệm HT 118. Cho hàm số 4 2 ( ) 8 9 1y f x x x= = − + . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình: 4 2 8 cos 9 cos 0x x m− + = với [0; ]x π∈ Đ/s: 0m < 0m = 0 1m< < 81 1 32 m≤ < 81 32 m = 81 32 m > fb.com/huynhict
  • 30. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 29 vô nghiệm 1 nghiệm 2 nghiệm 4 nghiệm 2 nghiệm vô nghiệm HT 119. Cho hàm số 1 . 1 x y x + = − 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Biện luận theo m số nghiệm của phương trình 1 . 1 x m x + = − 1; 1m m< − > 1m = − 1 1m− < ≤ 2 nghiệm 1 nghiệm vô nghiệm PHẦN 6: ĐIỂM ĐẶC BIỆT CỦA ĐỒ THỊ HT 120. Cho hàm số 3 3 2y x x= − + + (C). Tìm 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua tâm ( 1;3)−M . Đ/s:( )1;0− và ( )1;6− HT 121. Cho hàm số 3 3 2y x x= − + + (C). Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng : 2 – 2 0d x y + = . Đ/s: 7 1 7 7 1 7 ;2 ; ;2 2 2 2 2 2 2        − − +          HT 122. Cho hàm số x 3 2 11 3 3 3 x y x= − + + − . Tìm trên đồ thị (C) hai điểm phân biệt M, N đối xứng nhau qua trục tung. Đ/s: 16 16 3; , 3; 3 3 M N       −        . HT 123. Cho hàm số 2 1 1 x y x − = + (C).Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích các hệ số góc bằng –9. Đ/s: (0; 3); ( 2;5)M M− − HT 124. Cho hàm số 2 1 1 x y x + = + (C). Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Đ/s:(0;1);( 2;3)− HT 125. Cho hàm số 3 4 2 x y x − = − (C). Tìm các điểm thuộc (C) cách đều 2 tiệm cận. Đ/s: 1 2(1;1); (4;6)M M HT 126. Cho hàm số 4 21 1 1 ( ). 4 2 y x x C= − + Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ điểm M đến hai trục tọa độ là nhỏ nhất. Đ/s: (0;1)M HT 127. Cho hàm số 4 2 0 0 0 02 3 2 1y x x x= − + + có đồ thị là (C) và đường thẳng ( ) 2 1x∆ = − .Tìm trên đồ thị (C) điểm A có khoảng cách đến ( )∆ là nhỏ nhất Đ/s: 1 3 1 ; 3 2 8 A   − − −     2 3 1 ; ; 3 2 8 A    − +     www.VNMATH.com
  • 31. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 30 HT 128. Cho hàm số 1 2 x y x + = − . Tìm trên đồ thị hàm số điểm M sao cho tồng khoảng cách từ M đến hai trục tọa độ là nhỏ nhất. Đ/s: 1 0; 2 M   −    HT 129. Cho hàm số 2 4 1 x y x − = + . Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết ( 3;0); ( 1; 1)M N− − − Đ/s:A(0; –4), B(2; 0). HT 130. Cho hàm số 2 1 x y x = − . Tìm trên đồ thị (C) hai điểm B, C thuộc hai nhánh sao cho tam giác ABC vuông cân tại đỉnh A với A(2; 0). Đ/s: ( 1;1), (3;3)B C− HT 131. Cho hàm số 2 1 1 x y x − = + . Tìm tọa độ điểm M ∈ (C) sao cho khoảng cách từ điểm ( 1; 2)I − tới tiếp tuyến của (C) tại M là lớn nhất. Đ/s: ( )1 3;2 3M − + − hoặc ( )1 3;2 3M − − + HT 132. Cho hàm số 2 2 1 x y x + = − . Tìm những điểm trên đồ thị (C) cách đều hai điểm (2;0), (0;2)A B . Đ/s: 1 5 1 5 1 5 1 5 , ; , 2 2 2 2     − − + +             HT 133. Cho hàm số 3 1 x y x − = + . Tìm trên hai nhánh của đồ thị (C) hai điểm A và B sao cho AB ngắn nhất.Đ/s: ( ) ( )4 4 4 4 1 4;1 64 , 1 4;1 64A B− − + − + − . HT 134. Cho hàm số 4 2 2 1y x x= − + Tìm tọa độ hai điểm P. Q thuộc (C) sao cho đường thẳng PQ song song với trục hoành và khoảng cách từ điểm cực đại của (C) đến đường thẳng PQ bằng 8 Đ/s:Vậy, P(-2;9), Q(2;9) hoặc P(2;9); Q(-2;9) HT 135. Cho hàm số 2 (3 1) . m x m m y x m + − + = + Tìm các điểm thuộc đường thẳng 1x = mà không có đồ thị đi qua. Đ/s:Tập hợp các điểm thuộc đường thẳng 1x = có tung độ bằng a với a thỏa mãn : 2 10a< < HT 136. Cho hàm số 2 1 ( ). 1 x y C x − = − Tìm trên đồ thị (C) hai điểm ,A B phân biệt sao cho ba điểm , , (0; 1)A B I − thẳng hàng đồng thời thỏa mãn: . 4.IAIB = Đ/s: ( ) ( )2 2;1 2 ; 2 2;1 2A B− − + + hoặc ( ) ( )1 3; 2 3 ; 1 3; 2 3A B− − + + − − PHẦN 7: CÁC BÀI TỔNG HỢP HT 137.Cho hàm số 2 3 ( ). 2 x y C x + = − Tìm m để đường thẳng : 2d y x m= + cắt đồ thị tại hai điểm phân biệt sao cho tiếp tuyến tại hai điểm đó của đồ thị hàm số song song với nhau. Đ/s: 2m = − HT 138.Cho hàm số 3 2 2 2 1 ( ).y x mx mx C= − + − Tìm m để đồ thị hàm số (C) cắt trục hoành tại 3 điểm phân biệt (1;0),A B và C sao cho 1 2 . 5k k BC+ = trong đó 1 2,k k lần lượt là hệ số góc tiếp tuyến tại B, C của đồ thị hàm số (C). Đ/s: 1; 2m m= − = HT 139.Cho hàm số 3 2 3 2 ( ).my x x mx m C= − + + − Tìm m để ( )mC cắt trục hoành tại 3 điểm phân biệt , ,A B C fb.com/huynhict
  • 32. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 31 sao cho tổng các hệ số góc của tiếp tuyến của ( )mC tại , ,A B C bằng 3.Đ/s: 2m = www.VNMATH.com
  • 33. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 32 PHẦN 8: TUYỂN TẬP ĐỀ THI ĐẠI HỌC TỪ NĂM 2009 HT 140.(ĐH A – 2009) Cho hàm số 2 (1) 2 3 x y x + = + . Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B sao cho tam giác OAB cân tại gốc tọa độ O. Đ/s: 2y x= − − HT 141.(ĐH B – 2009) Cho hàm số: 4 2 2 4 (1)y x x= − .Với giá trị nào của ,m phương trình 2 2 2x x m− = có đúng 6 nghiệm thực phân biệt. Đ/s: 0 1m< < HT 142.(ĐH D – 2009) Cho hàm số 4 2 (3 2) 3y x m x m= − + + có đồ thị là ( )mC với m là tham số. Tìm m để đường thẳng 1y = − cắt đồ thị ( )mC tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2. Đ/s: 1 1, 0 3 m m− < < ≠ HT 143.(ĐH A – 2010) Cho hàm số 3 2 2 (1 ) (1),y x x m x m= − + − + với m là tham số thực. Tìm m để đồ thị (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ 1 2 3, ,x x x thỏa mãn điều kiện: 2 2 2 1 2 3 4x x x+ + < Đ/s: 1 1 4 m− < < và 0m ≠ HT 144. (ĐH B – 2010) Cho hàm số 2 1 ( ) 1 x y C x + = + . Tìm m để đường thẳng 2y x m= − + cắt đồ thị ( )C tại hai điểm A và B sao cho tam giác OAB có diện tích bằng 3 (O là gốc tọa độ). Đ/s: 2m = ± HT 145. (D – 2010) Cho hàm số 4 2 6 ( )y x x C= − − + . Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng 1 1 6 y x= − Đ/s: 6 10y x= − + HT 146. (A – 2011)Cho hàm số 1 ( ) 2 1 x y C x − + = − . Chứng minh rằng với mọi m đường thẳng y x m= + luôn cắt đồ thị ( )C tại hai điểm phân biệt A và B. Gọi 1 2,k k lần lượt là hệ số góc của tiếp tuyến với ( )C tại A và B. Tìm m để tổng 1 2k k+ đạt giá trị lớn nhất. Đ/s: 1 2k k+ lớn nhất bằng 2− , khi và chỉ khi 1.m = − HT 147. (B – 2011) Cho hàm số 4 2 2( 1) (1)y x m x m= − + + (với m là tham số). Tìm m để đồ thị hàm số (1) có ba điểm cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại. Đ/s: 2 2 2m = ± HT 148. (D – 2011) Cho hàm số 2 1 ( ) 1 x y C x + = + . Tìm k để đường thẳng 2 1y kx k= + + cắt đồ thị ( )C tại hai điểm phân biệt ,A B sao cho khoảng cách từ A và B đến trục hoành bằng nhau. Đ/s: HT 149. (A,A1 – 2012) Cho hàm số 4 2 2 2( 1) (1)y x m x m= − + + , với m là tham số thực. Tìm m để đồ thị hàm số (1) có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác vuông. Đ/s: 0m = HT 150. (B – 2012) Cho hàm số 3 2 3 3 3 (1),y x mx m= − + m là tham số thực. Tìm m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48. Đ/s: 2m = ± HT 151. (D – 2012) Cho hàm số 3 2 22 2 2(3 1) (1), 3 3 y x mx m x m= − − − + là tham số thực. Tìm m để hàm số (1) có hai điểm cực trị 1 2;x x sao cho: 1 2 1 22( ) 1.x x x x+ + = Đ/s: 2 3 m = HT 152. (A,A1 – 2013) Cho hàm số 3 2 3 3 1 (1)y x x mx= − + + − , với m là tham số thực. Tìm m để hàm số (1) 3k = − fb.com/huynhict
  • 34. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 33 nghịch biến trên khoảng (0; )+∞ Đ/s: 1m ≤ − HT 153. (B – 2013) Cho hàm số 3 2 2 3( 1) 6 (1),y x m x mx= − + + với m là tham số thực. Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho đường thẳng AB vuông góc với đường thẳng 2.y x= + Đ/s: 0; 2m m= = HT 154. (D – 2013) Cho hàm số 3 2 2 3 ( 1) 1 (1),y x mx m x= − + − + với m là tham số thực. Tìm m để đường thẳng 1y x= − + cắt đồ thị hàm số (1) tại ba điểm phân biệt. Đ/s: 8 0; 9 m m< > -----------------------------------------------------------HẾT----------------------------------------------------------- www.VNMATH.com
  • 35. CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC 2013 - 2014 PHƯƠNG TRÌNH MŨ - LOGARIT BIÊN SOẠN: LƯU HUY THƯỞNG HÀ NỘI, 8/2013 HỌ VÀ TÊN: ………………………………………………………………… LỚP :…………………………………………………………………. TRƯỜNG :………………………………………………………………… fb.com/huynhict
  • 36. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 1 CHUYÊN ĐỀ: PHƯƠNG TRÌNH MŨ – LOGARIT VẤN ĐỀ I: LŨY THỪA 1. Định nghĩa luỹ thừa Số mũ αααα Cơ số a Luỹ thừa aα * n Nα = ∈ a ∈ R . ......n a a a a aα = = (n thừa số a) 0α = 0a ≠ 0 1a aα = = * ( )n n Nα = − ∈ 0a ≠ 1n n a a a α − = = * ( , ) m m Z n N n α = ∈ ∈ 0a > ( ) m n nm nna a a a b b aα = = = ⇔ = * lim ( , )n n r r Q n Nα = ∈ ∈ 0a > lim n r a aα = 2. Tính chất của luỹ thừa • Với mọi a > 0, b > 0 ta có: . . ; ; ( ) ; ( ) . ; a a a a a a a a a ab a b ba b αα α α β α β α β α β α β α α α β α + −   = = = = =    • a > 1 : a aα β α β> ⇔ > ; 0 < a < 1 : a aα β α β> ⇔ < • Với 0 < a < b ta có: 0m m a b m< ⇔ > ; 0m m a b m> ⇔ < Chú ý: + Khi xét luỹ thừa với số mũ 0 và số mũ nguyên âm thì cơ số a phải khác 0. + Khi xét luỹ thừa với số mũ không nguyên thì cơ số a phải dương. 3. Định nghĩa và tính chất của căn thức • Căn bậc n của a là số b sao cho n b a= . • Với a, b ≥ 0, m, n ∈ N*, p, q ∈ Z ta có: .n n n ab a b= ; ( 0) n n n a a b b b = > ; ( ) ( 0) p n np a a a= > ; m n mn a a= ( 0) n mp qp q Neáu thì a a a n m = = > ; Đặc biệt mnn m a a= www.VNMATH.com
  • 37. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 2 • Nếu n là số nguyên dương lẻ và a < b thì n n a b< . Nếu n là số nguyên dương chẵn và 0 < a < b thì n n a b< . Chú ý: + Khi n lẻ, mỗi số thực a chỉ có một căn bậc n. Kí hiệu n a . + Khi n chẵn, mỗi số thực dương a có đúng hai căn bậc n là hai số đối nhau. 4. Công thức lãi kép Gọi A là số tiền gửi, r là lãi suất mỗi kì, N là số kì. Số tiền thu được (cả vốn lẫn lãi) là: (1 )N C A r= + VẤN ĐỀ II: LOGARIT 1. Định nghĩa • Với a > 0, a ≠ 1, b > 0 ta có: loga b a bα α= ⇔ = Chú ý: loga b có nghĩa khi 0, 1 0 a a b  > ≠   > • Logarit thập phân: 10 lg log logb b b= = • Logarit tự nhiên (logarit Nepe): ln loge b b= (với 1 lim 1 2,718281 n e n   = + ≈   ) 2. Tính chất • log 1 0a = ; log 1a a = ; log b a a b= ; log ( 0)a b a b b= > • Cho a > 0, a ≠ 1, b, c > 0. Khi đó: + Nếu a > 1 thì log loga a b c b c> ⇔ > + Nếu 0 < a < 1 thì log loga a b c b c> ⇔ < 3. Các qui tắc tính logarit Với a > 0, a ≠ 1, b, c > 0, ta có: • log ( ) log loga a a bc b c= + • log log loga a a b b c c    = −   • log loga a b bα α= 4. Đổi cơ số fb.com/huynhict
  • 38. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 3 Với a, b, c > 0 và a, b ≠ 1, ta có: • log log log a b a c c b = hay log .log loga b a b c c= • 1 log loga b b a = • 1 log log ( 0)aa c cα α α = ≠ Bài tập cơ bản HT 1: Thực hiện các phép tính sau: 1) 2 1 4 log 4.log 2 2) 5 27 1 log .log 9 25 3) 3 loga a 4) 32 log 2log 3 4 9+ 5) 2 2 log 8 6) 9 8 log 2 log 27 27 4+ 7) 3 4 1/3 7 1 log .log log a a a a a a 8) 3 8 6 log 6.log 9.log 2 9) 3 81 2 log 2 4 log 5 9 + 10) 3 9 9 log 5 log 36 4 log 7 81 27 3+ + 11) 75 log 8log 6 25 49+ 12) 2 5 3 log 4 5 − 13) 6 8 1 1 log 3 log 2 9 4+ 14) 9 2 125 1 log 4 2 log 3 log 27 3 4 5 + − + + 15) 36 log 3.log 36 HT 2: So sánh các cặp số sau: 1) 4 vaø log3 1 log 4 3 2) 0,2 vaø log3 0,1 log 2 0,34 3) 5 2 vaø log3 4 2 3 log 5 4 4) 1 1 3 2 1 1 log log 80 15 2 vaø + 5) 13 17 log 150 log 290vaø 6) vaø 6 6 1 loglog 3 22 3 HT 3: Tính giá trị của biểu thức logarit theo các biểu thức đã cho: 1)Cho 2 log 14 a= . Tính 49 log 32 theo a. 2)Cho 15 log 3 a= . Tính 25 log 15 theo a. 3)Cho lg3 0,477= . Tính lg9000; lg0,000027 ; 81 1 log 100 . 4)Cho 7 log 2 a= . Tính 1 2 log 28 theo a. HT 4: Tính giá trị của biểu thức logarit theo các biểu thức đã cho: 1)Cho 25 log 7 a= ; 2 log 5 b= . Tính 3 5 49 log 8 theo a, b. www.VNMATH.com
  • 39. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 4 2)Cho 30 log 3 a= ; 30 log 5 b= . Tính 30 log 1350 theo a, b. 3)Cho 14 log 7 a= ; 14 log 5 b= . Tính 35 log 28 theo a, b. 4)Cho 2 log 3 a= ; 3 log 5 b= ; 7 log 2 c= . Tính 140 log 63 theo a, b, c. VẤN ĐỀ III: HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LOGARIT 1. Khái niệm 1)Hàm số luỹ thừa y xα = (α là hằng số) Số mũ αααα Hàm số y xα = Tập xác định D α = n (n nguyên dương) n y x= D = R α = n (n nguyên âm hoặc n = 0) n y x= D = R {0} α là số thực không nguyên y xα = D = (0; +∞) Chú ý: Hàm số 1 ny x= không đồng nhất với hàm số ( *)n y x n N= ∈ . 2)Hàm số mũ x y a= (a > 0, a ≠ 1). • Tập xác định: D = R. • Tập giá trị: T = (0; +∞). • Khi a > 1 hàm số đồng biến, khi 0 < a < 1 hàm số nghịch biến. • Nhận trục hoành làm tiệm cận ngang. • Đồ thị: 0<a<1 y=ax y x 1 a>1 y=ax y x1 fb.com/huynhict
  • 40. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 5 3)Hàm số logarit loga y x= (a > 0, a ≠ 1) • Tập xác định: D = (0; +∞). • Tập giá trị: T = R. • Khi a > 1 hàm số đồng biến, khi 0 < a < 1 hàm số nghịch biến. • Nhận trục tung làm tiệm cận đứng. • Đồ thị: 2. Giới hạn đặc biệt • 1 0 1 lim(1 ) lim 1 x x x x x e x→ →±∞   + = + =   • 0 ln(1 ) lim 1 x x x→ + = • 0 1 lim 1 x x e x→ − = 3. Đạo hàm • ( ) 1 ( 0)x x xα α α −′ = > ; ( ) 1 .u u uα α α −′ ′= Chú ý: ( ) 1 01 0−  >′  =  ≠   n n n vôùi x neáu n chaün x vôùi x neáu n leûn x . ( ) 1 n n n u u n u − ′ = ′ • ( ) lnx x a a a ′ = ; ( ) ln .u u a a a u ′ = ′ ( )x x e e ′ = ; ( ) .u u e e u ′ = ′ • ( ) 1 log lna x x a ′ = ; ( )log lna u u u a ′ = ′ ( ) 1 ln x x ′ = (x > 0); ( )ln u u u ′ = ′ 0<a<1 y=logax 1 x y O a>1 y=logax 1 y x O www.VNMATH.com
  • 41. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 6 fb.com/huynhict
  • 42. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 7 Bài tập cơ bản HT 5: Tính các giới hạn sau: 1) lim 1 x x x x→+∞     + 2) 1 1 lim 1 x x x x + →+∞   +   3) 2 1 1 lim 2 x x x x − →+∞  +    − 4) 1 33 4 lim 3 2 x x x x + →+∞  −    + 5) 1 lim 2 1 x x x x→+∞  +    − 6) 2 1 lim 1 x x x x→+∞  +    − 7) ln 1 lim x e x x e→ − − 8) 2 0 1 lim 3 x x e x→ − i) 1 lim 1 x x e e x→ − − k) 0 lim sin x x x e e x − → − l) sin 2 sin 0 lim x x x e e x→ − m) ( )1 lim 1x x x e →+∞ − HT 6: Tính đạo hàm của các hàm số sau: 1) 3 2 1y x x= + + 2) 4 1 1 x y x + = − 3) 2 5 2 2 1 x x y x + − = + 4) 3 sin(2 1)y x= + 5) 3 2 cot 1y x= + 6) 3 3 1 2 1 2 x y x − = + 7) 3 3 sin 4 x y + = 8) 11 5 9 9 6y x= + 9) 2 4 2 1 1 x x y x x + + = − + HT 7: Tính đạo hàm của các hàm số sau: 1) 2 ( 2 2) x y x x e= − + 2) 2 ( 2 ) x y x x e− = + 3) 2 .sinx y e x− = 4) 2 2x x y e + = 5) 1 3. x x y x e − = 6) 2 2 x x x x e e y e e + = − 7) cos 2 .x x y e= 8) 2 3 1 x y x x = − + i) cot cos . x y x e= HT 8: Tính đạo hàm của các hàm số sau: 1) 2 ln(2 3)y x x= + + 2) 2 log (cos )y x= 3) .ln(cos )x y e x= 4) 2 (2 1)ln(3 )y x x x= − + 5) 3 1 2 log ( cos )y x x= − 6) 3 log (cos )y x= 7) ln(2 1) 2 1 x y x + = + 8) ln(2 1) 1 x y x + = + 9) ( )2 ln 1y x x= + + HT 9: Chứng minh hàm số đã cho thoả mãn hệ thức được chỉ ra: 1) 2 22. ; (1 ) x y x e xy x y − = ′ = − 2) ( 1) ;x x y x e y y e= + ′ − = www.VNMATH.com
  • 43. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 8 3) 4 2 ; 13 12 0x x y e e y y y− ′′′= + − − =′ 4) 2 . . ; 3 2 0x x y a e be y y y− − ′′= + + + =′ 5) .sin ; 2 2 0x y e x y y y− ′′ ′= + + = 6) ( )4 .cos ; 4 0x y e x y y− = + = HT 10: Chứng minh hàm số đã cho thoả mãn hệ thức được chỉ ra: 1) 1 ln ; 1 1 y y xy e x   = + =   +  ′ 2) 1 ; ln 1 1 ln y xy y y x x x  = ′ = − + + 3) 2 sin(ln ) cos(ln ); 0y x x y xy x y= + + ′ + ′′ = 4) 2 2 21 ln ; 2 ( 1) (1 ln ) x y x y x y x x + = ′ = + − HT 11: Giải phương trình, bất phương trình sau với hàm số được chỉ ra: 1) 2 '( ) 2 ( ); ( ) ( 3 1)x f x f x f x e x x= = + + 2) 31 '( ) ( ) 0; ( ) lnf x f x f x x x x + = = 3) 2 1 1 2 '( ) 0; ( ) 2. 7 5x x f x f x e e x− − = = + + − VẤN ĐỀ IV: PHƯƠNG TRÌNH MŨ 1. Phương trình mũ cơ bản: Với 0, 1> ≠a a : 0 log x a b a b x b  >= ⇔  = 2. Một số phương pháp giải phương trình mũ 1) Đưa về cùng cơ số: Với 0, 1> ≠a a : ( ) ( ) ( ) ( )f x g x a a f x g x= ⇔ = Chú ý: Trong trường hợp cơ số có chứa ẩn số thì: ( 1)( ) 0M N a a a M N= ⇔ − − = 2) Logarit hoá: ( )( ) ( ) ( ) log . ( )f x g x a a b f x b g x= ⇔ = 3) Đặt ẩn phụ: • Dạng 1: ( ) ( ) 0f x P a = ⇔ ( ) , 0 ( ) 0 f x t a t P t  = >  = , trong đó P(t) là đa thức theo t. • Dạng 2: 2 ( ) ( ) 2 ( ) ( ) 0f x f x f x a ab bα β γ+ + = Chia 2 vế cho 2 ( )f x b , rồi đặt ẩn phụ ( )f x a t b   =    • Dạng 3: ( ) ( )f x f x a b m+ = , với 1ab = . Đặt ( ) ( ) 1f x f x t a b t = ⇒ = fb.com/huynhict
  • 44. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 9 4) Sử dụng tính đơn điệu của hàm số Xét phương trình: f(x) = g(x) (1) • Đoán nhận x0 là một nghiệm của (1). • Dựa vào tính đồng biến, nghịch biến của f(x) và g(x) để kết luận x0 là nghiệm duy nhất: ñoàng bieán vaø nghòch bieán (hoaëc ñoàng bieán nhöng nghieâm ngaët). ñôn ñieäu vaø haèng soá ( ) ( ) ( ) ( ) f x g x f x g x c    = • Nếu f(x) đồng biến (hoặc nghịch biến) thì ( ) ( )f u f v u v= ⇔ = 5) Đưa về phương trình các phương trình đặc biệt • Phương trình tích A.B = 0 ⇔ 0 0 A B  =  = • Phương trình 2 2 0 0 0 A A B B  =+ = ⇔   = 6) Phương pháp đối lập Xét phương trình: f(x) = g(x) (1) Nếu ta chứng minh được: ( ) ( ) f x M g x M  ≥   ≤ thì (1) ( ) ( ) f x M g x M  =⇔   = Bài tập cơ bản HT 12: Giải các phương trình sau (đưa về cùng cơ số hoặc logarit hoá): 1) 3 1 8 2 9 3x x− − = 2) ( ) 2 3 2 2 3 2 2 x − = + 3) 2 2 2 3 2 6 5 2 3 7 4 4 4 1x x x x x x− + + + + + + = + 4) 2 2 5 7 5 .35 7 .35 0x x x x − − + = 5) 2 2 2 2 1 2 1 2 2 3 3x x x x− + − + = + 6) 2 4 5 25x x− + = 7) 2 2 4 31 2 2 x x − −    =    8) 7 1 2 1 1 . 2 2 2 x x+ −        =         9) 1 3 .2 72x x + = 10) 1 1 5 6. 5 – 3. 5 52x x x+ − + = 11) 10 5 10 1516 0,125.8 x x x x + + − −= 12) ( ) ( ) 1 1 1 5 2 5 2 x x x − − + + = − HT 13: Giải các phương trình sau (đưa về cùng cơ số hoặc logarit hoá): 1) 4 1 3 2 2 1 5 7 x x+ +       =         2) 2 1 15 .2 50 x x x − + = 3) 3 23 .2 6 x x x + = 4) 23 .8 6 x x x+ = 5) 1 2 1 4.9 3 2x x− + = 6) 2 2 2 .3 1,5x x x− = www.VNMATH.com
  • 45. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 10 7) 2 5 .3 1x x = 8) 3 2 2 3 x x = 9) 2 3 .2 1x x = HT 14: Giải các phương trình sau (đặt ẩn phụ dạng 1): 1) 1 4 2 8 0x x + + − = 2) 1 1 4 6.2 8 0x x+ + − + = 3) 4 8 2 5 3 4.3 27 0x x+ + − + = 4) 16 17.4 16 0x x − + = 5) 1 49 7 8 0x x + + − = 6) 2 2 2 2 2 3.x x x x− + − − = 7) ( ) ( )7 4 3 2 3 6 x x + + + = 8) 2 cos2 cos 4 4 3x x + = 9) 2 5 1 3 36.3 9 0x x+ + − + = 10) 2 2 2 2 1 3 28.3 9 0x x x x+ + + − + = 11) 2 2 2 2 4 9.2 8 0x x+ + − + = 12) 2 1 1 3.5 2.5 0,2x x− − − = HT 15: Giải các phương trình sau (đặt ẩn phụ dạng 1): 1) 25 2(3 ).5 2 7 0x x x x− − + − = 2) 2 2 3.25 (3 10).5 3 0x x x x− − + − + − = 3) 3.4 (3 10).2 3 0x x x x+ − + − = 4) 9 2( 2).3 2 5 0x x x x+ − + − = 5) 2 1 2 4 .3 3 2.3 . 2 6x x x x x x x+ + + = + + 6) 2 2 3.25 (3 10).5 3 0x x x x− − + − + − = 7) 4 +( 8 2 +12 2– ) – 0x x x x = 8) 4 9 5 3 1( ). ( ). 0x x x x+ − + + = 9) 2 22 2 4 ( 7).2 12 4 0x x x x+ − + − = 10) 9 ( 2).3 2( 4) 0x x x x− − − + − + = HT 16: Giải các phương trình sau (đặt ẩn phụ dạng 2): 1) 64.9 84.12 27.16 0x x x − + = 2) 3.16 2.81 5.36x x x + = 3) 2 2 6.3 13.6 6.2 0x x x − + = 4) 2 1 25 10 2x x x+ + = 5) 27 12 2.8x x x + = 6) 3.16 2.81 5.36x x x + = 7) 1 1 1 6.9 13.6 6.4 0x x x− + = 8) 1 1 1 4 6 9x x x − − − + = 9) 1 1 1 2.4 6 9x x x+ = 10) ( ) ( )( ) ( )7 5 2 2 5 3 2 2 3 1 2 1 2 0. x x x + + − + + + + − = HT 17: Giải các phương trình sau (đặt ẩn phụ dạng 3): 1) ( ) ( )2 3 2 3 14 x x − + + = 2) ( ) ( )2 3 2 3 4 x x + + − = 3) (2 3) (7 4 3)(2 3) 4(2 3)x x + + + − = + 4) ( ) ( ) 3 5 21 7 5 21 2 x x x+ − + + = 5) ( ) ( )5 24 5 24 10 x x + + − = 6) 7 3 5 7 3 5 7 8 2 2 x x    +  −    + =          7) ( ) ( )6 35 6 35 12 x x − + + = 8) ( ) ( ) 2 2 ( 1) 2 1 4 2 3 2 3 2 3 x x x− − − + + − = − fb.com/huynhict
  • 46. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 11 9) ( ) ( ) 3 3 5 16 3 5 2 x x x + + + − = 10) ( ) ( )3 5 3 5 7.2 0 x x x + + − − = 11) ( ) ( )7 4 3 3 2 3 2 0 x x + − − + = 12) ( ) ( )3 3 3 8 3 8 6. x x + + − = HT 18: Giải các phương trình sau (sử dụng tính đơn điệu): 1)( ) ( )2 3 2 3 4 x x x − + + = 2) ( ) ( ) ( )3 2 3 2 10 x x x − + + = 3) ( ) ( )3 2 2 3 2 2 6 x x x + + − = 4) ( ) ( ) 3 3 5 16. 3 5 2 x x x+ + + − = 5) 3 7 2 5 5 x x    + =    6) ( ) ( )2 3 2 3 2 x x x + + − = 7) 2 3 5 10x x x x + + = 8) 2 3 5x x x + = 9) 2 1 2 2 2 ( 1)x x x x− − − = − 10) 3 5 2x x= − 11) 2 3x x= − 12) 1 2 4 1x x x+ − = − HT 19: Giải các phương trình sau (đưa về phương trình tích): 1) 8.3 3.2 24 6x x x + = + 2) 1 12.3 3.15 5 20x x x + + − = 3) 3 8 .2 2 0x x x x− − + − = 4) 2 3 1 6x x x + = + 5) 2 2 2 3 2 6 5 2. 3 7 4 4 4 1x x x x x x− + + + + + + = + 6) ( ) 2 2 2 11 4 2 2 1 xx x x ++ − + = + 7) 2 3 2 .3 3 (12 7 ) 8 19 12x x x x x x x+ − = − + − + 8) 2 1 1 .3 (3 2 ) 2(2 3 )x x x x x x x− − + − = − 9) sin 1 sin 4 2 cos( ) 2 0yx x xy+ − + = 10) 2 2 2 2 2( ) 1 2( ) 1 2 2 2 .2 1 0x x x x x x+ − + − + − − = HT 20: Giải các phương trình sau (phương pháp đối lập): 1) 4 2 cos ,x x= với x ≥ 0 2) 2 6 10 2 3 6 6x x x x− + = − + − 3) sin 3 cosx x= 4) 3 2 2.cos 3 3 2 x xx x −  −   = +   5) sin cos x xπ = 6) 2 2 2 1 2 x x x x − + = 7) 2 3 cos2x x= 8) 2 5 cos3x x= HT 21: Tìm m để các phương trình sau có nghiệm: 1) 9 3 0x x m+ + = 2) 9 3 1 0x x m+ − = 3) 1 4 2x x m+ − = 4) 2 3 2.3 ( 3).2 0x x x m+ − + = 5) 2 ( 1).2 0x x m m− + + + = 6) 25 2.5 2 0x x m− − − = 7) 2 16 ( 1).2 1 0x x m m− − + − = 8) 25 .5 1 2 0x x m m+ + − = 9) 2 2 sin os 81 81x c x m+ = 10) 2 2 4 2 2 3 2.3 2 3 0x x m− − − + − = www.VNMATH.com
  • 47. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 12 11) 1 3 1 3 4 14.2 8x x x x m+ + − + + − − + = 12) 2 211 9 8.3 4x xx x m+ −+ − − + = HT 22: Tìm m để các phương trình sau có nghiệm duy nhất: 1) .2 2 5 0x x m − + − = 2) .16 2.81 5.36x x x m + = 3) ( ) ( )5 1 5 1 2 x x x m+ + − = 4) 7 3 5 7 3 5 8 2 2 x x m    +  −    + =        5) 3 4 2 3x x m+ − + = 6) 9 3 1 0x x m+ + = HT 23: Tìm m để các phương trình sau có 2 nghiệm trái dấu: 1) 1 ( 1).4 (3 2).2 3 1 0x x m m m+ + + − − + = 2) 2 49 ( 1).7 2 0x x m m m+ − + − = 3) 9 3( 1).3 5 2 0x x m m+ − − + = 4) ( 3).16 (2 1).4 1 0x x m m m+ + − + + = 5) ( )4 2 1 2 +3 8. 0x x m m− + − = 6) 4 2 6x x m− + = HT 24: Tìm m để các phương trình sau: 1) .16 2.81 5.36x x x m + = có 2 nghiệm dương phân biệt. 2) 16 .8 (2 1).4 .2x x x x m m m− + − = có 3 nghiệm phân biệt. 3) 2 2 2 4 2 6x x m+ − + = có 3 nghiệm phân biệt. 4) 2 2 9 4.3 8x x m− + = có 3 nghiệm phân biệt. fb.com/huynhict
  • 48. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 13 VẤN ĐỀ V: PHƯƠNG TRÌNH LOGARIT 1. Phương trình logarit cơ bản Với a > 0, a ≠ 1: log b a x b x a= ⇔ = 2. Một số phương pháp giải phương trình logarit 1) Đưa về cùng cơ số Với a > 0, a ≠ 1: ( ) ( ) log ( ) log ( ) ( ) 0 ( ( ) 0)a a f x g x f x g x f x hoaëc g x  == ⇔   > > 2) Mũ hoá Với a > 0, a ≠ 1: log ( ) log ( ) a f x b a f x b a a= ⇔ = 3) Đặt ẩn phụ 4) Sử dụng tính đơn điệu của hàm số 5) Đưa về phương trình đặc biệt 6) Phương pháp đối lập Chú ý: • Khi giải phương trình logarit cần chú ý điều kiện để biểu thức có nghĩa. • Với a, b, c > 0 và a, b, c ≠ 1: log logb b c a a c= Bài tập cơ bản HT 25: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá): 1) 2 log ( 1) 1x x − =   2) 2 2 log log ( 1) 1x x+ − = 3) 2 1/8 log ( 2) 6.log 3 5 2x x− − − = 4) 2 2 log ( 3) log ( 1) 3x x− + − = 5) 4 4 4 log ( 3) log ( 1) 2 log 8x x+ − − = − 6) lg( 2) lg( 3) 1 lg5x x− + − = − 7) 8 8 2 2log ( 2) log ( 3) 3 x x− − − = 8) lg 5 4 lg 1 2 lg0,18x x− + + = + 9) 2 3 3 log ( 6) log ( 2) 1x x− = − + 10) 2 2 5 log ( 3) log ( 1) 1/ log 2x x+ + − = 11) 4 4 log log (10 ) 2x x+ − = 12) 5 1/5 log ( 1) log ( 2) 0x x− − + = www.VNMATH.com
  • 49. GV.Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ TỚI BẾN Page 14 13) 2 2 2 log ( 1) log ( 3) log 10 1x x− + + = − 14) 9 3 log ( 8) log ( 26) 2 0x x+ − + + = HT 26: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá): 1) 3 1/33 log log log 6x x x+ + = 2) 2 2 1 lg( 2 1) lg( 1) 2lg(1 )x x x x+ − + − + = − 3) 4 1/16 8 log log log 5x x x+ + = 4) 2 2 2 lg(4 4 1) lg( 19) 2lg(1 2 )x x x x+ − + − + = − 5) 2 4 8 log log log 11x x x+ + = 6) 1/2 1/2 1/ 2 log ( 1) log ( 1) 1 log (7 )x x x− + + = + − 7) 2 2 3 3 log log log logx x= 8) 2 3 3 2 log log log logx x= 9) 2 3 3 2 3 3 log log log log log logx x x+ = 10) 2 3 4 4 3 2 log log log log log logx x= HT 27: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá): 1) 2 log (9 2 ) 3x x− = − 2) 3 log (3 8) 2x x− = − 3) 7 log (6 7 ) 1x x− + = + 4) 1 3 log (4.3 1) 2 1x x− − = − 5) 5 log (3 ) 2 log (9 2 ) 5 xx − − = 6) 2 log (3.2 1) 2 1 0x x− − − = 7) 2 log (12 2 ) 5x x− = − 8) 5 log (26 3 ) 2x − = 9) 1 2 log (5 25 ) 2x x+ − = 10) 1 4 log (3.2 5)x x+ − = 11) 1 1 6 log (5 25 ) 2x x+ − = − 12) 1 1 5 log (6 36 ) 2x x+ − = − HT 28: Giải các phương trình sau (đưa về cùng cơ số hoặc mũ hoá): 1) 2 5 log ( 2 65) 2x x x− − + = 2) 2 1 log ( 4 5) 1x x x− − + = 3) 2 log (5 8 3) 2x x x− + = 4) 3 2 1 log (2 2 3 1) 3x x x x+ + − + = 5) 3 log ( 1) 2x x− − = 6) log ( 2) 2x x + = 7) 2 2 log ( 5 6) 2x x x− + = 8) 2 3 log ( ) 1x x x+ − = 9) 2 log (2 7 12) 2x x x− + = 10) 2 log (2 3 4) 2x x x− − = 11) 2 2 log ( 5 6) 2x x x− + = 12) 2 log ( 2) 1x x − = 13) 2 3 5 log (9 8 2) 2x x x+ + + = 14) 2 2 4 log ( 1) 1x x+ + = 15) 15 log 2 1 2x x = − − 16) 2log (3 2 ) 1 x x− = fb.com/huynhict