SlideShare a Scribd company logo
1
ChrisEstevez Geophysics
Using Electromagnetic Waves to Discover Offshore Petroleum Deposits
Introduction:
Hydrocarbonsplaya crucial role intwentyfirstcenturyprocesses.Everythingfromthe
manufacturingof automobiles,airplanes,batteries,andpoweringthe electrical gridwhichmillionsrely
on forday today functioningisa directresponse tohydrocarbons.One of the hydrocarbonsthispaper
will focusonisoil or petroleum.Petroleumisanelusive fossilfuel whichchallengingtomine for,and
evenmore challengingtodiscover.Manydifferentmethodshave beendevolvedforonshoremethods
such as oil rigsor wells,butwhataboutoffshore oil exploration,andwhatmethodsare the most
effective fordiscoveringdepositsof petroleum?The aimof thispaperisto provide aconcise lookatthe
fieldof geophysics,particularlythe geophysical conceptof ElectromagneticWaves,andhow theyplaya
role inthe offshore petroleumindustry,the geophysicalproperties,andhow tointerpretvarioussetsof
data withrespecttooil explorationoffshore.
There are two keymethodsthatare basedonElectromagneticWavesorEM Wavesthat are used
inthe oil industrytoday foroffshore exploration.These two methodsare Controlled-source
Electromagnetic(CSEM),andMagnetolluricprofiling(MT).EachmethoddealswithEMwavesdifferently,
and usesa differentprotocol fordiscoveringoffshore oil deposits.The firstof these isControlled-source
Electromagnetic.
Controlled-source Electromagnetic (CSEM)
CSEM hasbeenused inthe oil industry since the early 1930’s to analyze the oceanfloorforany
tracesof petroleumwhichmaybe drilledintoforharvesting(Chave,2009).CSEMworksby relyingona
horizontal electrical dipole source orHED.Thisdipole source isplacedroughlynearthe bottomof the
2
seabeddingbutnottouchingit.Nearthe dipole source lies numerous arraysof electrical andmagnetic
dipole field receivers spreadaroundthe seafloorand touchingthe seabedding.Once the apparatusis
setup overthe distance thatistoo be sampled,the measurementscanoccur,and these measurements
use a lowfrequencyEMWave,usuallyaround1Hz (Kurang,Nabighian,Li 2005). Once the datais
collected,itcanbe plottedina2D or 1D Model.
CSEM isunique ina geophysical sense thatitfunctionsina extremelysimilarmannertoDC
resistivity.Inessence itisthe deep waterversionof alandbasedDC resistivitybasedsurveys,anduses
the propertiesof resistivity(ρ), conductivity(ohm-m),andtakesthese valueseitherdecreaseorincrease
inresolutionasthe transmittertoreceiverdistance (m) increasesordecreases.The wholeobjective of
CSEM dataonce gatheredistoanalyze the thickness, layers,andvariouszones of resistivitydifferences
whichvarybasedon depth,andlateral distance fromthe electrical dipole source (Chave,2009). Depth
beingthe distance belowthe seafloor. Hydrocarbonzoneslye betweenareasof highandlow contrast
betweenthe actual petroleumdeposit,andthe surroundinglayers.The surroundinglayersof anoil
depositsuchas the seabeddingwill havealowerconductivity versusthe petroleumdepositwithahigh
conductivity.The conductivityof the petroleumdepositishigherbecause itisinfluencedbythe
chemistryof the carbon-carbonbondswhere the surroundinglayersare simply saturatedwithwater,
and thischemical alterationcausesthe contrastof conductivitytooccur.It is thissuddenshiftin
conductivityoveracoveredsite thatisthe focusof CSEMdata analysis(Chave,2009).
Once a fieldtestisconducted,the dataisplottedonaCartesianplane basedonthe following
parameters:X-axisisthe range fromthe Electrical dipolesource tothe transmitterover “x”distance,and
the y-axisisthe logof the electrical fieldratio(figure 1).The logis takentonormalize the electrical field
to adjustforanynoise.SimilartoDCResistivity,CSEMdealswith interpretingthe subterrainovera
certainhorizontal distance andvertical depth,butinsteadof makingthe y-axisdepth,since CSEMdata
dealswithEMWaves, an electrical field isaccounted for.Thiselectrical fieldisnormalizedtoaccountfor
3
the average seabedconductivity,andshows the amplitude of the seafloororthe geological featuressuch
as foldsorhills,anditis thisamplitude candistinguishbetweenstrongorweakhydrocarbon reservoirs
overa certaindistance orrange (Chave,2009).
In termsof confirminganddetermininghydrocarbon reservoirs,the peaksof the electrical field
oversome distance indicatethe sharpcontrastof resistivityvalues(figure2),andthisis the keyto
discoveringdeposits(Kurang,Nabighian,Li 2005). Keepinmindthatthese depositsmaynot necessarily
be petroleum,butitisa stepforwardif acompanyforexampleswantstoinvestinadrillingoperation.
Thisoil to watercontrastiswhatcompaniessuchas BritishPetroleumorExxonMobileuse,andisa key
Geophysical methodappliedrelatingtoEMWaves (Hoversten,Newman,Geier,Flanagan,2006)
Thisdata can furtherbe forwardmodeledintoapseudo-sectionwhichshowsthe resistivityof
the amplitudesorpeakswhichindicateeitherstrong,weak,ormoderate hydrocarbonsreservoirs.The
higherthe conductivity,the greaterprobabilitythereisthatsome depositexistsatacertaindistance on
the sea floor(Kurang,Nabighian,Li 2005). Figure 3 showsa psuedosectionof the electrical fieldovera
certaindistance.
The amplitude of the wave isthe one of the keyfactorsthatprovesreliable inoffshore
exploration.Mathematically,the amplitude of the wavesinthe electricalfieldgeneratedisbasedon
formula1, andskindepthisbasedon formula2:
E air = e ^(−2h/δ) / 2πσr3 (1)
δ = (2/σωµ) (2)
Where:
E air is the amplitude of the EMwave overanelectrical fieldthatisnormalized,histhe water
depth, δis the skin depth, σis conductivity, ωisfrequency, risthe distance betweenthe source dipole
4
and a receiverata certaindistance, andµis the permeabilitywhichisbasedonthe frequencyused
(Constable,Weiss 2006).
Formula1 showsthat the air wave isnot dependent onthe resistivity of the site beingtested.
Alsoskipdepth orequation2 playsa role inwhat type of frequencymustbe used.WithEMwaves,the
resolutionwhichisdesiredisbasedonthe frequencyused.Lookingatformula1, itis exponential,so the
higherthe skindepth,anda largerh or waterdepth,the smallerthe amplitudeof the airwave.Smaller
amplitude of the airwave meansthathydrocarbondepositsmightbe missedif theyare deeper,andthe
airwave getsreducedenoughtogive apoor resolution. Inorderto findthe slope,simplytakingthe
inverse of the distance betweenthe source dipoleandreceiverwouldwork.Thiscanalsoprovide
boundariesof conductivitycontrastwhenanalyzingagraph of fielddata;Figure 1 and 2 for example
(Constable,Weiss2006).
Whenadjustingthe frequency, skindepth isanimportantfactorto consider.WithCMES,the
skindepthisroughly100m at frequency’s around25Hz or greater.Lowerfrequencies wouldyielda
lowerskindepth.Thisreductioninthe strengthof the frequencyisdue tothe air wave beingabsorbed
by the surroundingwatermolecules,andreducinginstrengthonce itcontactsthe ocean floor
(Hoversten,Newman,Geier,Flanagan,2006).Substitutingformula2intoone wouldgive an
approximationforthe amplitude thatmightbe expectedonce the electricfieldisnormalized.
One of the mainadvantagesof usingthismethodsimilarlytoDCResistivityisthe depthatwhich
a studycan occur. Usingthe lowfrequencywavesallowsforamuch deeperpenetrationintothe ground
aroundthe dipole source andnearestreceivers.TypicallyforCSEMit isideal touse approximately
2000m as a testdistance because asanelectrical fielddispersesoveracertain distance (Constable,
Weiss2006), itlosesenergy,andthisenergyisresponsibleforthe resolutionwhichisneededfor
5
detectionof resistivitycontrasts.Thatiswhyitisan ideal methodfordepth basedstudies.Yetitcanstill
provide accurate informationaboutthe geological formationof the hydrocarbonlayerby loweringthe
frequency.Thisallowsformore accurate confirmationof depositorientationoveradistance that
exceeds2000mhorizontally(Chave,2009). If depthisthe main focus,skindepthmustbe considered,
and that iswhysuch a lowfrequencyisusedinthese casesforCSEM.
Magnetolluric profiling (MT)
One of the keypointstonote withMagnetolluricprofilingisthatitprovidesavery
accurate profilingof the actual physicorientation,size,andothersurface featuresinananisotropic
manner.Measurementsare takeninthe +x, -x,+y,and –y directions (Pellerin,Hohmann1990).
Magnetolluricprofiling orMT reliesonelectromagneticwavesinasimilarfashionasCSEMbut
overa broad range of frequenciesrangingfromafractionof .01 Hz toup to 20,000 + Hz inorderto
measure the electricandmagneticfieldspresentinthe ground.Thismethodcanbe appliedoffshorefor
petroleumexploration (Torres-Verdin,1992). The setupusesa receiverwhichislocatedonthe bodythat
isto be tested.Inthiscase a suspectedspotwhere oil maybe inthe Gulf of Mexicoforexample.The EM
emitterispositioneddeadcenterof a testsite,andvariousreceiversare placedinasquare orientation
(Figure 4).If it isin a offshore setting,floatingdevicesorwaterproof equipmentcouldbe used. Itisin
thissquare perimeterthataprofile will be createdusingasetfrequencythatisgovernedbycertain
propertiesand condition (Matsushima,Honkura2002).
Propertiesthatgovernthe use of MT are conductivity,resistivity,andthe earth’snatural
magneticfield.Withmagnetolluricprofiling,the complexityordetail of observationthatcan be seen
aroundthe testsite increase due tothe considerationthatMT recognizesanisotropy,isotropic,
heterogeneity,andhomogeneity conditions.These conditionsmustbe thoughtof before astudycanbe
done,andthe properset upshouldinplace before astudycan be conducted. If these considerationsare
6
not met,distortionsinthe datacan occur, and cause an error (Pellerin,Hohmann1990). Anexample of
a distortionornoise thatcan occur basedonthe landscape isif there isananomalyinthe ground.If a
measurementof twoEMcurveson a graph basedondifferentequipmentplacementslooksthe same,
mostlikelythere issome sortof subterraneanbody. MT Profilingisverysensitivetothistype of noise
more so then controlled-source methods(Pellerin,Hohmann1990). Luckily,thisdilemmacanbe fixed,
by takingdata inwhichthe apparentresistivity(ohm-m) isonthe y-axis,time (s)isonthe x-axis,and
invertinga1D model.Thisinversioncorrectsthe typical noiseassociated withchangesinthe testingsite
whetheritisan unequal distributionof soil oranomalies.
Since the MT methoddatatakesdata overa large range of frequenciesoverasettime,the x,
and y axis’snowaccountsfortwo conditions.Time,andfrequency forthe x-axis,andthe frequency
phase angle,andapparentresistivityonthe y-axis(Figure 5) (Pellerin,Hohmann1990).The frequency
correspondstothe electrical,andmagneticfieldbeingapplied.
The electrical/magneticfield inbothcasesmathematicallyare governed by:
Ey(w) =Zyx(w)Hx(w) +Zyy(w)Hy(w) (3)
Ex(w) = Zxx(w)Hx(w) + Zxy(w)Hy(w) (4)
Where: The equationconsidersanisotropy.The rightside equations3,4 correspondtothe electrodes
placedina square orientation,andE is the electrical field.
Thiselectrical fieldiswhatallowsthe receiver tomeasure the resistivityvalues.Ittakesinto
considerationformula1,and 2 that CSEM considersonlywithafrequencyrange of anywhere from0.01
Hz to 30,000 Hz. The electrical fieldoverasquare orientationthusallowsamultitude of skindepthsto
occur withoutaffectingthe depthpenetrationbecause MTusesthe frequencyrange overtime which
will yieldanice profile thatshowsasmoothcurve comparedto the angular andridgedCSEMprofile.
The smoothridge attributedtothe anisotropicpropertiesof MT.
7
Conclusion:
Offshore oil explorationbasedonelectromagneticwavesreliesontwokeymethods: Controlled-
source Electromagnetic(CSEM),andMagnetolluricprofiling(MT).Eachmethodhasitsunique use,and
one methodcan complementthe other.If detail,orientation, andexactlocationare the goals,
Magnetolluricprofilingisthe methodpreferreddue toitsbroadrange of frequency’swhichovertime
create a smoothprojectionof a petroleumreservoir.If range of the area coveredisthe goal,CSEM
wouldbe a more appropriate method.
Figures:
Figure 1(CSEM):(Chave,2009)
8
Figure 2(CSEM):(Kurang,Nabighian,Li 2005)
Figure 3 (CSEM):(Kurang,Nabighian,Li 2005).
Figure 4 (MT): (Matsushima,Honkura2002)
9
Figure 5 (MT): (Pellerin, Hohmann1990)
10
References:
1) Chave,AlanD."Onthe ElectromagneticFieldsProducedbyMarine FrequencyDomainControlled
Sources."GEOPHYSICALJOURNALINTERNATIONAL179.3 (2009): 1429-457. AcademicSearch Alumni
Edition.Web. 9 Apr. 2013.
2) Constable,S. andWeiss,C. (2006). ”Mappingthinresistorsandhydrocarbonswithmarine EM
methods:Insightsfrom1Dmodeling.” GEOPHYSICS,71(2),G43–G51.
3) Gamble,T., Goubau,W., and Clarke,J. (1979). ”Magnetotelluricswitharemote magnetic
reference.”GEOPHYSICS,44(1),53–68.
4) Mehta,Kurang,Misac Nabighian,andYaoguoLi.(2005) "ControlledSource Electromagnetic(CSEM)
Technique forDetectionandDelineationof HydrocarbonReservoirs:AnEvaluation." UBC-GIF.Center
forGravity,Electrical &Magnetic Studies - ColoradoSchool of Mines,n.d.Web.9 Apr. 2013.
5) Michael Hoversten,G., Newman,G.,Geier,N.,andFlanagan,G. (2006). ”3D modelingof a
deepwaterEMexplorationsurvey.”GEOPHYSICS,71(5),G239–G248. Web.9 April 2013
6) Pellerin,L. andHohmann,G. (1990). ”Transientelectromagneticinversion:A remedyfor
magnetotelluricstaticshifts.”GEOPHYSICS,55(9),1242–1250.
7) Torres-Verdín,C. andBostick,F.,Jr. (1992). ”Principlesof spatial surface electricfieldfilteringin
magnetotellurics:Electromagneticarrayprofiling(EMAP).” GEOPHYSICS,57(4),603–622.
8) Matsushima, M., Honkura, Y., Seismoelectromagnetic Effect Associated with the İzmit
Earthquake and Its AftershocksBulletin of the Seismological Society of America February
2002 92:350-360;

More Related Content

What's hot

Application of electrical resistivity tomography (ert) and arial photographs ...
Application of electrical resistivity tomography (ert) and arial photographs ...Application of electrical resistivity tomography (ert) and arial photographs ...
Application of electrical resistivity tomography (ert) and arial photographs ...
Alexander Decker
 
fw1728MSci Lit. Rev. Submission
fw1728MSci Lit. Rev. Submissionfw1728MSci Lit. Rev. Submission
fw1728MSci Lit. Rev. Submission
Freddy White
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
Sérgio Sacani
 
JASMAN12742231_1
JASMAN12742231_1JASMAN12742231_1
JASMAN12742231_1
Nicholas Manzi
 
تشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسي
تشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسيتشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسي
تشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسي
ssuserf14e50
 
Introduction to electromagnetic exploration method
Introduction to electromagnetic exploration methodIntroduction to electromagnetic exploration method
Introduction to electromagnetic exploration method
oilandgas24
 
Ikard et al 2013a
Ikard et al 2013aIkard et al 2013a
Ikard et al 2013a
Scott Ikard Ph.D., P.E.
 
LET, RBE & OER - dr vandana
LET, RBE & OER - dr vandanaLET, RBE & OER - dr vandana
LET, RBE & OER - dr vandana
Dr Vandana Singh Kushwaha
 
Hill Ultra Res 760T (1998)
Hill Ultra Res 760T (1998)Hill Ultra Res 760T (1998)
Hill Ultra Res 760T (1998)
Seth Byers
 
Lecture 13-electrical method -field procedure
Lecture 13-electrical method -field procedureLecture 13-electrical method -field procedure
Lecture 13-electrical method -field procedure
Kosygin Leishangthem
 
Biological basis of proton and high let beam
Biological basis of proton and high let beamBiological basis of proton and high let beam
Biological basis of proton and high let beam
Mahran Alnahmi
 
Numerical studies of the radiation patterns of resistively loaded dipoles
Numerical studies of the radiation patterns of resistively loaded dipolesNumerical studies of the radiation patterns of resistively loaded dipoles
Numerical studies of the radiation patterns of resistively loaded dipoles
Leonid Krinitsky
 
Seismic attributes
Seismic attributesSeismic attributes
Seismic attributes
zaheehussain
 
Application Of Resistivity For Groundwater, Hydrogeology and Pollution Research
Application Of Resistivity For Groundwater, Hydrogeology and Pollution ResearchApplication Of Resistivity For Groundwater, Hydrogeology and Pollution Research
Application Of Resistivity For Groundwater, Hydrogeology and Pollution Research
OmokpariolaElshalom
 
3d resistivity imaging technique
3d resistivity imaging technique3d resistivity imaging technique
3d resistivity imaging technique
Zaidoon Taha
 
RET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CSRET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CS
Carl Sandness
 
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Sérgio Sacani
 
Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...
Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...
Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...
iosrjce
 
B1104010612
B1104010612B1104010612
B1104010612
IOSR Journals
 
Application of vertical electrical sounding and horizontal profiling methods ...
Application of vertical electrical sounding and horizontal profiling methods ...Application of vertical electrical sounding and horizontal profiling methods ...
Application of vertical electrical sounding and horizontal profiling methods ...
Alexander Decker
 

What's hot (20)

Application of electrical resistivity tomography (ert) and arial photographs ...
Application of electrical resistivity tomography (ert) and arial photographs ...Application of electrical resistivity tomography (ert) and arial photographs ...
Application of electrical resistivity tomography (ert) and arial photographs ...
 
fw1728MSci Lit. Rev. Submission
fw1728MSci Lit. Rev. Submissionfw1728MSci Lit. Rev. Submission
fw1728MSci Lit. Rev. Submission
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
 
JASMAN12742231_1
JASMAN12742231_1JASMAN12742231_1
JASMAN12742231_1
 
تشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسي
تشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسيتشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسي
تشخيص المركبات العضوية بواسطة الرنين النووي المغناطيسي
 
Introduction to electromagnetic exploration method
Introduction to electromagnetic exploration methodIntroduction to electromagnetic exploration method
Introduction to electromagnetic exploration method
 
Ikard et al 2013a
Ikard et al 2013aIkard et al 2013a
Ikard et al 2013a
 
LET, RBE & OER - dr vandana
LET, RBE & OER - dr vandanaLET, RBE & OER - dr vandana
LET, RBE & OER - dr vandana
 
Hill Ultra Res 760T (1998)
Hill Ultra Res 760T (1998)Hill Ultra Res 760T (1998)
Hill Ultra Res 760T (1998)
 
Lecture 13-electrical method -field procedure
Lecture 13-electrical method -field procedureLecture 13-electrical method -field procedure
Lecture 13-electrical method -field procedure
 
Biological basis of proton and high let beam
Biological basis of proton and high let beamBiological basis of proton and high let beam
Biological basis of proton and high let beam
 
Numerical studies of the radiation patterns of resistively loaded dipoles
Numerical studies of the radiation patterns of resistively loaded dipolesNumerical studies of the radiation patterns of resistively loaded dipoles
Numerical studies of the radiation patterns of resistively loaded dipoles
 
Seismic attributes
Seismic attributesSeismic attributes
Seismic attributes
 
Application Of Resistivity For Groundwater, Hydrogeology and Pollution Research
Application Of Resistivity For Groundwater, Hydrogeology and Pollution ResearchApplication Of Resistivity For Groundwater, Hydrogeology and Pollution Research
Application Of Resistivity For Groundwater, Hydrogeology and Pollution Research
 
3d resistivity imaging technique
3d resistivity imaging technique3d resistivity imaging technique
3d resistivity imaging technique
 
RET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CSRET 2011 Paper_FINAL CS
RET 2011 Paper_FINAL CS
 
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
 
Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...
Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...
Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida ...
 
B1104010612
B1104010612B1104010612
B1104010612
 
Application of vertical electrical sounding and horizontal profiling methods ...
Application of vertical electrical sounding and horizontal profiling methods ...Application of vertical electrical sounding and horizontal profiling methods ...
Application of vertical electrical sounding and horizontal profiling methods ...
 

Viewers also liked

4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia
4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia
4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia
Bangalore Prj
 
Competitive Intelligence Consumer Producer
Competitive Intelligence Consumer ProducerCompetitive Intelligence Consumer Producer
Competitive Intelligence Consumer Producer
Wits Business School
 
Beware The Black Swan
Beware The Black SwanBeware The Black Swan
Beware The Black Swan
Wits Business School
 
Creatividad
CreatividadCreatividad
Creatividad
gabbiota
 
The conflict-of-priority-patents-profits-and-patients
The conflict-of-priority-patents-profits-and-patientsThe conflict-of-priority-patents-profits-and-patients
The conflict-of-priority-patents-profits-and-patients
varun535
 
Intelligence Vs Decisionmaker
Intelligence Vs DecisionmakerIntelligence Vs Decisionmaker
Intelligence Vs Decisionmaker
Wits Business School
 
Sghis final.pptx anik
Sghis final.pptx anikSghis final.pptx anik
Sghis final.pptx anik
01762638361f
 
Perkembangan kreativitas anak
Perkembangan kreativitas anakPerkembangan kreativitas anak
Perkembangan kreativitas anak
wardah elrahmah
 
Logos responsive
Logos responsiveLogos responsive
Logos responsive
Fernando del Castillo
 
ECornell Certificate 2015 Introduction to Global Hospitality Management
ECornell Certificate 2015 Introduction to Global Hospitality ManagementECornell Certificate 2015 Introduction to Global Hospitality Management
ECornell Certificate 2015 Introduction to Global Hospitality Management
Leonardo Fani
 

Viewers also liked (10)

4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia
4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia
4BHK Villaments for sale in Yelahanka, Bangalore at Krishna Elicia
 
Competitive Intelligence Consumer Producer
Competitive Intelligence Consumer ProducerCompetitive Intelligence Consumer Producer
Competitive Intelligence Consumer Producer
 
Beware The Black Swan
Beware The Black SwanBeware The Black Swan
Beware The Black Swan
 
Creatividad
CreatividadCreatividad
Creatividad
 
The conflict-of-priority-patents-profits-and-patients
The conflict-of-priority-patents-profits-and-patientsThe conflict-of-priority-patents-profits-and-patients
The conflict-of-priority-patents-profits-and-patients
 
Intelligence Vs Decisionmaker
Intelligence Vs DecisionmakerIntelligence Vs Decisionmaker
Intelligence Vs Decisionmaker
 
Sghis final.pptx anik
Sghis final.pptx anikSghis final.pptx anik
Sghis final.pptx anik
 
Perkembangan kreativitas anak
Perkembangan kreativitas anakPerkembangan kreativitas anak
Perkembangan kreativitas anak
 
Logos responsive
Logos responsiveLogos responsive
Logos responsive
 
ECornell Certificate 2015 Introduction to Global Hospitality Management
ECornell Certificate 2015 Introduction to Global Hospitality ManagementECornell Certificate 2015 Introduction to Global Hospitality Management
ECornell Certificate 2015 Introduction to Global Hospitality Management
 

Similar to Chris EstevezGeophysics - Petroleum - EM Methods

Oil gas seabed logging
Oil gas seabed loggingOil gas seabed logging
Oil gas seabed logging
Narendra Kumar Dewangan
 
Electrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceElectrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal Microbalance
Saurav Ch. Sarma
 
EM monitoring of CO2 sequestration
EM monitoring of CO2 sequestration EM monitoring of CO2 sequestration
EM monitoring of CO2 sequestration
Saurabh Wagh
 
Exploration Geophysics III semester.pdf
Exploration Geophysics III semester.pdfExploration Geophysics III semester.pdf
Exploration Geophysics III semester.pdf
SHAHEENAKBAR3
 
Electrical method
Electrical methodElectrical method
Electrical method
mahmudulhassan123
 
Seg c
Seg cSeg c
Lateral resolution and lithological interpretation of surface wave profi ling
Lateral resolution and lithological interpretation of surface wave profi lingLateral resolution and lithological interpretation of surface wave profi ling
Lateral resolution and lithological interpretation of surface wave profi ling
Adam O'Neill
 
Analysis of Pseudogap in Superconductors
Analysis of Pseudogap in SuperconductorsAnalysis of Pseudogap in Superconductors
Analysis of Pseudogap in Superconductors
IOSR Journals
 
Remote detection of a lunar granitic batholith at Compton–Belkovich
Remote detection of a lunar granitic batholith at Compton–BelkovichRemote detection of a lunar granitic batholith at Compton–Belkovich
Remote detection of a lunar granitic batholith at Compton–Belkovich
Sérgio Sacani
 
Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...
Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...
Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...
IJERA Editor
 
666.full
666.full666.full
Introduction to Induction Logging
Introduction to Induction Logging Introduction to Induction Logging
Introduction to Induction Logging
Abdur Rauf Mashwani
 
Seg e
Seg eSeg e
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronElectrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Aleksey Beletskii
 
Lect02
Lect02Lect02
Lect02
sujitjalkote
 
2 d electrical resistivity tomography (ert) survey using the multi electrode ...
2 d electrical resistivity tomography (ert) survey using the multi electrode ...2 d electrical resistivity tomography (ert) survey using the multi electrode ...
2 d electrical resistivity tomography (ert) survey using the multi electrode ...
Alexander Decker
 
Generation of laboratory nanoflares from multiple braided plasma loops
Generation of laboratory nanoflares from multiple braided plasma loopsGeneration of laboratory nanoflares from multiple braided plasma loops
Generation of laboratory nanoflares from multiple braided plasma loops
Sérgio Sacani
 
Renew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.TaboadaRenew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.Taboada
Jose V.Taboada
 
Presentation on geophysical methods
Presentation on geophysical methodsPresentation on geophysical methods
Presentation on geophysical methods
Engr Andrew A. Onoja MNSE, MNICE, COREN, MNIM, MICE
 
EUNICE PRESENTATION.pptx
EUNICE PRESENTATION.pptxEUNICE PRESENTATION.pptx
EUNICE PRESENTATION.pptx
ElvisIghodalo
 

Similar to Chris EstevezGeophysics - Petroleum - EM Methods (20)

Oil gas seabed logging
Oil gas seabed loggingOil gas seabed logging
Oil gas seabed logging
 
Electrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceElectrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal Microbalance
 
EM monitoring of CO2 sequestration
EM monitoring of CO2 sequestration EM monitoring of CO2 sequestration
EM monitoring of CO2 sequestration
 
Exploration Geophysics III semester.pdf
Exploration Geophysics III semester.pdfExploration Geophysics III semester.pdf
Exploration Geophysics III semester.pdf
 
Electrical method
Electrical methodElectrical method
Electrical method
 
Seg c
Seg cSeg c
Seg c
 
Lateral resolution and lithological interpretation of surface wave profi ling
Lateral resolution and lithological interpretation of surface wave profi lingLateral resolution and lithological interpretation of surface wave profi ling
Lateral resolution and lithological interpretation of surface wave profi ling
 
Analysis of Pseudogap in Superconductors
Analysis of Pseudogap in SuperconductorsAnalysis of Pseudogap in Superconductors
Analysis of Pseudogap in Superconductors
 
Remote detection of a lunar granitic batholith at Compton–Belkovich
Remote detection of a lunar granitic batholith at Compton–BelkovichRemote detection of a lunar granitic batholith at Compton–Belkovich
Remote detection of a lunar granitic batholith at Compton–Belkovich
 
Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...
Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...
Evaluation of sub-soil geo-electric properties in a proposed power sub-statio...
 
666.full
666.full666.full
666.full
 
Introduction to Induction Logging
Introduction to Induction Logging Introduction to Induction Logging
Introduction to Induction Logging
 
Seg e
Seg eSeg e
Seg e
 
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronElectrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
 
Lect02
Lect02Lect02
Lect02
 
2 d electrical resistivity tomography (ert) survey using the multi electrode ...
2 d electrical resistivity tomography (ert) survey using the multi electrode ...2 d electrical resistivity tomography (ert) survey using the multi electrode ...
2 d electrical resistivity tomography (ert) survey using the multi electrode ...
 
Generation of laboratory nanoflares from multiple braided plasma loops
Generation of laboratory nanoflares from multiple braided plasma loopsGeneration of laboratory nanoflares from multiple braided plasma loops
Generation of laboratory nanoflares from multiple braided plasma loops
 
Renew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.TaboadaRenew2014.UiS&Uvigo_Jose V.Taboada
Renew2014.UiS&Uvigo_Jose V.Taboada
 
Presentation on geophysical methods
Presentation on geophysical methodsPresentation on geophysical methods
Presentation on geophysical methods
 
EUNICE PRESENTATION.pptx
EUNICE PRESENTATION.pptxEUNICE PRESENTATION.pptx
EUNICE PRESENTATION.pptx
 

Chris EstevezGeophysics - Petroleum - EM Methods

  • 1. 1 ChrisEstevez Geophysics Using Electromagnetic Waves to Discover Offshore Petroleum Deposits Introduction: Hydrocarbonsplaya crucial role intwentyfirstcenturyprocesses.Everythingfromthe manufacturingof automobiles,airplanes,batteries,andpoweringthe electrical gridwhichmillionsrely on forday today functioningisa directresponse tohydrocarbons.One of the hydrocarbonsthispaper will focusonisoil or petroleum.Petroleumisanelusive fossilfuel whichchallengingtomine for,and evenmore challengingtodiscover.Manydifferentmethodshave beendevolvedforonshoremethods such as oil rigsor wells,butwhataboutoffshore oil exploration,andwhatmethodsare the most effective fordiscoveringdepositsof petroleum?The aimof thispaperisto provide aconcise lookatthe fieldof geophysics,particularlythe geophysical conceptof ElectromagneticWaves,andhow theyplaya role inthe offshore petroleumindustry,the geophysicalproperties,andhow tointerpretvarioussetsof data withrespecttooil explorationoffshore. There are two keymethodsthatare basedonElectromagneticWavesorEM Wavesthat are used inthe oil industrytoday foroffshore exploration.These two methodsare Controlled-source Electromagnetic(CSEM),andMagnetolluricprofiling(MT).EachmethoddealswithEMwavesdifferently, and usesa differentprotocol fordiscoveringoffshore oil deposits.The firstof these isControlled-source Electromagnetic. Controlled-source Electromagnetic (CSEM) CSEM hasbeenused inthe oil industry since the early 1930’s to analyze the oceanfloorforany tracesof petroleumwhichmaybe drilledintoforharvesting(Chave,2009).CSEMworksby relyingona horizontal electrical dipole source orHED.Thisdipole source isplacedroughlynearthe bottomof the
  • 2. 2 seabeddingbutnottouchingit.Nearthe dipole source lies numerous arraysof electrical andmagnetic dipole field receivers spreadaroundthe seafloorand touchingthe seabedding.Once the apparatusis setup overthe distance thatistoo be sampled,the measurementscanoccur,and these measurements use a lowfrequencyEMWave,usuallyaround1Hz (Kurang,Nabighian,Li 2005). Once the datais collected,itcanbe plottedina2D or 1D Model. CSEM isunique ina geophysical sense thatitfunctionsina extremelysimilarmannertoDC resistivity.Inessence itisthe deep waterversionof alandbasedDC resistivitybasedsurveys,anduses the propertiesof resistivity(ρ), conductivity(ohm-m),andtakesthese valueseitherdecreaseorincrease inresolutionasthe transmittertoreceiverdistance (m) increasesordecreases.The wholeobjective of CSEM dataonce gatheredistoanalyze the thickness, layers,andvariouszones of resistivitydifferences whichvarybasedon depth,andlateral distance fromthe electrical dipole source (Chave,2009). Depth beingthe distance belowthe seafloor. Hydrocarbonzoneslye betweenareasof highandlow contrast betweenthe actual petroleumdeposit,andthe surroundinglayers.The surroundinglayersof anoil depositsuchas the seabeddingwill havealowerconductivity versusthe petroleumdepositwithahigh conductivity.The conductivityof the petroleumdepositishigherbecause itisinfluencedbythe chemistryof the carbon-carbonbondswhere the surroundinglayersare simply saturatedwithwater, and thischemical alterationcausesthe contrastof conductivitytooccur.It is thissuddenshiftin conductivityoveracoveredsite thatisthe focusof CSEMdata analysis(Chave,2009). Once a fieldtestisconducted,the dataisplottedonaCartesianplane basedonthe following parameters:X-axisisthe range fromthe Electrical dipolesource tothe transmitterover “x”distance,and the y-axisisthe logof the electrical fieldratio(figure 1).The logis takentonormalize the electrical field to adjustforanynoise.SimilartoDCResistivity,CSEMdealswith interpretingthe subterrainovera certainhorizontal distance andvertical depth,butinsteadof makingthe y-axisdepth,since CSEMdata dealswithEMWaves, an electrical field isaccounted for.Thiselectrical fieldisnormalizedtoaccountfor
  • 3. 3 the average seabedconductivity,andshows the amplitude of the seafloororthe geological featuressuch as foldsorhills,anditis thisamplitude candistinguishbetweenstrongorweakhydrocarbon reservoirs overa certaindistance orrange (Chave,2009). In termsof confirminganddetermininghydrocarbon reservoirs,the peaksof the electrical field oversome distance indicatethe sharpcontrastof resistivityvalues(figure2),andthisis the keyto discoveringdeposits(Kurang,Nabighian,Li 2005). Keepinmindthatthese depositsmaynot necessarily be petroleum,butitisa stepforwardif acompanyforexampleswantstoinvestinadrillingoperation. Thisoil to watercontrastiswhatcompaniessuchas BritishPetroleumorExxonMobileuse,andisa key Geophysical methodappliedrelatingtoEMWaves (Hoversten,Newman,Geier,Flanagan,2006) Thisdata can furtherbe forwardmodeledintoapseudo-sectionwhichshowsthe resistivityof the amplitudesorpeakswhichindicateeitherstrong,weak,ormoderate hydrocarbonsreservoirs.The higherthe conductivity,the greaterprobabilitythereisthatsome depositexistsatacertaindistance on the sea floor(Kurang,Nabighian,Li 2005). Figure 3 showsa psuedosectionof the electrical fieldovera certaindistance. The amplitude of the wave isthe one of the keyfactorsthatprovesreliable inoffshore exploration.Mathematically,the amplitude of the wavesinthe electricalfieldgeneratedisbasedon formula1, andskindepthisbasedon formula2: E air = e ^(−2h/δ) / 2πσr3 (1) δ = (2/σωµ) (2) Where: E air is the amplitude of the EMwave overanelectrical fieldthatisnormalized,histhe water depth, δis the skin depth, σis conductivity, ωisfrequency, risthe distance betweenthe source dipole
  • 4. 4 and a receiverata certaindistance, andµis the permeabilitywhichisbasedonthe frequencyused (Constable,Weiss 2006). Formula1 showsthat the air wave isnot dependent onthe resistivity of the site beingtested. Alsoskipdepth orequation2 playsa role inwhat type of frequencymustbe used.WithEMwaves,the resolutionwhichisdesiredisbasedonthe frequencyused.Lookingatformula1, itis exponential,so the higherthe skindepth,anda largerh or waterdepth,the smallerthe amplitudeof the airwave.Smaller amplitude of the airwave meansthathydrocarbondepositsmightbe missedif theyare deeper,andthe airwave getsreducedenoughtogive apoor resolution. Inorderto findthe slope,simplytakingthe inverse of the distance betweenthe source dipoleandreceiverwouldwork.Thiscanalsoprovide boundariesof conductivitycontrastwhenanalyzingagraph of fielddata;Figure 1 and 2 for example (Constable,Weiss2006). Whenadjustingthe frequency, skindepth isanimportantfactorto consider.WithCMES,the skindepthisroughly100m at frequency’s around25Hz or greater.Lowerfrequencies wouldyielda lowerskindepth.Thisreductioninthe strengthof the frequencyisdue tothe air wave beingabsorbed by the surroundingwatermolecules,andreducinginstrengthonce itcontactsthe ocean floor (Hoversten,Newman,Geier,Flanagan,2006).Substitutingformula2intoone wouldgive an approximationforthe amplitude thatmightbe expectedonce the electricfieldisnormalized. One of the mainadvantagesof usingthismethodsimilarlytoDCResistivityisthe depthatwhich a studycan occur. Usingthe lowfrequencywavesallowsforamuch deeperpenetrationintothe ground aroundthe dipole source andnearestreceivers.TypicallyforCSEMit isideal touse approximately 2000m as a testdistance because asanelectrical fielddispersesoveracertain distance (Constable, Weiss2006), itlosesenergy,andthisenergyisresponsibleforthe resolutionwhichisneededfor
  • 5. 5 detectionof resistivitycontrasts.Thatiswhyitisan ideal methodfordepth basedstudies.Yetitcanstill provide accurate informationaboutthe geological formationof the hydrocarbonlayerby loweringthe frequency.Thisallowsformore accurate confirmationof depositorientationoveradistance that exceeds2000mhorizontally(Chave,2009). If depthisthe main focus,skindepthmustbe considered, and that iswhysuch a lowfrequencyisusedinthese casesforCSEM. Magnetolluric profiling (MT) One of the keypointstonote withMagnetolluricprofilingisthatitprovidesavery accurate profilingof the actual physicorientation,size,andothersurface featuresinananisotropic manner.Measurementsare takeninthe +x, -x,+y,and –y directions (Pellerin,Hohmann1990). Magnetolluricprofiling orMT reliesonelectromagneticwavesinasimilarfashionasCSEMbut overa broad range of frequenciesrangingfromafractionof .01 Hz toup to 20,000 + Hz inorderto measure the electricandmagneticfieldspresentinthe ground.Thismethodcanbe appliedoffshorefor petroleumexploration (Torres-Verdin,1992). The setupusesa receiverwhichislocatedonthe bodythat isto be tested.Inthiscase a suspectedspotwhere oil maybe inthe Gulf of Mexicoforexample.The EM emitterispositioneddeadcenterof a testsite,andvariousreceiversare placedinasquare orientation (Figure 4).If it isin a offshore setting,floatingdevicesorwaterproof equipmentcouldbe used. Itisin thissquare perimeterthataprofile will be createdusingasetfrequencythatisgovernedbycertain propertiesand condition (Matsushima,Honkura2002). Propertiesthatgovernthe use of MT are conductivity,resistivity,andthe earth’snatural magneticfield.Withmagnetolluricprofiling,the complexityordetail of observationthatcan be seen aroundthe testsite increase due tothe considerationthatMT recognizesanisotropy,isotropic, heterogeneity,andhomogeneity conditions.These conditionsmustbe thoughtof before astudycanbe done,andthe properset upshouldinplace before astudycan be conducted. If these considerationsare
  • 6. 6 not met,distortionsinthe datacan occur, and cause an error (Pellerin,Hohmann1990). Anexample of a distortionornoise thatcan occur basedonthe landscape isif there isananomalyinthe ground.If a measurementof twoEMcurveson a graph basedondifferentequipmentplacementslooksthe same, mostlikelythere issome sortof subterraneanbody. MT Profilingisverysensitivetothistype of noise more so then controlled-source methods(Pellerin,Hohmann1990). Luckily,thisdilemmacanbe fixed, by takingdata inwhichthe apparentresistivity(ohm-m) isonthe y-axis,time (s)isonthe x-axis,and invertinga1D model.Thisinversioncorrectsthe typical noiseassociated withchangesinthe testingsite whetheritisan unequal distributionof soil oranomalies. Since the MT methoddatatakesdata overa large range of frequenciesoverasettime,the x, and y axis’snowaccountsfortwo conditions.Time,andfrequency forthe x-axis,andthe frequency phase angle,andapparentresistivityonthe y-axis(Figure 5) (Pellerin,Hohmann1990).The frequency correspondstothe electrical,andmagneticfieldbeingapplied. The electrical/magneticfield inbothcasesmathematicallyare governed by: Ey(w) =Zyx(w)Hx(w) +Zyy(w)Hy(w) (3) Ex(w) = Zxx(w)Hx(w) + Zxy(w)Hy(w) (4) Where: The equationconsidersanisotropy.The rightside equations3,4 correspondtothe electrodes placedina square orientation,andE is the electrical field. Thiselectrical fieldiswhatallowsthe receiver tomeasure the resistivityvalues.Ittakesinto considerationformula1,and 2 that CSEM considersonlywithafrequencyrange of anywhere from0.01 Hz to 30,000 Hz. The electrical fieldoverasquare orientationthusallowsamultitude of skindepthsto occur withoutaffectingthe depthpenetrationbecause MTusesthe frequencyrange overtime which will yieldanice profile thatshowsasmoothcurve comparedto the angular andridgedCSEMprofile. The smoothridge attributedtothe anisotropicpropertiesof MT.
  • 7. 7 Conclusion: Offshore oil explorationbasedonelectromagneticwavesreliesontwokeymethods: Controlled- source Electromagnetic(CSEM),andMagnetolluricprofiling(MT).Eachmethodhasitsunique use,and one methodcan complementthe other.If detail,orientation, andexactlocationare the goals, Magnetolluricprofilingisthe methodpreferreddue toitsbroadrange of frequency’swhichovertime create a smoothprojectionof a petroleumreservoir.If range of the area coveredisthe goal,CSEM wouldbe a more appropriate method. Figures: Figure 1(CSEM):(Chave,2009)
  • 8. 8 Figure 2(CSEM):(Kurang,Nabighian,Li 2005) Figure 3 (CSEM):(Kurang,Nabighian,Li 2005). Figure 4 (MT): (Matsushima,Honkura2002)
  • 9. 9 Figure 5 (MT): (Pellerin, Hohmann1990)
  • 10. 10 References: 1) Chave,AlanD."Onthe ElectromagneticFieldsProducedbyMarine FrequencyDomainControlled Sources."GEOPHYSICALJOURNALINTERNATIONAL179.3 (2009): 1429-457. AcademicSearch Alumni Edition.Web. 9 Apr. 2013. 2) Constable,S. andWeiss,C. (2006). ”Mappingthinresistorsandhydrocarbonswithmarine EM methods:Insightsfrom1Dmodeling.” GEOPHYSICS,71(2),G43–G51. 3) Gamble,T., Goubau,W., and Clarke,J. (1979). ”Magnetotelluricswitharemote magnetic reference.”GEOPHYSICS,44(1),53–68. 4) Mehta,Kurang,Misac Nabighian,andYaoguoLi.(2005) "ControlledSource Electromagnetic(CSEM) Technique forDetectionandDelineationof HydrocarbonReservoirs:AnEvaluation." UBC-GIF.Center forGravity,Electrical &Magnetic Studies - ColoradoSchool of Mines,n.d.Web.9 Apr. 2013. 5) Michael Hoversten,G., Newman,G.,Geier,N.,andFlanagan,G. (2006). ”3D modelingof a deepwaterEMexplorationsurvey.”GEOPHYSICS,71(5),G239–G248. Web.9 April 2013 6) Pellerin,L. andHohmann,G. (1990). ”Transientelectromagneticinversion:A remedyfor magnetotelluricstaticshifts.”GEOPHYSICS,55(9),1242–1250. 7) Torres-Verdín,C. andBostick,F.,Jr. (1992). ”Principlesof spatial surface electricfieldfilteringin magnetotellurics:Electromagneticarrayprofiling(EMAP).” GEOPHYSICS,57(4),603–622. 8) Matsushima, M., Honkura, Y., Seismoelectromagnetic Effect Associated with the İzmit Earthquake and Its AftershocksBulletin of the Seismological Society of America February 2002 92:350-360;