Tabular method
Step 1− group the minterms of the function according to the ones
count in their binary representation in an ascending order.
Gi contains the minterms with i ones in their binary presentation
Step2:
Check the mintermsin a group with only the minterms in the next
group for one bit difference
• G0 is checked with G1, G1 with G2, G2 with G3, and so on.
• The Different digit is represented with a -
• repeat
Group Minterms AB C D
G0,G1
G1, G2
0, 1, 8, 9 - 0 0 -
G1,G2
G2, G3
1, 9, 3, 11 - 0 - 1
G2, G3
G3,G4
3,7, 11,15 - - 1 1
0 1 3 7 8 9 11 15
x x x x
x x x x
x x x x
Step3: identify essential prime implicants
And minimal covers
Minterms of function
𝑓 (𝐴,𝐵,𝐶,𝐷)=∑(0,1,3,7,8,9,11,15)
B’D
B’C’
CD
B’C’ is EPI for m0 , m8
CD is EPI for m7 , m15
F=B’C’+CD
Group Minterms AB C D
G2,G3
G3, G4
5,7,13, 15 - 1 - 1
Group Minterms A B C D
G1,G2 2, 6 0 - 1 0
2, 10 - 0 1 0
G2,G3 5, 7 0 1 - 1
5, 13 - 1 0 1
6, 7 0 1 1 -
G3, G4 7, 15 - 1 1 1
13,15 1 1 - 1
11.
2 5 67 10 13 15
x x x x
Minterms of function
BD
BD is EPI for m5 , m7, m13, m15
𝑓 (𝐴,𝐵,𝐶,𝐷)=∑(2,5,6,7,10,13,15)
Group Minterms A B C D
G2,G3
G3, G4
5,7,13, 15 - 1 - 1
12.
2 5 67 10 13 15
x x
x x
x x
x x
x x
x x
x x
Step3: identify essential prime implicants
And all minimal covers
Minterms of function
A’BD
A’CD’
ABD
B’CD’ is EPI for m10
𝑓 (𝐴,𝐵,𝐶,𝐷)=∑(2,5,6,7,10,13,15)
Group Minterms A B C D
G1,G2 2, 6 0 - 1 0
2, 10 - 0 1 0
G2,G3 5, 7 0 1 - 1
5, 13 - 1 0 1
6, 7 0 1 1 -
G3, G4 7, 15 - 1 1 1
13,15 1 1 - 1
B’CD’
A’BC
BCD
BC’D
13.
2 5 67 10 13 15
x x
x x
x x
x x
x x
x x
x x
Step3: identify essential prime implicants
And all minimal covers
Minterms of function
A’BD
A’CD’
ABD
A’CD’ is PI for m6
A’BC is PI for m6
𝑓 (𝐴,𝐵,𝐶,𝐷)=∑(2,5,6,7,10,13,15)
Group Minterms A B C D
G1,G2 2, 6 0 - 1 0
2, 10 - 0 1 0
G2,G3 5, 7 0 1 - 1
5, 13 - 1 0 1
6, 7 0 1 1 -
G3, G4 7, 15 - 1 1 1
13,15 1 1 - 1
B’CD’
A’BC
BCD
BC’D
14.
Find all theminimal covers
BD is EPI for m5 , m7, m13, m15
B’CD’ is EPI for m10
A’CD’ is PI for m6
A’BC is PI for m6
F(A,B,C,D)=BD+B’CD’+A’CD’
OR
F(A,B,C,D)=BD+B’CD’+A’BC