Quine-McCluskey
(Tabular) Minimization
1
Dr.S.Joshua Kumaresan M.E, M.S, Ph.D
Associate professor/ECE
R.M.K Engineering college
Quine-McCluskey (Tabular)
Minimization
 Two step process utilizing tabular listings to:
 Identify prime implicants (implicant tables)
 Identify minimal PI set (cover tables)
 All work is done in tabular form
 Number of variables is not a limitation
 Basis for many computer implementations
 Don’t cares are easily handled
 Proper organization and term identification are key
factors for correct results
EXAMPLE 1:
3
Simplify the Boolean Expression using Quine
McClusky method (Tabular Method)
F ( A, B, C, D) 
m(0,1,3,7,8,9,11,15)
CONVERT DECIMAL NUMBERS TO
BINARY NUMBERS
4
DECIMAL
NUMBER
EQUIVALENT
BINARY
NUMBER
MINTERMS
0 0000 m0
1 0001 m1
3 0011 m3
7 0111 m7
8 1000 m8
9 1001 m9
11 1011 m11
15 1111 m15
5
STEP 1:
Arrange all Minterms according to number of 1
as shown in column 2
Minterm
No.
IN BINARY
A B C D
0 0 0 0 0
1 0 0 0 1
8 1 0 0 0
3 0 0 1 1
9 1 0 0 1
7 0 1 1 1
11 1 0 1 1
15 1 1 1 1
COLUMN : 2
6
STEP: 2
Compare each minterm in group ‘n’ with each minterm in group (n+1) and
identify the match pairs. A match pair is a pair of minterms which differ only
in one variable. For the variables differ place (-) dash, as shown in column 3
Minterm
No.
IN BINARY
A B C D
0 0 0 0 0
1 0 0 0 1
8 1 0 0 0
3 0 0 1 1
9 1 0 0 1
7 0 1 1 1
11 1 0 1 1
15 1 1 1 1
column: 3
Minterm
No.
IN BINARY
A B C D
(0,1) 0 0 0 -
(0,8) - 0 0 0
(1,3) 0 0 - 1
(1,9) - 0 0 1
(8,9) 1 0 0 -
(3,7) 0 - 1 1
(3,11) - 0 1 1
(9,11) 1 0 - 1
Column: 2
Minterm
No. IN BINARY
A B C D
0 0 0 0 0
1 0 0 0 1
8 1 0 0 0
3 0 0 1 1
9 1 0 0 1
7 0 1 1 1
11 1 0 1 1
15 1 1 1 1
Column : 3
Minterm
No.
IN BINARY
A B C D
(0,1) 0 0 0 -
(0,8) - 0 0 0
(1,3) 0 0 - 1
(1,9) - 0 0 1
(8,9) 1 0 0 -
(3,7) 0 - 1 1
(3,11) - 0 1 1
(9,11) 1 0 - 1
(7,15) - 1 1 1
(11,15) 1 - 1 1
Minter
m
No.
IN BINARY
A B C D
0,1,8,9 - 0 0 -
0,8,1,9 - 0 0 -
1,3,9,11 - 0 - 1
1,9,3,11 - 0 - 1
3,7,11,15 - - 1 1
3,11,7,15 - - 1 1
7
Column : 2
Column : 4
STEP 3:
Now compare all the pairs of column 3 with those in the
minterms adjacent groups as shown in column 4
STEP: 4
Repeat the procedure for grouping. If can group the Quads of minterms in
the adjacent groups of column 4 to obtain groups of eight minterms.
There are no such matching.
Now prepare Prime Implicant Table as shown
Essential Prime Implicants areand CD
Required Output  CD
PI Minterms group
& Boolean
representation
GIVEN MINTERMS
0 1 3 7 8 9 11 15
√ (0,1,8,9) X X X X
(1,3,9,11) X X X X
√ (3,7,11,15) C D
X X X X
Prime Implicant Table
√ √ √ √ √ √ √ √
Example 2 Simplify
ƒ(A,B,C,D) = Σ m(4,5,6,8,9, 10,13) + Σ d(0,7,15)
In Binary
0000
0100
0101
0110
0111
1000
1001
1010
1101
1111
Minterms
0
4
5
6
7
8
9
10
13
15
Column I
Column II
Binary
A B C D
0 0 0 0 
0 1 0 0 
1 0 0 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
0 1 1 1 
1 1 0 1 
1 1 1 1 
Column III
Binary
A B C D
0 – 0 0 *
- 0 0 0 *
0 1 0 - 
0 1 - 0 
1 0 0 - *
1 0 - 0 *
0 1 - 1 
- 1 0 1 
0 1 1 - 
1 – 0 1 *
- 1 1 1 
1 1 - 1 
Column IV
Binary
A B C D
0 1 - - *
0 1 - - *
- 1 - 1 *
- 1 - 1 *
Min
term
0
4
8
5
6
9
10
7
13
15
Min
term
0,4
0,8
4,5
4,6
8,9
8,10
5,7
5,13
6,7
9,13
7,15
13,15
Min term
4,5,6,7
4,6,5,7
5,7,13,15
5,13,7,15
PI Minterms group
and Boolean
expressions
0,4
0,8
8,9 A
8,10 A
9,13 A D
4,5,6,7 B
5,7,13,15BD
4
X
X
5
X
X
6
X
8
X
X
X
9
X
X
10
X
13
X
X
Prime Implicant Table
√
B
A
D
C
A
D
B
A
F 


√ √ √ √ √
√
√
√
√
√
Example 3 simplify
f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15) Column1
Column 2
Group
Name
Min
terms
W X Y Z
GA1
2 0 0 1 0
8 1 0 0 0
GA2
6 0 1 1 0
9 1 0 0 1
10 1 0 1 0
GA3
11 1 0 1 1
14 1 1 1 0
GA4 15 1 1 1 1
12
Min
terms
W X Y Z
2 0 0 1 0
6 0 1 1 0
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
14 1 1 1 0
15 1 1 1 1
Column 3
Group
Name
Min
terms
W X Y Z
GB1
2,6 0 - 1 0
2,10 - 0 1 0
8,9 1 0 0 -
8,10 1 0 - 0
GB2
6,14 - 1 1 0
9,11 1 0 - 1
10,11 1 0 1 -
10,14 1 - 1 0
GB3
11,15 1 - 1 1
14,15 1 1 1 - 13
Column 4
Group Name Min terms W X Y Z
GB1
2,6,10,14 - - 1 0
2,10,6,14 - - 1 0
8,9,10,11 1 0 - -
8,10,9,11 1 0 - -
GB2
10,11,14,15 1 - 1 -
10,14,11,15 1 - 1 -
14
Prime Implicant Table
Min terms /
Prime
Implicants
2 6 8 9 10 11 14 15
2,6,10,14
YZ’
X X X X
8,9,10,11
WX’
X X X X
10,11,14,15
WY
X X X X
√ √ √ √ √ √ √
√
f = YZ’ + WX’ + WY.

session 5 -quinemcclusky-Tabulation method.pptx

  • 1.
    Quine-McCluskey (Tabular) Minimization 1 Dr.S.Joshua KumaresanM.E, M.S, Ph.D Associate professor/ECE R.M.K Engineering college
  • 2.
    Quine-McCluskey (Tabular) Minimization  Twostep process utilizing tabular listings to:  Identify prime implicants (implicant tables)  Identify minimal PI set (cover tables)  All work is done in tabular form  Number of variables is not a limitation  Basis for many computer implementations  Don’t cares are easily handled  Proper organization and term identification are key factors for correct results
  • 3.
    EXAMPLE 1: 3 Simplify theBoolean Expression using Quine McClusky method (Tabular Method) F ( A, B, C, D)  m(0,1,3,7,8,9,11,15)
  • 4.
    CONVERT DECIMAL NUMBERSTO BINARY NUMBERS 4 DECIMAL NUMBER EQUIVALENT BINARY NUMBER MINTERMS 0 0000 m0 1 0001 m1 3 0011 m3 7 0111 m7 8 1000 m8 9 1001 m9 11 1011 m11 15 1111 m15
  • 5.
    5 STEP 1: Arrange allMinterms according to number of 1 as shown in column 2 Minterm No. IN BINARY A B C D 0 0 0 0 0 1 0 0 0 1 8 1 0 0 0 3 0 0 1 1 9 1 0 0 1 7 0 1 1 1 11 1 0 1 1 15 1 1 1 1 COLUMN : 2
  • 6.
    6 STEP: 2 Compare eachminterm in group ‘n’ with each minterm in group (n+1) and identify the match pairs. A match pair is a pair of minterms which differ only in one variable. For the variables differ place (-) dash, as shown in column 3 Minterm No. IN BINARY A B C D 0 0 0 0 0 1 0 0 0 1 8 1 0 0 0 3 0 0 1 1 9 1 0 0 1 7 0 1 1 1 11 1 0 1 1 15 1 1 1 1 column: 3 Minterm No. IN BINARY A B C D (0,1) 0 0 0 - (0,8) - 0 0 0 (1,3) 0 0 - 1 (1,9) - 0 0 1 (8,9) 1 0 0 - (3,7) 0 - 1 1 (3,11) - 0 1 1 (9,11) 1 0 - 1 Column: 2
  • 7.
    Minterm No. IN BINARY AB C D 0 0 0 0 0 1 0 0 0 1 8 1 0 0 0 3 0 0 1 1 9 1 0 0 1 7 0 1 1 1 11 1 0 1 1 15 1 1 1 1 Column : 3 Minterm No. IN BINARY A B C D (0,1) 0 0 0 - (0,8) - 0 0 0 (1,3) 0 0 - 1 (1,9) - 0 0 1 (8,9) 1 0 0 - (3,7) 0 - 1 1 (3,11) - 0 1 1 (9,11) 1 0 - 1 (7,15) - 1 1 1 (11,15) 1 - 1 1 Minter m No. IN BINARY A B C D 0,1,8,9 - 0 0 - 0,8,1,9 - 0 0 - 1,3,9,11 - 0 - 1 1,9,3,11 - 0 - 1 3,7,11,15 - - 1 1 3,11,7,15 - - 1 1 7 Column : 2 Column : 4 STEP 3: Now compare all the pairs of column 3 with those in the minterms adjacent groups as shown in column 4
  • 8.
    STEP: 4 Repeat theprocedure for grouping. If can group the Quads of minterms in the adjacent groups of column 4 to obtain groups of eight minterms. There are no such matching. Now prepare Prime Implicant Table as shown Essential Prime Implicants areand CD Required Output  CD PI Minterms group & Boolean representation GIVEN MINTERMS 0 1 3 7 8 9 11 15 √ (0,1,8,9) X X X X (1,3,9,11) X X X X √ (3,7,11,15) C D X X X X Prime Implicant Table √ √ √ √ √ √ √ √
  • 9.
    Example 2 Simplify ƒ(A,B,C,D)= Σ m(4,5,6,8,9, 10,13) + Σ d(0,7,15) In Binary 0000 0100 0101 0110 0111 1000 1001 1010 1101 1111 Minterms 0 4 5 6 7 8 9 10 13 15 Column I
  • 10.
    Column II Binary A BC D 0 0 0 0  0 1 0 0  1 0 0 0  0 1 0 1  0 1 1 0  1 0 0 1  1 0 1 0  0 1 1 1  1 1 0 1  1 1 1 1  Column III Binary A B C D 0 – 0 0 * - 0 0 0 * 0 1 0 -  0 1 - 0  1 0 0 - * 1 0 - 0 * 0 1 - 1  - 1 0 1  0 1 1 -  1 – 0 1 * - 1 1 1  1 1 - 1  Column IV Binary A B C D 0 1 - - * 0 1 - - * - 1 - 1 * - 1 - 1 * Min term 0 4 8 5 6 9 10 7 13 15 Min term 0,4 0,8 4,5 4,6 8,9 8,10 5,7 5,13 6,7 9,13 7,15 13,15 Min term 4,5,6,7 4,6,5,7 5,7,13,15 5,13,7,15
  • 11.
    PI Minterms group andBoolean expressions 0,4 0,8 8,9 A 8,10 A 9,13 A D 4,5,6,7 B 5,7,13,15BD 4 X X 5 X X 6 X 8 X X X 9 X X 10 X 13 X X Prime Implicant Table √ B A D C A D B A F    √ √ √ √ √ √ √ √ √ √
  • 12.
    Example 3 simplify f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15)Column1 Column 2 Group Name Min terms W X Y Z GA1 2 0 0 1 0 8 1 0 0 0 GA2 6 0 1 1 0 9 1 0 0 1 10 1 0 1 0 GA3 11 1 0 1 1 14 1 1 1 0 GA4 15 1 1 1 1 12 Min terms W X Y Z 2 0 0 1 0 6 0 1 1 0 8 1 0 0 0 9 1 0 0 1 10 1 0 1 0 11 1 0 1 1 14 1 1 1 0 15 1 1 1 1
  • 13.
    Column 3 Group Name Min terms W XY Z GB1 2,6 0 - 1 0 2,10 - 0 1 0 8,9 1 0 0 - 8,10 1 0 - 0 GB2 6,14 - 1 1 0 9,11 1 0 - 1 10,11 1 0 1 - 10,14 1 - 1 0 GB3 11,15 1 - 1 1 14,15 1 1 1 - 13
  • 14.
    Column 4 Group NameMin terms W X Y Z GB1 2,6,10,14 - - 1 0 2,10,6,14 - - 1 0 8,9,10,11 1 0 - - 8,10,9,11 1 0 - - GB2 10,11,14,15 1 - 1 - 10,14,11,15 1 - 1 - 14
  • 15.
    Prime Implicant Table Minterms / Prime Implicants 2 6 8 9 10 11 14 15 2,6,10,14 YZ’ X X X X 8,9,10,11 WX’ X X X X 10,11,14,15 WY X X X X √ √ √ √ √ √ √ √ f = YZ’ + WX’ + WY.