SlideShare a Scribd company logo
1 of 18
Download to read offline
Problem 2.10 2.10 A block of250-mm length and 50x40 mm cross section is to support a centric
compressive load P. The material to be used is a bronze for which E =95 GPa.
Determine the largest load which can be applied, knowing that the normal stress must
not exceed 80 MPa and that the decrease in length of the block should be at most
0.12% of its original length.
A -:: (SD) ( ~o) : zooo ""-",,, l..::- Z ><10-3 m ~
~= %0 MP~ r 80 '1-10' ?~) E ~ crSx/O"1 'P~
CO~5iJ€"";Vj JPo...raJole sfv-ess
6" = * P -= AD:: (~/o.3)( ~Ox IO~) -= 160 )(103 N
CO"'SI-~~"'iV~ ol2i>wQ...lJf2 Je.f'oJ'"~Jio"
~ ~ ~~ 'p = .£iAct) o::-(95x/o"f)(~)iIO-~)(O.OOI:t) ~
?.2S~ {O'3. Iv
5 M ~lJ eI/' 1/0..])IJe of 'P jO ver", S
po: IbOY-lo3N ::: 160.0 ktJ .."",
I~A
f'
18in.
il
~ =
r< eerV i ~C J
Problem 2.14
28ldps
1.5in.
2.25 in.
"C
PL
EA
(;': 1:
A
28 kips
2.14 The aluminum rod ABC (E = 10.1 x 106psi), which consists of two cylindrical
portions AB and BC, is to be replaced with a cylindrical steel rod DE (E = 29 x 106
psi) of the same overall length. Determine the minimum required diameter d of the
steel rod ifits vertical deformation is not to exceed the deformation of the aluminum
rod under the same load and if the allowable stress in the steel rod is not to exceed
24 ksi.
D
DetoV', G.J.'cW Dt Q.)v ;I1';- f'<.)J
d
'P L"a + 'P Lac. = -E (LAe + LBe )
AA8 E "'~c..E E AM? Ace.
~8)( IO~
( 12. +- J'&
)z -= 0 03/3U. j...
/0./ x 10'- "10.5)2. ~(:z.15")Z. ~
~A ':
~
E
.
Ste~j) roC:» 5 =: 0.03/37' 1'1
A- PL - (;'?8~/O"!.)(30) .1-
- E S - (J.9>tIO6)(O.O3/37t:.)
= O.'i~317.h
A - P 2.8 )( 10:3 - . 1-
- e> ': A'i )C Ido - I./ &67 . M
.
Gtv-e
~ ;~ +-k 2G.lI'j eo(' 'Ie.. i J e
cl = -IlfA ~ J (4)(t..6b67)
IT If
A = J. I (.(; 7 ;..,~
t.~/~ ;..,. ....
-
I.
Problem 2.19
3in.
Co) ~ ~ £,.e + ~8' ':
(61 ~8 ": - S&
2.19 Two solid cylindrical rods are joined at B and loaded as shown. Rod AB is
made of steel (E = 29 x 106psi), and rod BC of brass (E = 15 x 106psi). Determine
(a) the total deformation of the composite rod ABC, (b) the deflection of point B.
PoV'hol' A'B: ~e= I.fo)</0'3.llr.,~ L..s= 'fa "~') 01 -= 2. in'J
A",s -= ~J" ::' ~(2.)1. ~ 3.1'"1/6 ,.,..2.) EAa::'" ;<q"'JO' f'S"
~ - 'PAC3L"13
- (LIO~lo?J(4()) - -~ .
AB- EMA.-.t- (2"h<IO")('3,J'f/G:) - 1.S6/Q )1./0 I'}.
Pc>...h.""'Be.: PBG ~ - :(Ovr/O3 lhJ LaG -= 30 iY1.) d-= 3Ir'1..J
A 1LJ t. Tf
( )
...
7
. 2.
f - IS 10' .
I!.<.:: <t ::' 7i ~ ~ . Ob 'if6 / r. > 4c.- 'Ii f ~I
S = PBc.Lec. = (-~O)lID»(30) -= -s:c;S88>1/c/' in.
& . EI!,C
ABc. (15 )(/0' )(l.o'lI(' ) .
-c -(
17..5"1 ><LO - S. bS138)t 10 ~ ~ JI, '10" L01 ;V',~...
~ -1
018= 5.(,""'10 i",.1'-'
Problem 2.21
B
50 kips
f
8ft
U
""""I I
I-- 13ft-I- 13ft 1~~
F"1I
a
-:?
A ~FAO
T ~S k..p~
I -
2.21 For the steel truss (E = 29 x 106 psi) and loading shown, determine the
deformations ofmembersAB and AD, knowing that their cross-sectional areas are 4.0
in2and 2.8 in2,respectively.
5+1L~..c. s .. Reo...//t,oV
s c..l A~.J c. ~ k:p,,- t
Me""be '8D is c.. 7eoro fO-h< -e beof'.
LAB:= ';I'~/ + g'Z :;;:- 15. ';«;'1-'3 ft ". 1'g3_/72 in.
LAo -=- 13 ft :- ISb in.
~o L,.o
SAD":0 f A"D
Spa ~
~MLl!a - (-47.701)(/O~)(lg3..'7~)-
E AAt - (1.Cf~ lo~)( It.b) -
-.0.0753 ;1). ~I I
=- (40.b2S-><ld' )(15(:.)
(A.") ~ 10 c..) (-<'~g )
= 0.0780 j~. --
Use joi"t A o..s f'r-€ hoJ'I
+t L Fj = 0: 2.5 of IS" (,'f 3 F;. =: 0 13=-47. 70/ k;p"
.:t 2" Fy ::- 0 :
13
o =- 'fo. b2 S- k,',s
D - IS. ?s FA!!.::: 0
Problem 2.26
D~l
cJm
2.26 The length of the 2-mm-diameter steel wire CD has been adjusted so that with
no load applied, a gap of 1.5 mm exists between the end B of the rigid beam ACB and
a contact point E. Knowing that E = 200 GPa, detennine where a 20-kg block should
be placed on the beam in order to cause contact between B and E.
J
Ri~iJ Y'od ACE t"O+<vh~.5 H."'°4 h c..~~R<Z. e ~ C.P~'SIi! '4"'-1"
e -= 1.5></0.3 = 3.75 >l/o-$ '/'tA.J
o.'-to
POi",t C. ",",0v<2'5, JDv./'ro..'NQ."J.
~c. =- 0.08 e = (0.0'8)(3.75)( /0-3') ~ goo)< 10(. """
$<:'0= ~c = 300 x 10-<: WI
A 7f t~ 7/
(:
~ '2.. -, ~
GO::- 4 Of "" tj: :(') ~ 3./ '-IIb"""" -=-3.' '-II" ><
{o WI.
E " ,
q
P.
Fe.o Lc.o
= A 00)1 0 0.. ~C.D:' E: Ac.o
Fc.D -=- E t ~GD ::- (;?OO)( fO" '(g. 1"116 ></0-<'»( 300 v{O-c) -= 753. Cf'11 N
0. 'lS
O<;ebec.."""ACB "-s c.. f~e. bOdy. w= M~ ~ (~O)('i.8f)=- 19G_~ N
~ot ~1v ~-
r ~ +J2MA = 0 ~ O.Og 1=;.0 -(O.4D-X.)W -:. 0
A I (00<6)(753.Q2)
1 _D."Io-(- 0.40 - k.::- . I"tb. ?... =- 0- 307Ll-3 ...,
X>= O_oq~,.", = 92.b -....
Problem 2.29 2.29 Determine the deflection of the apex A of a homogeneousparaboloid of
revolutionof heighth, densityp, andmodulusofelasticityE, dueto itsownweight.
11 b2p~+t,
~
1TbPd h ~
2E h .iTb~ t 'j rAt ::
A
Fo r +~e
,
1/<'
ej~...,e~t r =- b(i)
VV'1.. =- 7Tb2 f
= 1Tb2,P~f
lfb£ ~ S
'f
t-.P <ojJ.j =-
-
S
h~ =
- 0 E ACJ)
A-=
dP ~ P3A d)'
!? = s;oJ
p ::
C - "'" P At
c:> - L:.. E A
eJeme..-t
~
r-I:,i
k-b-"
Le-t b ':" v-J.'v'S at -+ ~e be..se CL"'~
V'::: V'e..A,'vs dsevt-""'" -.vd-I.,
?;.ooV'J,'n~+e ::!.
~h:L
LfE
~
Problem 2.35 2.35 An axial centric force of magnitude P = 450 kN is applied to the composite
block shown by means of a rigid end plate. Knowing that h = 10 mm, determine the
normal stress in (a) the brass core, (b) the alwninwn plates.
Brass core
(E = 105 CPa)
300 mm
Let Pb.: fov-tio", of ~"o.i +Olf"c.4t c.o.",-'N.eJ k'j
bV'A.55 ~o~
Pa.. -= patH"", c.CtV"V';e.J /0..,+""0 Ju,..,.,'>,o,)"""
'f.1 ,t e.s.
~ = 'P.L P - £hA.~
E~A.. c. - L
~ = p~ L 'R -:: E...A. ~
ED-A- c::... L
P = H~ + 'PQ. -:: (EbA", ~ ~A~ ) ~
~- ~- p
c.- L- EIoAe-+FdA4
Ab :: (GO)(LlO) = :?<too WI""'" =- 2lfoOxlO-r.. iN~
AQ.. = (~)(bD)(IO):: 1:Z00 11-11001..
-;:: /~oo)c",o-"W't.
E. =
4-50 )( 103
()OSx{oq)(?LIooxlO.G.) + (70 )(10" )(,~OO)( to-' )
-3
>= I. 33Cf3 ~to
6"0 ~ FeE. ~ (toS>tIO"l)(1.33"}3x/O..3)::: 140.b)(/O"P~=' 140.6 HPQ."
(~)
(h) 6<'.. ~ ECt.,£ -:: (70)llOIt)(/.3'6'13'1c,d1) :: q3- 7.5>'/0' PGt :;::~3.7rMP~ 4
Problem 2.39
Dimensions in mm
A
R:-I
e, c.
3
bO ktJ
0 E
.-~(~
'to ktJ
2.39 Two cylindrical rods, one of steel and the other of brass, are joined at C and
restrained by rigid supports at A and E. For the loading shown and knowing tha~Es
= 200 GPa and Eh = 105 GPa, determine (a) the reactions at A and E, (b) the
deflection of point C.
A to c.: E = 200)(/0" 'PQ"
A = ~(1fo)1= 1.~Sc;,"'t><'lo::'MI'>11..=
1.'l5"~)tlci'lN.1.
EA=. 2..5' - 31.7;.<lot; N
C fo E: E':: Ios >I'0 q 'P~
JI /. 't t. . -~ ~
A =- ~ .'30) =- 706.8f, ,"'1 =- 70b.86 x /0 ~
EA; 7Lf.1~o)l/o' I'J
A +0>
B: P -= 1<" L,: 180 ""' , -= D.180 "'""-
<:: ~ -PL.. - r?" (0.180) - . -It n
0>1:,("3 E:A - Z5"I.~27)lLO6 - 716~~o}<IO K,.
8 +0 ~ ~ P = Rio - G,Ox LO~L. =- l;CO ""'WI= O./:l D Pt
S - Pl - (R,..-60xIO!)(6./2o)- _It -,
Bc- EiA - ~51.'!.~"")<lOc. - 4'47.47'1tIO RA-:?6.'g"'8~{O
C to> D: p::: RA - r;;{»l.IO~ L: 'DD,."", :0 0./00 "'"
- PL - (R,..-6Dx/U'?)(o.Ioo) - -" -4:
2;ec.
- t=: A - 7 <.f.2Z0" IO~ == I.'347~s)t Ic . R,. - 8D.'8'II )I/O
D to E: p::: R" - 100,,10"3-
~ =.Eb. -= (f!,.-loo)(/dXo_,oo) = 1 '="/7rl-r
' -'10 - '~Ll
7'Z- I
-(
~Oif £A 7't. 'l~O)( to' .;;) ;J~)( 0 1"." ;;I...JS)( 0
A fo E: 5AE
= ~A6 ~ See. -+~c.o + ~E- =- 3.~58!57 >l/0-1 R" - 24a..lf_~""'><JO-'
L~ 100 ~ 0./00 "'"
Since poi1l+ E c.c.1I1IC>+
Move re2J.ive +6 A) ~AG =: 0
(tt,)
-"I D ..(;
3.~S837><lo " 2'-l1.!i~'f~{o = 0 b2.9 k ~ <C-~
R,. ~ ,62. cg3/)tlo3 N.
(")
R
> 3"3 '3
"E::: ,.-/00>'/0 ~ f.'l.8>LlD -IOO)l.{O =.-37.Z><[O ~ '37_;:lku~ 4
(b ~c = ~AB + SBC. =- Llb3G7vlo-<t 1?~ - ~G.g43)(/O-C.
= (/./b'3~~)( 10-'1)(62. 83/x 103) - /..b.8lf"8)(
10-'
U -I;;
:- .6.3)(10 W 46.3ph->
- ~
i
8in.
t
lOin.
L-A-iB
oil
2.46 The rigid bar AD is supported by two steel wires of 1~-in. diameter (E = 29 x
106psi) and a pin and bracket at D. Knowing that the wires were initially taught,
detennme (a) the additional tension in each wire when a 220-lb load P is applied at
D, (b) the corresponding deflection of point D.
Problem 2.46
c p
le..t e be +h-e V'O+~t;G)v of ba", A~C Q
~ '~i--'S~, ~
- D
l12 in.-l12 in.-l12 in.j The.,., as == I~ e
~c. = 2.'+e
~ = Pe.E"
Lsp
g AE
'P~~ E A ~ge- -= (?"C;>t'o') ¥C~ y..(I~ 8 )
L6E 10
c. D
A~
e B' c' C'
Ati
-Pse PCF
lJ
?
!
- tOb.77)(IO$ e
b
~ = ~~ LCF
Co EA
Pc~ ::0 ~ ~cJa = (.<q)(IO(.
)~(.l-)"'(.Zl/ a)
LC:f: 18
-= "~L ~3 x Io~ e
lJs.in~~~~ boJy AB c.o
D 2"MA::0 12 ~E t- 1.If p~ - 3'? = 0
Oiy"/O6.77><[O?'e) + (:N)(118.63)clO" e) -(3{.)(;no) :: 0
4, 1:Z~'5)(IO' e = (3')(~1o)
e = I~ '118-G" .,c /0-3 I/'"J
(0.) P6E = (ID6.77)(/O'3 )(r.'l,sS'X(O-3) -::'
?CF = (1'%.63)( lo~)(I.q'8S-)«(O-3 ) -=
~D 4-. 8 lb,
2~7. 6 11,.
eIIi8
...
(b GD ~ u e ~ (3')( 1..9125"")( 10-3) ~
-::
G C;. I x Io-~ jV
0_06<=1' ;V1.. ...ell!
I
Problem 2.48 2.48 The assembly shown consists of an alwninum shell (Ea= 70 GPa, tra= 23.6 x
lO-Oj°C)fully bonded to a steel core (Es = 200 GPa, as = 11.7 x lO-Oj°C)and is
unstressed at a temperature of 20°C. Considering only axial defonnations,
detennine the stress in the aluminum shell when the temperature reaches 180°C.
Steel
core
A 'if
( )
~ ~ -4 t.
.s -= "if ~o = 31!+.159 Ion"" ": !'/~.ISCf~IO ~
AQ..:::- ~ (SOt. - ~o~) :::- /. t:;4cr34 )( /oj WlYI-
1.
oJ -:1"'-
':" /.b~.q~,)(/O """'
Let 1'5 be +h~ ~l'J -h,II'CQ c&t./'r"l'eJ by +~
I:.Glol'rie) ~r' +he alulM"ndW shell..
Totc..i QJ)Llc..i to""C'..~ p:::- P",- + 1-'5 -= 0
.:st-et'J c.o""" 0.",,) 'P~ -rho.t
~ = - 'Pc.. (1 )
Pefol"" "",Jic>o.t ..
~ =-
'PeL L
£..Ae;. + Ld.~(f1T)
- PsL
- ~ A.s -- Ld..s(AT)
: Po. p~ -
~~ - £:.5
A~ .
(CX.s
- dcJ(~ TI
Us;V
~ (n ( L. + -L- ) 'D
G.,A", Es A 1<:<"== (ol,s - cJ.o,.
) ( b. r)
!.S "
(' I
('0)( Iott)(1.6 QC,3..,)(IO-~ ) + (loo )(loq )~31~; 15""4)<
10<:) ') 'Po.
= (11.7)(./0-1:.- ::l3.(.,></o-t::)(J80
-~())
( ~'1-57:] )( 10-') Pa.. ~ - J.q0 if 'A.
/ 0 - b
'P11.':" - 77.47 I )t /03 N
Sfre'5s ;V .rJIJ""':Y(,)M. shell ()~= JL": -17.Y71.)( 103
A.. '.6..,.q3"4~/o-~ -:--Lf7.0 ~/o' Ptt
- 47.0
/vIp",-
.
Problem2.57
0.02in.
1r-14in.~18 in.--j
Bronze
A=2.4in.2
E = 15 x 106~Si
a = 12 X 10- jOF
Aluminum
A = 2.8 in.2
E = 10.6 X 106~Si
a = 12.9 X 10- ;OF
p -
-.t
p
I--
Bvt ~f ~ 'P Lb + 'P L..' -=-
£" A,. E:Q.A"
. 1'4
- ( +
- (lS)( /0(" )(~. '-t)
(~)E, I)Jl'~O
2.57 Determine (a) the compressive force in the bars shown after a temperature rise
of 180°F, (b) the corresponding change in length of the bronze bar.
The" ,.4R ~P""O"""':D'" ;-f +r-e.e 0-1 c.o ~t ",-~",,-t
S-r ~ LJ,d.b(AT) + L ~(~r)
=- (J"+)(/~)(IO-(.)(1~O) 4- (1'8)(,~.<=1)(lO-(.)(I~(»)
= 72.036 ')(to-'!. In.
CoWsfrA-ined &'X.f'lIA'SI'o..... ~ -= o. O~ ilfl
S.~o.,-4e in'j J,J~ ~ indvc.eJ GD_pre.S~;v~ ~e l'
~ -3 _3
eJp -:: 7'"2.0'36'11l0 - O.o;t ::. 52. O'&; >lio 10'"..
(~+~)?
r:"A.. £c..A....
12
)
(IO.6')(IO~)(~.8) ? =-
'9'15.3' X to-'" 'P
Cf"tS_g~)<.lo-1 'P '":' 52. Og'"I< (O-3 P -=..52. ?. 7<=t
")a
103 Jb
5:2.3 k:f-s ~
(b) ~b:- Lbdb (A
T) - "PL..
f1,A!>
~ ('-l)(I~JC'o-C)(180) - (S"~_~~)(lO3)(14)
OSx IO~)(~-tf)
1
':" Gf.Cf,)<'(o-J..",,- ~
Problem 2.68
y
2.68 A fabric used in air-inflated structures is subjected to a biaxial loading that
results in normal stresses Ux= 120 MPa and q, = 160 MPa. Knowing that the
properties of the fabric can be approximated as E =87 GPaand v= 0.34, determine
the change in length of (a) side AB, (b) side BC, (c) diagonal AC.
6>< = 110 x/a'" Pa. ) ~ = 0 ') 6;t -:: II:0 )/ l D~ "P(t
Ex::- tC6)( - £J S - V~z )
=87~IO"r [I'~D)('O' - (O.3~)("o)iIO")J
= 75'1.0'; )(/O-c
£z:: t(-")JC-,t - -V~ + 6;):: 87~/Oq-[ -(o.3't)(I~O)(IO") + IbO)lJO"J
-3
~ "370 I )/ 10
~~-::(AB)E)( -= (1DD#II"')(75'i.O~)(/6() ~
~e,c, ~ (13G) £2 =- (. 75M ) (1,'37", >t.IO-~ ) -::
(a.-)
(6)
(c:~:
c
de::: a. Jl1.
c
13utj
O.O7SLJ M"" ..
O.loZS -4
"""'"
let-he..? _S~-l'.s df V'~3~t h-t'G(.V
j Ie ABC. c...S cs b.; ~",J c.
~ t  "L
c:. -= 0.. -t b
0 btc..;", J,'fte.r~",-t,'e.P s b"J CA J<:,JJV'5.
2c de = ?a.dQ.'" 2h Jb
+ .!2.db
c.
0. -= 100 vY'otv>
..; b= IDOVr""..> c: ~ /IO()'t..+.75'.-) = '~'J1M
clCl. ~ ~A~: O.O7S'l ~IVI db ~ <a& :: o. .370 v...~
~ :: ole. =- ~ (0. o7S'1f) + 2€,. - (0. IOl8) = 0 f'Z~o.
At:. t25 IlS . .
I'YII')') ~
Problem
2.78
f1>1
2.78 A vibration isolation unit consists of two blocks of hard rubber with a modulus
of rigidity G = 2.75 ksi bonded to a plate AB and to rigid supports as shown.
Denoting by P the magnitude of the force applied to the plate and by Ii the
corresponding deflection. determine the effective spring constant, k = Pili, of the
system.
E.J:+evfilfe Sr,l',"V1j cc>"sfc..Vt
k=f~ :<~A
D w.h~,: G::- ~.IS K ,o~ fS"
P--~ ((. )( tf) :- ~ L( It'!~
h ':" I.~S in.
k =- (2'{::l.71))t to"!.Y1~) ~
I. 'ZS IoS., )l.lO~ib /;" ...
sheCt-;'-- + 'f'I. r- S
-11
s he"' 'I .s-h-e.ss :- GY =- &
I r1
Fof'c J.p - AT-
GAS
-
- h
'P =
J..G-A
.,
Aij"..; "'>'>.1IeI/c...xve 01 t;:. I ..-
ANt -= Jt:: ( )( )
2. .3 "-
go IS :' '~oo..."",= 1.2o~/o M
Problem 2.94 2.94 Two holes have been drilled through a long steel bar that is subjected to a
centric axial load as shown. For P = 32 kN, detennine the maximum value of the
stress (a) at A, (b) at B.
15mm
(et.) A+ hole A V' = i (:to) -= 10 ~""
d =- D - :<r- ::- 100 -:(O -::=80 INII")
Y' ,D
d ': go
:.- O.12~
Fifo , F'-1' 2. b '10..) K =- :<.G.5
(b)
-6. ~ k P =- (2.G.S)(3l.)(IO~) =- 7D 7 )( lOt:. £)
AM~ I. ~o )0( (0. ~ - r4..
At h;)9~ 'B r:- * (50 ) -= 25" ",,) c1 =- /00- SO : So ,
A.net ~ (SD X'S) =- 750 M'" 2- =- 7~D)( /0-(; M a.
70.7 MPa.. ~
V' -
& - '2.5'"- D.S"D
- -
!i~ k' =- :<_/~
6 ~ KP -=- ('l,'~)(3l)l.lo3)
- A...t 15"0>(
'0-£
'::'" Ql. ~ )( lOr. 'P4 q~. Z MP4.. 4
PROPRIETARY MATERIAL. «:>
2006 The McGraw-Hili Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced
or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and
educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
Problem 2.105
A
,-- 9 mm diameter
1.25 m
1
FN
B
Q ~.
/
~
~AG e/
~ Q
~
2.105 Rod AB is made of a mild steel that is assumed to be elastoplastic with E =
200 GPa and ay= 345 MPa. After the rod has been attached to the rigid lever CD,
it is found that end C is 6 mm too high. A vertical force Q is then applied at C until
this point has moved to position C ~ Determine the required magnitude of Q and the
deflection 0) if the lever is to snap back to a horizontal position after Q is removed.
AA6 #. ~(qt,.:- ~$.,n "",:a.
': G3.,,"'hdu.C. "",,'"
S III')C.Q '('0 c1 A8 ,'s -to be sfve-t c:.J.,J 'f'eN'WQ.V&1+
J1.:f
)
(~A6 )M"1(. '::" AA6 E:y :. ( 103.' I? 'If:
lU-c )(~t.fS )(t OC)
= ~ I. cr4S >1103N
-+, L Hp ": 0: I.' Q. - 0.7 1=".6 :: 0
Q,..""", =- ~./7 (~/. t:N9 x/03)::" 13.9' 7)( lD~ N
~. ~7 kN ....
, -/(t=~1-4& - (~1.1'l:~xlo:!>
)(,.1.5) - -3
~~a -;- EA.e - (1.00')/lD'X(;3..bl7~/D-lt.)
- 2. IS~?.S)(IO M
I S I
e ~ ~ '::" s. 080'-1->liO-?:' r J
~I -= Lie' ~ 3. gq)t /0.3 tilt :3. ~Cf ""WI ....
Problem 2.109
P'
2.109 Two tempered-steel bars, each l~-in. thick, are bonded to a t -in. mild-steel
bar. This composite bar is subjected as shown to a centric axial load of magnitude
P. Both steels~ elastoplastic with E = 29 X 106psi and with yield strengths equal
to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. The load P is
gradually increased from zero until the deformation of the bar reaches a maximum
value 15m
=0.04 in. and then decreasedbackto zero. Determine(0)the maximum
value of P, (b) the maximum stress in the tempered-steel bars, (c) the permanent set
after the load is removed.
Fo~ t~.e .,.,.,,'iJ s+eel A, ~ (t)(~) ~ 1.00 ,0 '.
C = L ()YI ::: (Ill- )(SD)(/o'~) :: 0 o:tU Ig g
.
C>'fl E :21 )('0 to . -, .....
='o~ t~e +-eWpe~ed.steel Az ~ ~(;l )(~) '=
$'1'1. ': LCI'L :::- ('tt )('OO)t'IO'3) =: O.Olt87.76 in.
E 1.'1 )1103
O.7S "-t~
T0+c:..l c:t1f'~C(. ~ A=AI+A?.':. 1.76'illl2.
T"'~ .1vl'.P..J~
:s+ee) yl~/J5. T-eWfe~ s+e~) 's eJ,..sfl'c.
A, f5YI = (/. ()o)(SO~IO?) '=. S'o )CID3 lh----.
£A2S"" = ("J.q)/ID~)(O.7S)(O-()lf) -:: G;l-14 Y/O3 lb.
L JLf
P = PI + ~ = 1/:l.l'1)l}o3.ib ': 1/2. J k.ps
('b) S1-v-esse.s 0; = R ': 6'", ": -S(»I }O3 pSI' ~ ~D ks;
At
6'"2. = R ':: {;2~ I~ )//0' -= g~.86J1/0b f',' == ~~.8~ kosI'
A~ O.1~
~'( < ~w.. < S 'f2.
(a) . FO~c.e5. 'PI ';:
'P2 :.
~
...
UnPoa.l:nj
£' ': PL '= (I~.4)tIO~)(14) -
EA (:Z'1><IO'"
)(1.7S-) -
O.o30cr'i ,~.
(C) Pei'Mo.re",t s,,-,t ~p ': ~tIo- ~I -= O.OL/ - 0.. 030Cf,/
=-0..00'106 i~. ~
Problem 2.120 2.120 Bar AB has a cross-sectional area of 1200 mm2 and is made of a steel that is
assumed to be elastoplastic with E = 200 GPa and Uy= 250 MPa. Knowing that the
force F increases from 0 to 520 kN and then decreases to zero, determine (a) the
permanent deflection of point C, (b) the residual stress in the bar.
~ I
~440mm~
A 2. -'- ~
':. IZoO,.,.., = I'ZC>D~/O ..,
FcJII'~~ 'r,:> yt.JJ P°.r--+-lOv Ac: 'PAc. = A0." = ("00 1C,0')05"0 X/Oc)
PA<. (") = 300 ><IO3N
rCQ
4- ~ F ~ f-:oV'e1'" ~J;h '() F + 'Pee. - PAc:.. =- 0
Pea = PA~ - F = 300 ><IO~- S~o ~/O-S
= -:(z.o ;)( 10$ N
Dca ::
~e.LdS
EA
Pea
~=
- (Z1.0 )('IO!.) (0. L/</;o - D..'Zo) ~ 0... ,z.' 3333 K'to 3 WJ
- (:zOO )lID .. )(I~OO )('"10-6)
~"c) )(/03 -= -183.3.33 X 'O~ 'P~
I~oo )C"(O-4;o
~c. = -
UnPoa.Ji,,~
,
~I = ~ L~c.
c. EA
I
= - PcB
LCB
EA
R I
(LAc. + Lk.
) :: FLea
M:. EA EA F:A
JS20 ')(lO'3 )( 0'. «+40 -O.I~o)
o. 4~b
= (F - PA:') L<:.e.
EA
3
= 378./S~ >llo N
3 3 3 11
= 37g./~>«O -S20.,clO ":' ""'11../1..'8'8></0 N
37g. '8~..tC
log
f ~oo xia-'
= 3/S. IS=<. )( 10 C 'Pa..
(tt )
(6'
6' = Pet = _ILfI.g/~)({O""S. -= -118 /g;?><JC/. ~
ICe- A I<t)O X'lO~ . ~
~' = (37g. f8~)(O.12o) - O../'8qO~f/ )(10-3 ~
t. (';lClb )((D")( t '20C) x 10' ) ""
-3 -.3 -3
~ = ~ - ~'-= 0 ~~3333 xtO - 0.' '!t:}oq, )cIO ~ O. /DLfZ)([0 ~
c:p Qc. de. .
-= O. I oLf'1. ~~ ~
6~.)~ -:: 6'y - 6;.~:: 2St:>x/O" - 3/5../5;2, ~/O' ~ -6S.~ )([0'- f4
~ -bS-.~ MP~ ..
::-6S:~>dc)(. 'P4
:= - bS".'~ HP~ ~
6fG.>f"U
~ OC(3- aed ~ - "33.~33)c'10c;+ "8. IS2xlO'
R I - F L..:a -
Ac. - -
L,.c. Le.
PCB':: p- F
, p
6c. = =-
A
Problem2.130
LfI7.0'1 I<
LcJ ~
~
2.130 Knowing that E =29 X 106psi, detennine (a) the value of 0 for which the
deflectionofpointB isdownandto theleftalonga lineforminganangleof36° with
the horizontal,(b) the correspondingmagnitudeof the deflectionof B.
~8C. =
?sc.. -::
~AB ':
-=
a ~os 3GD
EA6c-Ssc. - (::i.~)(lOG)(O.8)~ G.oS
36-
L&.. - '-Is
LfJ7. Dq~)([D3 ~
? -=:fF AM.. ~"t.. ~ (Z9' )<10' )[1- z) $ 51""36°
AI:. l,,<... 'l.S
'?
=: 31 ~. ~D xtD £
.L ~':! S,g-~ox{c:J ~ = ';-bll e:: r3 0° ~
r'l"'" '-//7, oqxlo3 ~. 10 .
'Po;:lS)(LO~ ':'~(417-0C;)(IO3 ~)2. +(gl~.~O)rLD-3~)'" = CfI'8.?::Sxld'£
'25)( Ic)'3 .
S :: ,. '= 0",027:1.. ""-
. q {'l>.
'6&)('
10.3
a SI'" 3'-
.....

More Related Content

Similar to chapter2mechanicsof deformablebodies.pdf

Cálculos cilindro
Cálculos cilindroCálculos cilindro
Cálculos cilindro
PabloBuzarra
 
Molecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry PracticalMolecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry Practical
Om Prakash
 
Blackall 66-22kV Substation Package for Ergon Energy
Blackall 66-22kV Substation Package for Ergon EnergyBlackall 66-22kV Substation Package for Ergon Energy
Blackall 66-22kV Substation Package for Ergon Energy
Gary Hayes
 
Final term 2012-2013 D1
Final term 2012-2013 D1Final term 2012-2013 D1
Final term 2012-2013 D1
Ehab AL-Timimi
 
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdfTMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
ssuser625c41
 

Similar to chapter2mechanicsof deformablebodies.pdf (20)

Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions ManualApplied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
 
Comint part e
Comint part eComint part e
Comint part e
 
Cálculos cilindro
Cálculos cilindroCálculos cilindro
Cálculos cilindro
 
H&amp;HM R19 - UNIT-2-1.pdf
H&amp;HM R19 - UNIT-2-1.pdfH&amp;HM R19 - UNIT-2-1.pdf
H&amp;HM R19 - UNIT-2-1.pdf
 
Hidrogenación de iso octano
Hidrogenación de iso octano Hidrogenación de iso octano
Hidrogenación de iso octano
 
Adobe Scan Jun 14, 2022.pdf
Adobe Scan Jun 14, 2022.pdfAdobe Scan Jun 14, 2022.pdf
Adobe Scan Jun 14, 2022.pdf
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES
 
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
DESIGN OF MACHINE ELEMENTS DESIGN PROCEDURE
 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES
 
Anil PoemsColor
Anil PoemsColorAnil PoemsColor
Anil PoemsColor
 
4th Semester (June; July-2014) Mechanical Engineering Question Paper
4th Semester (June; July-2014) Mechanical Engineering Question Paper4th Semester (June; July-2014) Mechanical Engineering Question Paper
4th Semester (June; July-2014) Mechanical Engineering Question Paper
 
Molecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry PracticalMolecules Of Life Bsc 2nd Semester Chemistry Practical
Molecules Of Life Bsc 2nd Semester Chemistry Practical
 
CNC BA Trans
CNC BA TransCNC BA Trans
CNC BA Trans
 
Blackall 66-22kV Substation Package for Ergon Energy
Blackall 66-22kV Substation Package for Ergon EnergyBlackall 66-22kV Substation Package for Ergon Energy
Blackall 66-22kV Substation Package for Ergon Energy
 
Engineering numerical analysis_textbook_ahmedawad
Engineering  numerical analysis_textbook_ahmedawadEngineering  numerical analysis_textbook_ahmedawad
Engineering numerical analysis_textbook_ahmedawad
 
Final term 2012-2013 D1
Final term 2012-2013 D1Final term 2012-2013 D1
Final term 2012-2013 D1
 
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdfTMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
 
International Recipe Book
International Recipe Book International Recipe Book
International Recipe Book
 
6th Semester Mechanical Engineering (2013-December) Question Papers
6th Semester Mechanical Engineering (2013-December) Question Papers6th Semester Mechanical Engineering (2013-December) Question Papers
6th Semester Mechanical Engineering (2013-December) Question Papers
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Fundamentals of Internet of Things (IoT) Part-2
Fundamentals of Internet of Things (IoT) Part-2Fundamentals of Internet of Things (IoT) Part-2
Fundamentals of Internet of Things (IoT) Part-2
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 

chapter2mechanicsof deformablebodies.pdf

  • 1. Problem 2.10 2.10 A block of250-mm length and 50x40 mm cross section is to support a centric compressive load P. The material to be used is a bronze for which E =95 GPa. Determine the largest load which can be applied, knowing that the normal stress must not exceed 80 MPa and that the decrease in length of the block should be at most 0.12% of its original length. A -:: (SD) ( ~o) : zooo ""-",,, l..::- Z ><10-3 m ~ ~= %0 MP~ r 80 '1-10' ?~) E ~ crSx/O"1 'P~ CO~5iJ€"";Vj JPo...raJole sfv-ess 6" = * P -= AD:: (~/o.3)( ~Ox IO~) -= 160 )(103 N CO"'SI-~~"'iV~ ol2i>wQ...lJf2 Je.f'oJ'"~Jio" ~ ~ ~~ 'p = .£iAct) o::-(95x/o"f)(~)iIO-~)(O.OOI:t) ~ ?.2S~ {O'3. Iv 5 M ~lJ eI/' 1/0..])IJe of 'P jO ver", S po: IbOY-lo3N ::: 160.0 ktJ .."",
  • 2. I~A f' 18in. il ~ = r< eerV i ~C J Problem 2.14 28ldps 1.5in. 2.25 in. "C PL EA (;': 1: A 28 kips 2.14 The aluminum rod ABC (E = 10.1 x 106psi), which consists of two cylindrical portions AB and BC, is to be replaced with a cylindrical steel rod DE (E = 29 x 106 psi) of the same overall length. Determine the minimum required diameter d of the steel rod ifits vertical deformation is not to exceed the deformation of the aluminum rod under the same load and if the allowable stress in the steel rod is not to exceed 24 ksi. D DetoV', G.J.'cW Dt Q.)v ;I1';- f'<.)J d 'P L"a + 'P Lac. = -E (LAe + LBe ) AA8 E "'~c..E E AM? Ace. ~8)( IO~ ( 12. +- J'& )z -= 0 03/3U. j... /0./ x 10'- "10.5)2. ~(:z.15")Z. ~ ~A ': ~ E . Ste~j) roC:» 5 =: 0.03/37' 1'1 A- PL - (;'?8~/O"!.)(30) .1- - E S - (J.9>tIO6)(O.O3/37t:.) = O.'i~317.h A - P 2.8 )( 10:3 - . 1- - e> ': A'i )C Ido - I./ &67 . M . Gtv-e ~ ;~ +-k 2G.lI'j eo(' 'Ie.. i J e cl = -IlfA ~ J (4)(t..6b67) IT If A = J. I (.(; 7 ;..,~ t.~/~ ;..,. .... -
  • 3. I. Problem 2.19 3in. Co) ~ ~ £,.e + ~8' ': (61 ~8 ": - S& 2.19 Two solid cylindrical rods are joined at B and loaded as shown. Rod AB is made of steel (E = 29 x 106psi), and rod BC of brass (E = 15 x 106psi). Determine (a) the total deformation of the composite rod ABC, (b) the deflection of point B. PoV'hol' A'B: ~e= I.fo)</0'3.llr.,~ L..s= 'fa "~') 01 -= 2. in'J A",s -= ~J" ::' ~(2.)1. ~ 3.1'"1/6 ,.,..2.) EAa::'" ;<q"'JO' f'S" ~ - 'PAC3L"13 - (LIO~lo?J(4()) - -~ . AB- EMA.-.t- (2"h<IO")('3,J'f/G:) - 1.S6/Q )1./0 I'}. Pc>...h.""'Be.: PBG ~ - :(Ovr/O3 lhJ LaG -= 30 iY1.) d-= 3Ir'1..J A 1LJ t. Tf ( ) ... 7 . 2. f - IS 10' . I!.<.:: <t ::' 7i ~ ~ . Ob 'if6 / r. > 4c.- 'Ii f ~I S = PBc.Lec. = (-~O)lID»(30) -= -s:c;S88>1/c/' in. & . EI!,C ABc. (15 )(/0' )(l.o'lI(' ) . -c -( 17..5"1 ><LO - S. bS138)t 10 ~ ~ JI, '10" L01 ;V',~... ~ -1 018= 5.(,""'10 i",.1'-'
  • 4. Problem 2.21 B 50 kips f 8ft U """"I I I-- 13ft-I- 13ft 1~~ F"1I a -:? A ~FAO T ~S k..p~ I - 2.21 For the steel truss (E = 29 x 106 psi) and loading shown, determine the deformations ofmembersAB and AD, knowing that their cross-sectional areas are 4.0 in2and 2.8 in2,respectively. 5+1L~..c. s .. Reo...//t,oV s c..l A~.J c. ~ k:p,,- t Me""be '8D is c.. 7eoro fO-h< -e beof'. LAB:= ';I'~/ + g'Z :;;:- 15. ';«;'1-'3 ft ". 1'g3_/72 in. LAo -=- 13 ft :- ISb in. ~o L,.o SAD":0 f A"D Spa ~ ~MLl!a - (-47.701)(/O~)(lg3..'7~)- E AAt - (1.Cf~ lo~)( It.b) - -.0.0753 ;1). ~I I =- (40.b2S-><ld' )(15(:.) (A.") ~ 10 c..) (-<'~g ) = 0.0780 j~. -- Use joi"t A o..s f'r-€ hoJ'I +t L Fj = 0: 2.5 of IS" (,'f 3 F;. =: 0 13=-47. 70/ k;p" .:t 2" Fy ::- 0 : 13 o =- 'fo. b2 S- k,',s D - IS. ?s FA!!.::: 0
  • 5. Problem 2.26 D~l cJm 2.26 The length of the 2-mm-diameter steel wire CD has been adjusted so that with no load applied, a gap of 1.5 mm exists between the end B of the rigid beam ACB and a contact point E. Knowing that E = 200 GPa, detennine where a 20-kg block should be placed on the beam in order to cause contact between B and E. J Ri~iJ Y'od ACE t"O+<vh~.5 H."'°4 h c..~~R<Z. e ~ C.P~'SIi! '4"'-1" e -= 1.5></0.3 = 3.75 >l/o-$ '/'tA.J o.'-to POi",t C. ",",0v<2'5, JDv./'ro..'NQ."J. ~c. =- 0.08 e = (0.0'8)(3.75)( /0-3') ~ goo)< 10(. """ $<:'0= ~c = 300 x 10-<: WI A 7f t~ 7/ (: ~ '2.. -, ~ GO::- 4 Of "" tj: :(') ~ 3./ '-IIb"""" -=-3.' '-II" >< {o WI. E " , q P. Fe.o Lc.o = A 00)1 0 0.. ~C.D:' E: Ac.o Fc.D -=- E t ~GD ::- (;?OO)( fO" '(g. 1"116 ></0-<'»( 300 v{O-c) -= 753. Cf'11 N 0. 'lS O<;ebec.."""ACB "-s c.. f~e. bOdy. w= M~ ~ (~O)('i.8f)=- 19G_~ N ~ot ~1v ~- r ~ +J2MA = 0 ~ O.Og 1=;.0 -(O.4D-X.)W -:. 0 A I (00<6)(753.Q2) 1 _D."Io-(- 0.40 - k.::- . I"tb. ?... =- 0- 307Ll-3 ..., X>= O_oq~,.", = 92.b -....
  • 6. Problem 2.29 2.29 Determine the deflection of the apex A of a homogeneousparaboloid of revolutionof heighth, densityp, andmodulusofelasticityE, dueto itsownweight. 11 b2p~+t, ~ 1TbPd h ~ 2E h .iTb~ t 'j rAt :: A Fo r +~e , 1/<' ej~...,e~t r =- b(i) VV'1.. =- 7Tb2 f = 1Tb2,P~f lfb£ ~ S 'f t-.P <ojJ.j =- - S h~ = - 0 E ACJ) A-= dP ~ P3A d)' !? = s;oJ p :: C - "'" P At c:> - L:.. E A eJeme..-t ~ r-I:,i k-b-" Le-t b ':" v-J.'v'S at -+ ~e be..se CL"'~ V'::: V'e..A,'vs dsevt-""'" -.vd-I., ?;.ooV'J,'n~+e ::!. ~h:L LfE ~
  • 7. Problem 2.35 2.35 An axial centric force of magnitude P = 450 kN is applied to the composite block shown by means of a rigid end plate. Knowing that h = 10 mm, determine the normal stress in (a) the brass core, (b) the alwninwn plates. Brass core (E = 105 CPa) 300 mm Let Pb.: fov-tio", of ~"o.i +Olf"c.4t c.o.",-'N.eJ k'j bV'A.55 ~o~ Pa.. -= patH"", c.CtV"V';e.J /0..,+""0 Ju,..,.,'>,o,)""" 'f.1 ,t e.s. ~ = 'P.L P - £hA.~ E~A.. c. - L ~ = p~ L 'R -:: E...A. ~ ED-A- c::... L P = H~ + 'PQ. -:: (EbA", ~ ~A~ ) ~ ~- ~- p c.- L- EIoAe-+FdA4 Ab :: (GO)(LlO) = :?<too WI""'" =- 2lfoOxlO-r.. iN~ AQ.. = (~)(bD)(IO):: 1:Z00 11-11001.. -;:: /~oo)c",o-"W't. E. = 4-50 )( 103 ()OSx{oq)(?LIooxlO.G.) + (70 )(10" )(,~OO)( to-' ) -3 >= I. 33Cf3 ~to 6"0 ~ FeE. ~ (toS>tIO"l)(1.33"}3x/O..3)::: 140.b)(/O"P~=' 140.6 HPQ." (~) (h) 6<'.. ~ ECt.,£ -:: (70)llOIt)(/.3'6'13'1c,d1) :: q3- 7.5>'/0' PGt :;::~3.7rMP~ 4
  • 8. Problem 2.39 Dimensions in mm A R:-I e, c. 3 bO ktJ 0 E .-~(~ 'to ktJ 2.39 Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing tha~Es = 200 GPa and Eh = 105 GPa, determine (a) the reactions at A and E, (b) the deflection of point C. A to c.: E = 200)(/0" 'PQ" A = ~(1fo)1= 1.~Sc;,"'t><'lo::'MI'>11..= 1.'l5"~)tlci'lN.1. EA=. 2..5' - 31.7;.<lot; N C fo E: E':: Ios >I'0 q 'P~ JI /. 't t. . -~ ~ A =- ~ .'30) =- 706.8f, ,"'1 =- 70b.86 x /0 ~ EA; 7Lf.1~o)l/o' I'J A +0> B: P -= 1<" L,: 180 ""' , -= D.180 "'""- <:: ~ -PL.. - r?" (0.180) - . -It n 0>1:,("3 E:A - Z5"I.~27)lLO6 - 716~~o}<IO K,. 8 +0 ~ ~ P = Rio - G,Ox LO~L. =- l;CO ""'WI= O./:l D Pt S - Pl - (R,..-60xIO!)(6./2o)- _It -, Bc- EiA - ~51.'!.~"")<lOc. - 4'47.47'1tIO RA-:?6.'g"'8~{O C to> D: p::: RA - r;;{»l.IO~ L: 'DD,."", :0 0./00 "'" - PL - (R,..-6Dx/U'?)(o.Ioo) - -" -4: 2;ec. - t=: A - 7 <.f.2Z0" IO~ == I.'347~s)t Ic . R,. - 8D.'8'II )I/O D to E: p::: R" - 100,,10"3- ~ =.Eb. -= (f!,.-loo)(/dXo_,oo) = 1 '="/7rl-r ' -'10 - '~Ll 7'Z- I -( ~Oif £A 7't. 'l~O)( to' .;;) ;J~)( 0 1"." ;;I...JS)( 0 A fo E: 5AE = ~A6 ~ See. -+~c.o + ~E- =- 3.~58!57 >l/0-1 R" - 24a..lf_~""'><JO-' L~ 100 ~ 0./00 "'" Since poi1l+ E c.c.1I1IC>+ Move re2J.ive +6 A) ~AG =: 0 (tt,) -"I D ..(; 3.~S837><lo " 2'-l1.!i~'f~{o = 0 b2.9 k ~ <C-~ R,. ~ ,62. cg3/)tlo3 N. (") R > 3"3 '3 "E::: ,.-/00>'/0 ~ f.'l.8>LlD -IOO)l.{O =.-37.Z><[O ~ '37_;:lku~ 4 (b ~c = ~AB + SBC. =- Llb3G7vlo-<t 1?~ - ~G.g43)(/O-C. = (/./b'3~~)( 10-'1)(62. 83/x 103) - /..b.8lf"8)( 10-' U -I;; :- .6.3)(10 W 46.3ph-> - ~
  • 9. i 8in. t lOin. L-A-iB oil 2.46 The rigid bar AD is supported by two steel wires of 1~-in. diameter (E = 29 x 106psi) and a pin and bracket at D. Knowing that the wires were initially taught, detennme (a) the additional tension in each wire when a 220-lb load P is applied at D, (b) the corresponding deflection of point D. Problem 2.46 c p le..t e be +h-e V'O+~t;G)v of ba", A~C Q ~ '~i--'S~, ~ - D l12 in.-l12 in.-l12 in.j The.,., as == I~ e ~c. = 2.'+e ~ = Pe.E" Lsp g AE 'P~~ E A ~ge- -= (?"C;>t'o') ¥C~ y..(I~ 8 ) L6E 10 c. D A~ e B' c' C' Ati -Pse PCF lJ ? ! - tOb.77)(IO$ e b ~ = ~~ LCF Co EA Pc~ ::0 ~ ~cJa = (.<q)(IO(. )~(.l-)"'(.Zl/ a) LC:f: 18 -= "~L ~3 x Io~ e lJs.in~~~~ boJy AB c.o D 2"MA::0 12 ~E t- 1.If p~ - 3'? = 0 Oiy"/O6.77><[O?'e) + (:N)(118.63)clO" e) -(3{.)(;no) :: 0 4, 1:Z~'5)(IO' e = (3')(~1o) e = I~ '118-G" .,c /0-3 I/'"J (0.) P6E = (ID6.77)(/O'3 )(r.'l,sS'X(O-3) -::' ?CF = (1'%.63)( lo~)(I.q'8S-)«(O-3 ) -= ~D 4-. 8 lb, 2~7. 6 11,. eIIi8 ... (b GD ~ u e ~ (3')( 1..9125"")( 10-3) ~ -:: G C;. I x Io-~ jV 0_06<=1' ;V1.. ...ell!
  • 10. I Problem 2.48 2.48 The assembly shown consists of an alwninum shell (Ea= 70 GPa, tra= 23.6 x lO-Oj°C)fully bonded to a steel core (Es = 200 GPa, as = 11.7 x lO-Oj°C)and is unstressed at a temperature of 20°C. Considering only axial defonnations, detennine the stress in the aluminum shell when the temperature reaches 180°C. Steel core A 'if ( ) ~ ~ -4 t. .s -= "if ~o = 31!+.159 Ion"" ": !'/~.ISCf~IO ~ AQ..:::- ~ (SOt. - ~o~) :::- /. t:;4cr34 )( /oj WlYI- 1. oJ -:1"'- ':" /.b~.q~,)(/O """' Let 1'5 be +h~ ~l'J -h,II'CQ c&t./'r"l'eJ by +~ I:.Glol'rie) ~r' +he alulM"ndW shell.. Totc..i QJ)Llc..i to""C'..~ p:::- P",- + 1-'5 -= 0 .:st-et'J c.o""" 0.",,) 'P~ -rho.t ~ = - 'Pc.. (1 ) Pefol"" "",Jic>o.t .. ~ =- 'PeL L £..Ae;. + Ld.~(f1T) - PsL - ~ A.s -- Ld..s(AT) : Po. p~ - ~~ - £:.5 A~ . (CX.s - dcJ(~ TI Us;V ~ (n ( L. + -L- ) 'D G.,A", Es A 1<:<"== (ol,s - cJ.o,. ) ( b. r) !.S " (' I ('0)( Iott)(1.6 QC,3..,)(IO-~ ) + (loo )(loq )~31~; 15""4)< 10<:) ') 'Po. = (11.7)(./0-1:.- ::l3.(.,></o-t::)(J80 -~()) ( ~'1-57:] )( 10-') Pa.. ~ - J.q0 if 'A. / 0 - b 'P11.':" - 77.47 I )t /03 N Sfre'5s ;V .rJIJ""':Y(,)M. shell ()~= JL": -17.Y71.)( 103 A.. '.6..,.q3"4~/o-~ -:--Lf7.0 ~/o' Ptt - 47.0 /vIp",- .
  • 11. Problem2.57 0.02in. 1r-14in.~18 in.--j Bronze A=2.4in.2 E = 15 x 106~Si a = 12 X 10- jOF Aluminum A = 2.8 in.2 E = 10.6 X 106~Si a = 12.9 X 10- ;OF p - -.t p I-- Bvt ~f ~ 'P Lb + 'P L..' -=- £" A,. E:Q.A" . 1'4 - ( + - (lS)( /0(" )(~. '-t) (~)E, I)Jl'~O 2.57 Determine (a) the compressive force in the bars shown after a temperature rise of 180°F, (b) the corresponding change in length of the bronze bar. The" ,.4R ~P""O"""':D'" ;-f +r-e.e 0-1 c.o ~t ",-~",,-t S-r ~ LJ,d.b(AT) + L ~(~r) =- (J"+)(/~)(IO-(.)(1~O) 4- (1'8)(,~.<=1)(lO-(.)(I~(») = 72.036 ')(to-'!. In. CoWsfrA-ined &'X.f'lIA'SI'o..... ~ -= o. O~ ilfl S.~o.,-4e in'j J,J~ ~ indvc.eJ GD_pre.S~;v~ ~e l' ~ -3 _3 eJp -:: 7'"2.0'36'11l0 - O.o;t ::. 52. O'&; >lio 10'".. (~+~)? r:"A.. £c..A.... 12 ) (IO.6')(IO~)(~.8) ? =- '9'15.3' X to-'" 'P Cf"tS_g~)<.lo-1 'P '":' 52. Og'"I< (O-3 P -=..52. ?. 7<=t ")a 103 Jb 5:2.3 k:f-s ~ (b) ~b:- Lbdb (A T) - "PL.. f1,A!> ~ ('-l)(I~JC'o-C)(180) - (S"~_~~)(lO3)(14) OSx IO~)(~-tf) 1 ':" Gf.Cf,)<'(o-J..",,- ~
  • 12. Problem 2.68 y 2.68 A fabric used in air-inflated structures is subjected to a biaxial loading that results in normal stresses Ux= 120 MPa and q, = 160 MPa. Knowing that the properties of the fabric can be approximated as E =87 GPaand v= 0.34, determine the change in length of (a) side AB, (b) side BC, (c) diagonal AC. 6>< = 110 x/a'" Pa. ) ~ = 0 ') 6;t -:: II:0 )/ l D~ "P(t Ex::- tC6)( - £J S - V~z ) =87~IO"r [I'~D)('O' - (O.3~)("o)iIO")J = 75'1.0'; )(/O-c £z:: t(-")JC-,t - -V~ + 6;):: 87~/Oq-[ -(o.3't)(I~O)(IO") + IbO)lJO"J -3 ~ "370 I )/ 10 ~~-::(AB)E)( -= (1DD#II"')(75'i.O~)(/6() ~ ~e,c, ~ (13G) £2 =- (. 75M ) (1,'37", >t.IO-~ ) -:: (a.-) (6) (c:~: c de::: a. Jl1. c 13utj O.O7SLJ M"" .. O.loZS -4 """'" let-he..? _S~-l'.s df V'~3~t h-t'G(.V j Ie ABC. c...S cs b.; ~",J c. ~ t "L c:. -= 0.. -t b 0 btc..;", J,'fte.r~",-t,'e.P s b"J CA J<:,JJV'5. 2c de = ?a.dQ.'" 2h Jb + .!2.db c. 0. -= 100 vY'otv> ..; b= IDOVr""..> c: ~ /IO()'t..+.75'.-) = '~'J1M clCl. ~ ~A~: O.O7S'l ~IVI db ~ <a& :: o. .370 v...~ ~ :: ole. =- ~ (0. o7S'1f) + 2€,. - (0. IOl8) = 0 f'Z~o. At:. t25 IlS . . I'YII')') ~
  • 13. Problem 2.78 f1>1 2.78 A vibration isolation unit consists of two blocks of hard rubber with a modulus of rigidity G = 2.75 ksi bonded to a plate AB and to rigid supports as shown. Denoting by P the magnitude of the force applied to the plate and by Ii the corresponding deflection. determine the effective spring constant, k = Pili, of the system. E.J:+evfilfe Sr,l',"V1j cc>"sfc..Vt k=f~ :<~A D w.h~,: G::- ~.IS K ,o~ fS" P--~ ((. )( tf) :- ~ L( It'!~ h ':" I.~S in. k =- (2'{::l.71))t to"!.Y1~) ~ I. 'ZS IoS., )l.lO~ib /;" ... sheCt-;'-- + 'f'I. r- S -11 s he"' 'I .s-h-e.ss :- GY =- & I r1 Fof'c J.p - AT- GAS - - h 'P = J..G-A .,
  • 14. Aij"..; "'>'>.1IeI/c...xve 01 t;:. I ..- ANt -= Jt:: ( )( ) 2. .3 "- go IS :' '~oo..."",= 1.2o~/o M Problem 2.94 2.94 Two holes have been drilled through a long steel bar that is subjected to a centric axial load as shown. For P = 32 kN, detennine the maximum value of the stress (a) at A, (b) at B. 15mm (et.) A+ hole A V' = i (:to) -= 10 ~"" d =- D - :<r- ::- 100 -:(O -::=80 INII") Y' ,D d ': go :.- O.12~ Fifo , F'-1' 2. b '10..) K =- :<.G.5 (b) -6. ~ k P =- (2.G.S)(3l.)(IO~) =- 7D 7 )( lOt:. £) AM~ I. ~o )0( (0. ~ - r4.. At h;)9~ 'B r:- * (50 ) -= 25" ",,) c1 =- /00- SO : So , A.net ~ (SD X'S) =- 750 M'" 2- =- 7~D)( /0-(; M a. 70.7 MPa.. ~ V' - & - '2.5'"- D.S"D - - !i~ k' =- :<_/~ 6 ~ KP -=- ('l,'~)(3l)l.lo3) - A...t 15"0>( '0-£ '::'" Ql. ~ )( lOr. 'P4 q~. Z MP4.. 4 PROPRIETARY MATERIAL. «:> 2006 The McGraw-Hili Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
  • 15. Problem 2.105 A ,-- 9 mm diameter 1.25 m 1 FN B Q ~. / ~ ~AG e/ ~ Q ~ 2.105 Rod AB is made of a mild steel that is assumed to be elastoplastic with E = 200 GPa and ay= 345 MPa. After the rod has been attached to the rigid lever CD, it is found that end C is 6 mm too high. A vertical force Q is then applied at C until this point has moved to position C ~ Determine the required magnitude of Q and the deflection 0) if the lever is to snap back to a horizontal position after Q is removed. AA6 #. ~(qt,.:- ~$.,n "",:a. ': G3.,,"'hdu.C. "",,'" S III')C.Q '('0 c1 A8 ,'s -to be sfve-t c:.J.,J 'f'eN'WQ.V&1+ J1.:f ) (~A6 )M"1(. '::" AA6 E:y :. ( 103.' I? 'If: lU-c )(~t.fS )(t OC) = ~ I. cr4S >1103N -+, L Hp ": 0: I.' Q. - 0.7 1=".6 :: 0 Q,..""", =- ~./7 (~/. t:N9 x/03)::" 13.9' 7)( lD~ N ~. ~7 kN .... , -/(t=~1-4& - (~1.1'l:~xlo:!> )(,.1.5) - -3 ~~a -;- EA.e - (1.00')/lD'X(;3..bl7~/D-lt.) - 2. IS~?.S)(IO M I S I e ~ ~ '::" s. 080'-1->liO-?:' r J ~I -= Lie' ~ 3. gq)t /0.3 tilt :3. ~Cf ""WI ....
  • 16. Problem 2.109 P' 2.109 Two tempered-steel bars, each l~-in. thick, are bonded to a t -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels~ elastoplastic with E = 29 X 106psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value 15m =0.04 in. and then decreasedbackto zero. Determine(0)the maximum value of P, (b) the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed. Fo~ t~.e .,.,.,,'iJ s+eel A, ~ (t)(~) ~ 1.00 ,0 '. C = L ()YI ::: (Ill- )(SD)(/o'~) :: 0 o:tU Ig g . C>'fl E :21 )('0 to . -, ..... ='o~ t~e +-eWpe~ed.steel Az ~ ~(;l )(~) '= $'1'1. ': LCI'L :::- ('tt )('OO)t'IO'3) =: O.Olt87.76 in. E 1.'1 )1103 O.7S "-t~ T0+c:..l c:t1f'~C(. ~ A=AI+A?.':. 1.76'illl2. T"'~ .1vl'.P..J~ :s+ee) yl~/J5. T-eWfe~ s+e~) 's eJ,..sfl'c. A, f5YI = (/. ()o)(SO~IO?) '=. S'o )CID3 lh----. £A2S"" = ("J.q)/ID~)(O.7S)(O-()lf) -:: G;l-14 Y/O3 lb. L JLf P = PI + ~ = 1/:l.l'1)l}o3.ib ': 1/2. J k.ps ('b) S1-v-esse.s 0; = R ': 6'", ": -S(»I }O3 pSI' ~ ~D ks; At 6'"2. = R ':: {;2~ I~ )//0' -= g~.86J1/0b f',' == ~~.8~ kosI' A~ O.1~ ~'( < ~w.. < S 'f2. (a) . FO~c.e5. 'PI ';: 'P2 :. ~ ... UnPoa.l:nj £' ': PL '= (I~.4)tIO~)(14) - EA (:Z'1><IO'" )(1.7S-) - O.o30cr'i ,~. (C) Pei'Mo.re",t s,,-,t ~p ': ~tIo- ~I -= O.OL/ - 0.. 030Cf,/ =-0..00'106 i~. ~
  • 17. Problem 2.120 2.120 Bar AB has a cross-sectional area of 1200 mm2 and is made of a steel that is assumed to be elastoplastic with E = 200 GPa and Uy= 250 MPa. Knowing that the force F increases from 0 to 520 kN and then decreases to zero, determine (a) the permanent deflection of point C, (b) the residual stress in the bar. ~ I ~440mm~ A 2. -'- ~ ':. IZoO,.,.., = I'ZC>D~/O .., FcJII'~~ 'r,:> yt.JJ P°.r--+-lOv Ac: 'PAc. = A0." = ("00 1C,0')05"0 X/Oc) PA<. (") = 300 ><IO3N rCQ 4- ~ F ~ f-:oV'e1'" ~J;h '() F + 'Pee. - PAc:.. =- 0 Pea = PA~ - F = 300 ><IO~- S~o ~/O-S = -:(z.o ;)( 10$ N Dca :: ~e.LdS EA Pea ~= - (Z1.0 )('IO!.) (0. L/</;o - D..'Zo) ~ 0... ,z.' 3333 K'to 3 WJ - (:zOO )lID .. )(I~OO )('"10-6) ~"c) )(/03 -= -183.3.33 X 'O~ 'P~ I~oo )C"(O-4;o ~c. = - UnPoa.Ji,,~ , ~I = ~ L~c. c. EA I = - PcB LCB EA R I (LAc. + Lk. ) :: FLea M:. EA EA F:A JS20 ')(lO'3 )( 0'. «+40 -O.I~o) o. 4~b = (F - PA:') L<:.e. EA 3 = 378./S~ >llo N 3 3 3 11 = 37g./~>«O -S20.,clO ":' ""'11../1..'8'8></0 N 37g. '8~..tC log f ~oo xia-' = 3/S. IS=<. )( 10 C 'Pa.. (tt ) (6' 6' = Pet = _ILfI.g/~)({O""S. -= -118 /g;?><JC/. ~ ICe- A I<t)O X'lO~ . ~ ~' = (37g. f8~)(O.12o) - O../'8qO~f/ )(10-3 ~ t. (';lClb )((D")( t '20C) x 10' ) "" -3 -.3 -3 ~ = ~ - ~'-= 0 ~~3333 xtO - 0.' '!t:}oq, )cIO ~ O. /DLfZ)([0 ~ c:p Qc. de. . -= O. I oLf'1. ~~ ~ 6~.)~ -:: 6'y - 6;.~:: 2St:>x/O" - 3/5../5;2, ~/O' ~ -6S.~ )([0'- f4 ~ -bS-.~ MP~ .. ::-6S:~>dc)(. 'P4 := - bS".'~ HP~ ~ 6fG.>f"U ~ OC(3- aed ~ - "33.~33)c'10c;+ "8. IS2xlO' R I - F L..:a - Ac. - - L,.c. Le. PCB':: p- F , p 6c. = =- A
  • 18. Problem2.130 LfI7.0'1 I< LcJ ~ ~ 2.130 Knowing that E =29 X 106psi, detennine (a) the value of 0 for which the deflectionofpointB isdownandto theleftalonga lineforminganangleof36° with the horizontal,(b) the correspondingmagnitudeof the deflectionof B. ~8C. = ?sc.. -:: ~AB ': -= a ~os 3GD EA6c-Ssc. - (::i.~)(lOG)(O.8)~ G.oS 36- L&.. - '-Is LfJ7. Dq~)([D3 ~ ? -=:fF AM.. ~"t.. ~ (Z9' )<10' )[1- z) $ 51""36° AI:. l,,<... 'l.S '? =: 31 ~. ~D xtD £ .L ~':! S,g-~ox{c:J ~ = ';-bll e:: r3 0° ~ r'l"'" '-//7, oqxlo3 ~. 10 . 'Po;:lS)(LO~ ':'~(417-0C;)(IO3 ~)2. +(gl~.~O)rLD-3~)'" = CfI'8.?::Sxld'£ '25)( Ic)'3 . S :: ,. '= 0",027:1.. ""- . q {'l>. '6&)(' 10.3 a SI'" 3'- .....