Chapter 16
Frame Analysis
Using The Stiffness Method
Preliminary Definitions & Concepts
• Global & member coordinates.
 Similar to truss global system will be identified using x, y axes and local
or member coordinatewill be identified using x’,y’ axes.
 If we consider the axial forces and the effect of both bending & shear,
then each nodeon a frame can have threedegree of freedom, namely, a
horizontal displacement,a vertical displacement & a rotation.
 Lowest code numbers will be used to identify the unknown
displacements.
Stiffness Matrix
• Positive Sign Convention
Stiffness Matrix
• Member stiffness matrix (Shear & Bending)
Member Stiffness Matrix
• Case I
– Positive displacement dN on the near end
• Case II
– Positive displacement dF on the far end
• Case I + Case II
– Resultantforces caused by both displacements are
'N N
AE
q d
L
 'F N
AE
q d
L
 
''N F
AE
q d
L
  ''F F
AE
q d
L

N N F
AE AE
q d d
L L
 
F N F
AE AE
q d d
L L
  
Stiffness Matrix
• Member stiffness matrix
' ' ' ' ' '
3 2 3 2
2 2
3 2 3 2
2 2
0 0 0 0
12 6 12 6
0 0
6 4 6 2
0 0
'
0 0 0 0
12 6 12 6
0 0
6 2 6 4
0 0
x y z x y z
N N N F F F
EA EA
L L
EI EI EI EI
L L L L
EI EI EI EI
L L L L
k
EA EA
L L
EI EI EI EI
L L L L
EI EI EI EI
L L L L
 

 
 
 

 
 
 

 

 

 
 
 
  
 
 
 

 
 
q k d


Load-displacement Relationship
Transformation Matrices
• Displacement Transformation
'
'
'
'
'
'
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
x x
y y
z z
x x
y y
z z
N N
x y
N N
y x
N N
F x y F
y x
F F
F F
d D
d D
d D
d D
d D
d D
 
 
 
 
   
 
   
 
   

 
   
 
   
  
   
 
   
 

   
 
   
 
   
   
d TD

'
'
'
'
'
'
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
x x
y y
z z
x x
y y
z z
N N
x y
N N
y x
N N
F x y F
y x
F F
F F
Q q
Q q
Q q
Q q
Q q
Q q
 
 
 
 
   

 
   
 
   
 
   
 
   
  
   

 
   
 
   
 
   
 
   
   
T
Q T q

• Force Transformation
Transformation Matrices
Member Global Stiffness Matrix
• Stiffness matrix
– We will determine the stiffness matrix for a member which relates
the member’s global force componentsQ to its global
displacementsD.
T T
q k d and d TD q k TD
Q T q Q T k TD
 
   

  
'
T
k T k T

Q k D

Member Global Stiffness Matrix
'
T
k T k T

' ' ' ' ' '
2 2 2 2
3 3 2 3 3 2
2 2 2 2
3 3 2 3 3 2
12 12 6 12 12 6
12 12 6 12 12 6
x y z x y z
x y x y y x y x y y
x y y x x x y y x
N N N F F F
A I A I I A I A I I
L L L L L L L L L L
A I A I I A I A I I
L L L L L L L L L L
k E
         
         
       
      
       
       
       
    
       
       

2 2 2 2
2 2 2 2
3 3 2 3 3 2
2 2 2 2
3 3 2 3 3
6 6 4 6 6 2
12 12 6 12 12 6
12 12 6 12 12
x
y x y x
x y x y y x y x y y
x y y x x x y y x
I I I I I I
L L L L L L
A I A I I A I A I I
L L L L L L L L L L
A I A I I A I A I
L L L L L L L L L
   
         
        
 
       
    
       
       
     
     
     
     
2
2 2 2 2
6
6 6 2 6 6 4
x
y x y x
I
L
I I I I I I
L L L L L L

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Application for Beam Analysis
The beam can be related to the displacements using the structurestiffness
equation.
k 11 12 u
u 21 22 k
=
Q K K D
Q K K D
     
     
     
Q KD

11 12
k u k
Q K D K D
 
21 22
u u k
Q K D K D
 
• Member Forces
Where: q0 is the fixed end reactions if the beam subjected to intermediateloading.
0
0
'
'
q k d q
k TD q
 
 
Application for Beam Analysis
The beam can be related to the displacements using the structurestiffness
equation.
k 11 12 u
u 21 22 k
11 12
21 22
=
k u k
u u k
Q K K D
Q K K D
Q K D K D
Q K D
Q
K D
KD
     
     
     
 
 

Application for Beam Analysis
• Member Force
'
0
'
0
q k d q
q k T D q
 
 
'
'
'
'
'
'
3 2 3 2
2 2
3 2 3 2
2 2
0 0 0 0
12 6 12 6
0 0
6 4 6 2
0 0
0 0 0 0
12 6 12 6
0 0
6 2 6 4
0 0
x
y
z
x
y
z
N
x
N
N
F
F
F
EA EA
L L
EI EI EI EI
q
L L L L
q
EI EI EI EI
q L L L L
q EA EA
L L
q
EI EI EI EI
q
L L L L
EI EI EI EI
L L L L
 
 

 
 
   

   
   
   

   

   
  
 
   
   
    
 
 
 
 

 
 
 
 
 
 
 
 
'
'
'
'
'
'
0
0
0
0
0
0
0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1
x
x
y
y
z
z
x
x
y
y
z
z
N
N
y
N
N
y x
N
N
x y F F
y x F
F
F
F
q
D
q
D
q
D
D q
D
q
D
q
 
 
 
 
 
 
   
 
   
 

   
 
   
    
   
 
   
 
 
  
 
   
   
 
   
 
Example 1
• Determine the loading at the joints of the two-member
frame shown. Take I=500 in4, A=10 in2 and E=29(103) ksi
for both members.
Example 1
Example 1
Member stiffness matrix
Member 1
Example 1
Beam stiffness matrix
Member 2
Example 1
Q KD

k 11 12 u
u 21 22 k
=
Q K K D
Q K K D
     
     
     
Example 1
Example 1
Example 1
Internal Loading: Member 1
Example 1
Example 2
• Determine the loadings at the ends of each member of the
frame. Take I=600 in4, A=12 in2 and E=29(103) ksi for each
member.
Example 2
Member stiffness matrix
Member 1
Example 2
Member stiffness matrix
Member 1
Example 2
Member stiffness matrix
Member 2
Example 2
Member stiffness matrix
Member 2
Example 2
Q KD

k 11 12 u
u 21 22 k
=
Q K K D
Q K K D
     
     
     
Example 2
Example 2
Internal Loading: Member 1
'
1 1 1
q k T D

Example 2

Chapter-16 frame analysis using stiffness method .pdf

  • 1.
    Chapter 16 Frame Analysis UsingThe Stiffness Method
  • 2.
    Preliminary Definitions &Concepts • Global & member coordinates.  Similar to truss global system will be identified using x, y axes and local or member coordinatewill be identified using x’,y’ axes.  If we consider the axial forces and the effect of both bending & shear, then each nodeon a frame can have threedegree of freedom, namely, a horizontal displacement,a vertical displacement & a rotation.  Lowest code numbers will be used to identify the unknown displacements.
  • 3.
  • 4.
    Stiffness Matrix • Memberstiffness matrix (Shear & Bending)
  • 5.
    Member Stiffness Matrix •Case I – Positive displacement dN on the near end • Case II – Positive displacement dF on the far end • Case I + Case II – Resultantforces caused by both displacements are 'N N AE q d L  'F N AE q d L   ''N F AE q d L   ''F F AE q d L  N N F AE AE q d d L L   F N F AE AE q d d L L   
  • 6.
    Stiffness Matrix • Memberstiffness matrix ' ' ' ' ' ' 3 2 3 2 2 2 3 2 3 2 2 2 0 0 0 0 12 6 12 6 0 0 6 4 6 2 0 0 ' 0 0 0 0 12 6 12 6 0 0 6 2 6 4 0 0 x y z x y z N N N F F F EA EA L L EI EI EI EI L L L L EI EI EI EI L L L L k EA EA L L EI EI EI EI L L L L EI EI EI EI L L L L                                           
  • 7.
  • 8.
    Transformation Matrices • DisplacementTransformation ' ' ' ' ' ' 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x x y y z z x x y y z z N N x y N N y x N N F x y F y x F F F F d D d D d D d D d D d D                                                                          d TD 
  • 9.
    ' ' ' ' ' ' 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x x y y z z x x y y z z N N x y N N y x N N F x y F y x F F F F Q q Q q Q q Q q Q q Q q                                                                          T Q T q  • Force Transformation Transformation Matrices
  • 10.
    Member Global StiffnessMatrix • Stiffness matrix – We will determine the stiffness matrix for a member which relates the member’s global force componentsQ to its global displacementsD. T T q k d and d TD q k TD Q T q Q T k TD           ' T k T k T  Q k D 
  • 11.
    Member Global StiffnessMatrix ' T k T k T  ' ' ' ' ' ' 2 2 2 2 3 3 2 3 3 2 2 2 2 2 3 3 2 3 3 2 12 12 6 12 12 6 12 12 6 12 12 6 x y z x y z x y x y y x y x y y x y y x x x y y x N N N F F F A I A I I A I A I I L L L L L L L L L L A I A I I A I A I I L L L L L L L L L L k E                                                                                  2 2 2 2 2 2 2 2 3 3 2 3 3 2 2 2 2 2 3 3 2 3 3 6 6 4 6 6 2 12 12 6 12 12 6 12 12 6 12 12 x y x y x x y x y y x y x y y x y y x x x y y x I I I I I I L L L L L L A I A I I A I A I I L L L L L L L L L L A I A I I A I A I L L L L L L L L L                                                                               2 2 2 2 2 6 6 6 2 6 6 4 x y x y x I L I I I I I I L L L L L L                                                  
  • 12.
    Application for BeamAnalysis The beam can be related to the displacements using the structurestiffness equation. k 11 12 u u 21 22 k = Q K K D Q K K D                   Q KD  11 12 k u k Q K D K D   21 22 u u k Q K D K D   • Member Forces Where: q0 is the fixed end reactions if the beam subjected to intermediateloading. 0 0 ' ' q k d q k TD q    
  • 13.
    Application for BeamAnalysis The beam can be related to the displacements using the structurestiffness equation. k 11 12 u u 21 22 k 11 12 21 22 = k u k u u k Q K K D Q K K D Q K D K D Q K D Q K D KD                       
  • 14.
    Application for BeamAnalysis • Member Force ' 0 ' 0 q k d q q k T D q     ' ' ' ' ' ' 3 2 3 2 2 2 3 2 3 2 2 2 0 0 0 0 12 6 12 6 0 0 6 4 6 2 0 0 0 0 0 0 12 6 12 6 0 0 6 2 6 4 0 0 x y z x y z N x N N F F F EA EA L L EI EI EI EI q L L L L q EI EI EI EI q L L L L q EA EA L L q EI EI EI EI q L L L L EI EI EI EI L L L L                                                                                ' ' ' ' ' ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x x y y z z x x y y z z N N y N N y x N N x y F F y x F F F F q D q D q D D q D q D q                                                                           
  • 15.
    Example 1 • Determinethe loading at the joints of the two-member frame shown. Take I=500 in4, A=10 in2 and E=29(103) ksi for both members.
  • 16.
  • 17.
  • 18.
    Example 1 Beam stiffnessmatrix Member 2
  • 19.
    Example 1 Q KD  k11 12 u u 21 22 k = Q K K D Q K K D                  
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
    Example 2 • Determinethe loadings at the ends of each member of the frame. Take I=600 in4, A=12 in2 and E=29(103) ksi for each member.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
    Example 2 Q KD  k11 12 u u 21 22 k = Q K K D Q K K D                  
  • 30.
  • 31.
    Example 2 Internal Loading:Member 1 ' 1 1 1 q k T D 
  • 32.