SlideShare a Scribd company logo
1 of 6
Download to read offline
Page 1 of 6
CHAPTER FOUR
4. FUNCTIONS OF RANDOM VARIABLES
4.1. Equivalent events
4.2. Functions of discrete random variables and their distributions
4.3. Functions of continuous random variables and their distributions
Introduction
It is often the case that we know the probability distribution of the random variable X and we
are interested in determining the probability distribution of some function of X. For example,
given the distribution of X, we may be interested to determine the distribution of the mean of X.
The type of problem considered in this chapter is as follows: Given the random variable X with known
distribution and a function H, how do we find the probability distribution of a random variable
Y = H(X)? The transformation process is presented in the following diagram.
Note that Y is a real valued function of the random variable X with domain Rx and range Ry.
Thus, the function Y itself is also a random variable.
More formally, let E be an experiment, S be a sample space associated with E and X be a random
varaible defined on S. Suppose that Y = H (X)is a real valued function of X, then Y = H(X) is also
a random variable since for every s∈S, a value of Y is determined, say y = H(X(s)). As before,
we call Rx the range space of X, the set of all possible values of the function X. Similarly, we
define R the range space of Y, the set of all possible values of the function Y.
Examlple
1. Let X be a random variable that represents the radius of a circle. Consider another variable Y that
represents the area of a circle. Clearly, Y is a function of X, and their functional relationship is
presented as Y=X2.
2. In standard statistical methods, the result of statistical hypothesis testing, estimation, or even statistical
graphics does not involve a single random variable but, rather, functions of one or more random variables.
As a result, statistical inference requires the distributions of these functions. For example, the use of
averages of random variables is common. In addition, sums and more general linear combinations are
important. We are often interested in the distribution of sums of squares of random variables, particularly
in the use of analysis of variance techniques.
Y
Page 2 of 6
4.1. Equivalent events
D
De
ef
fi
in
ni
it
ti
io
on
n: Let C be an event associated with the range space of Y, RY, i.e. C . Moreover, let
 be defined as B = {x ∶ H(x)C}. Then B and C are equivalent events. Meaning, each
and every element in C is a function of a corresponding element in B.
Note
 Mathematically, if for all H(x)  C, we can find event B such that B = {x  Rx: H(x)  C}
then BC.
 When we speak of equivalent events (in the above sense), these events are associated
with different sample spaces.
1. Suppose that ( ) = . Then the events ={ >2 } ={ >4 } are equivalent.
Thus, for if Y =  X , then {X > 2}occurs if and only if {Y > 4}occurs.
Definition: Suppose X is a random variable defined on the sample space S and Rx be its range
space. Let Y=H(X) be a random variable with range space Ry. Then for any event  R , P(C) is
defined as: P(C) = P{x  R : H(x)  C}
In words :The probability of an event associated with the range space of Y is defined as the
probability of the equivalent event (in terms of X).
In other words, we can evaluate probabilities involving events associated with the function of the
random variable X if the p.d.f of X is known and if it is possible to determine the equivalent
event.Note that if B and C are equivalent events, then P (B) = P (C).
E
Ex
xa
am
mp
pl
le
e1
1:
: L
Le
et
t X
X r
re
ep
pr
re
es
se
en
nt
t t
th
he
e r
ra
ad
di
ii
i o
of
f c
ci
ir
rc
cl
le
es
s.
. S
Su
up
pp
po
os
se
e t
th
ha
at
t H
H(
(x
x)
)=
=2
2
x
x.
.
B
B1
1=
={
{x
x>
>2
2}
} i
is
s e
eq
qu
ui
iv
va
al
le
en
nt
t t
to
o C
C1
1=
={
{y
y>
>4
4
}
}
B
B2
2=
={
{x
x
5
5}
} i
is
s e
eq
qu
ui
iv
va
al
le
en
nt
t t
to
o C
C2
2=
={
{y
y
1
10
0
}
}
H
He
en
nc
ce
e,
, P
P(
(B
B1
1)
)=
=P
P(
(C
C1
1)
) a
an
nd
d P
P(
(B
B2
2)
)=
=P
P(
(C
C2
2)
)
E
Ex
xa
am
mp
pl
le
e 2
2:
: L
Le
et
t X
X b
be
e a
a c
co
on
nt
ti
in
nu
uo
ou
us
s r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e w
wi
it
th
h p.d.f
.


 

therwise
0
0
x
if
e
)
(
-x
O
x
f
S
Su
up
pp
po
os
se
e t
th
ha
at
t a
a r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e Y
Y i
is
s d
de
ef
fi
in
ne
ed
d b
by
y
2
1


X
Y .
. I
If
f =
= {Y Y
:
: 
7
7}
},
, f
fi
in
nd
d P
P(
(C
C)
).
.
2. Consider an experiment of tossing a coin twice. Let X be a random variable indicating a count for
heads. Let B= {1} be an event with respect to Rx. Then find an event A such that A B.
Example
Page 3 of 6
S
So
ol
lu
ut
ti
io
on
n:
:
I
It
t c
ca
an
n b
be
e s
se
ee
en
n t
th
ha
at
t R
RX
X=
= {
{ X: X>
> 0
0}
} a
an
nd
d R
RY
Y=
= {
{Y: Y >
> 1
1/
/2
2}
},
, w
wh
hi
ic
ch
h i
im
mp
pl
li
ie
es
s t
th
ha
at
t C
C
R
RY
Y.
.
15
X
7
2
1
X
7 





Y
T
Th
hu
us
s,
, d
de
ef
fi
in
ne
e B
B a
as
s B
B=
={
{X
X:
: X
X 
 1
15
5}
} s
so
o t
th
ha
at
t B
B a
an
nd
d C
C a
ar
re
e e
eq
qu
ui
iv
va
al
le
en
nt
t.
.
H
He
en
nc
ce
e,
, 15
15
1
P(B)
P(C)
e
dx
e x


 


E
Ex
xe
er
rc
ci
is
se
e:
: S
Su
up
pp
po
os
se
e t
th
ha
at
t t
th
he
e l
le
en
ng
gt
th
h o
of
f t
ti
im
me
e i
it
t t
ta
ak
ke
es
s Aaron to drive work e
ev
ve
er
ry
yd
da
ay
y i
is
s a
a r
ra
an
nd
do
om
m
v
va
ar
ri
ia
ab
bl
le
e X
X (
(m
me
ea
as
su
ur
re
ed
d i
in
n h
ho
ou
ur
rs
s)
) w
wi
it
th
h d
di
is
st
tr
ri
ib
bu
ut
ti
io
on
n f
fu
un
nc
ct
ti
io
on
n,
,








therwise
0
4
3
x
4
1
if
)
4
1
-
8(x
)
(
O
x
f
I
If
f w
we
e d
de
ef
fi
in
ne
e a
a r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e Y
Y a
as
s Y
Y=
=6
60
0X
X,
, t
th
he
en
n f
fi
in
nd
d P
P(
(Y
Y<
<4
45
5)
).
.
R
Re
em
ma
ar
rk
k:
: T
Th
he
e o
ot
th
he
er
r p
pr
ro
oc
ce
ed
du
ur
re
e f
fo
or
r f
fi
in
nd
di
in
ng
g p
pr
ro
ob
ba
ab
bi
il
li
it
ti
ie
es
s a
as
ss
so
oc
ci
ia
at
te
ed
d w
wi
it
th
h Y
Y i
is
s t
to
o f
fi
in
nd
d p.
.d
d.
.f
f o
of
f Y
Y
f
fr
ro
om
m t
th
he
e k
kn
no
ow
wn
n p.
.d
d.
.f
f o
of
f X
X.
.
4.2. Functions of Discrete Random Variables and their Distributions
C
Ca
as
se
e I
I:
: X
X i
is
s a
a d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e:
:
I
If
f X
X i
is
s d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e a
an
nd
d Y
Y=
=H
H(
(X
X)
),
, t
th
he
en
n i
it
t f
fo
ol
ll
lo
ow
ws
s i
im
mm
me
ed
di
ia
at
te
el
ly
y t
th
ha
at
t Y
Y i
is
s a
al
ls
so
o a
a
d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e.
. T
Th
ha
at
t i
is
s, i
if
f t
th
he
e p
po
os
ss
si
ib
bl
le
e v
va
al
lu
ue
es
s o
of
f X
X a
ar
re
e x
x1
1,
,x
x2
2,
,…
…,
,x
xn
n t
th
he
en
n t
th
he
e p
po
os
ss
si
ib
bl
le
e
v
va
al
lu
ue
es
s o
of
f Y
Y a
ar
re
e H
H(
(x
x1
1)
),
,H
H(
(x
x2
2)
),
,…
…,
,H
H(
(x
xn
n)
).
.
D
De
ef
fi
in
ni
it
ti
io
on
n:
: If x , x , … , x , …. are the possible values of X, P(x ) = P(X = x ), and H is a
function such that to each value y there corresponds exactly one value x, then the probability
distribution of Y is obtained as follows:
Possible values of Y: y = H(x ), i = 1,2, … , n, …
Probabilities of Y: q(y ) = P(Y = y ) = P(x )
Example 1: Let X assumes three values: -1, 0, and 1 with probabilities 1/3, 1/2, and 1/6 respectively.
Then find the probability distributions for:
i) Y = 3X + 1
ii) Y = X + 5
Suppose that the event C is defined as C = {Y > 5}. Determine the event B such that
B= {x  Rx: H(x)  C} where Y= H(X) = 2X +1.
3
Page 4 of 6
Note
It may happen that several values of X lead to the same value of Y. In other words, the relation
between X and Y may not necessarily be One-to-One, as the following examples illustrate.
2. Consider the second example given above, and suppose that Y = X + 2. Then the possible values
Definition
1. Suppose that X is a discrete random variable with probability function P(X=x). Then the probability
distribution of Y = H(X) is given by P(Y=y) = P(H(X) = y) = {P(X = xi)} where H(xi) = y
2. Suppose that X is a discrete random variable with probability funtion f(x). Let Y = H(X) define a
one-to-one transformation between the values of X and Y so that the equation y = H(x) can be uniquely
solved for x in terms of y, say x = w(y). Then the probability distribution of Y is g(y) = f[w(y)].
E
Ex
xa
am
mp
pl
le
e 1
1:
: S
Su
up
pp
po
os
se
e t
th
he
e p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y f
fu
un
nc
ct
ti
io
on
n o
of
f a
a d
di
is
sc
cr
re
et
te
e r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X i
is
s
-
-1
1 0
0 1
1 2
2
(
( =
= )
) 7
7
30
30
8
8
30
30
4
4
30
30
11
11
30
30
F
Fi
in
nd
d t
th
he
e p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y f
fu
un
nc
ct
ti
io
on
n o
of
f Y
Y i
if
f
a
a)
) Y
Y=
=X
X2
2
b
b)
)Y
Y=
=2
2X
X+
+5
5
Example 2: Let X be a discrete random variable having the possible values 1, 2, 3, . . . , n, . .. and
suppose that P(X = x) = . Find the probability distribution of Y if
=
1
−1
Case II: If X is a continuous random variable.
X may assume all real values while Y is defined to be +1 if > 0 and -1 if < 0. In order to
obtain the probability distribution of Y, simply determine the equivalent event (in the range
2. Suppose that X has the following probability distribution:
x: -2 -1 0 1 2 3 4
P(X=x): 0.1 0.2 0.1 0.1 0.1 0.2 0.2
Find the probability distribution of Y = 2X - 2
Example
1. Recall the first example where X assumes three values: -1, 0, and 1. If Y = X, then find the possible
values and their corresponding probabilities for Y.
2
2
of Y are 2, 3, 6, 11 and 18 with probabilities 0.1, 0.3, 0.2, 0.2 and 0.2 respectively. For example,
Y = 3 corresponds to not only one possible value in the range space of X but it refers to two possible
values, namely x = -1 and x = 1. Accordingly P(Y=3) = P(X=-1) + P(X=1) = 0.2 + 0.1
Page 5 of 6
space Rx) corresponding to the different values of Y. In the above case, ( = 1) = ( > 0)
and ( = −1) = ( ≤ 0).
In general case, if { = } is equivalent to an event, say A, in the range space of X, then
g( ) = ( = ) = ( )
4.3. Functions of Continuous Random Variables and their Distributions
In this section, our interest is to determine the Probability Density Function of a function of
a continuous random variable. Let X be a continuous random variable and Y be another random
variable which is a function of X. That is Y=H(X). Moreover, assume that the random variable Y
is a continuous random variable. To find or determine the p.d.f of Y=H(X), we follow the
steps below.
a) Obtain the Cumulative Distribution Function (cdf) of Y, denoted by G(y), where
( ) = (  )in terms of the cdf or p.d.f of X by finding an event A in Rx which is
equivalent to the event Yy.
b) Differentiate G(y) with respect to y in order to obtain g(y),which is going to be the p.d.f
of Y.
c) Determine those values of y in the range space of Y for which g(y)>0.
E
Ex
xa
am
mp
pl
le
e 1
1:
: S
Su
up
pp
po
os
se
e t
th
ha
at
t X
X h
ha
as
s p.d.f
. . g
gi
iv
ve
en
n b
by
y:
:








therwise
0
2
x
0
if
2
x
)
(
O
x
f
L
Le
et
t H
H(
(X
X)
)=
=2
2X
X+
+4
4.
. F
Fi
in
nd
d the p.d.f o
of
f Y
Y=
=H
H(
(X
X)
)
E
Ex
xe
er
rc
ci
is
se
e:
: L
Le
et
t a
a r
ra
an
nd
do
om
m v
va
ar
ri
ia
ab
bl
le
e X
X h
ha
as
s a
a d
de
en
ns
si
it
ty
y f
fu
un
nc
ct
ti
io
on
n


 


therwise
0
1
x
0
if
1
)
(
O
x
f .
. L
Le
et
t
H
H(
(X
X)
)=
=e
ex
x
.
. T
Th
he
en
n f
fi
in
nd
d t
th
he
e p.d.f o
of
f Y
Y=
=H
H(
(X
X)
).
.
Example: suppose that X has the pdf
f(x) =
2x, 0 < < 1
0 otherwise
Solution:
If Y = 3X + 1, then find the pdf of Y
Page 6 of 6
The other method of obtaining ( ).
( ) = ( ≤ ) = ≤
− 1
3
=
− 1
3
,
Where F is the cdf of X; that is
( ) = ( ≤ ).
In order to calculate the derivative of G, ( ), we use the chain rule for differentiation as
follows:
( ) =
( ) = ( ) ; ℎ =
− 1
3
Hence
( ) = ( ) ∗
1
3
= ( ) ∗
1
3
= 2 ∗
− 1
3
∗
1
3
=
2
9
( − 1)
Theorem: Let X be a continuous random variable with pdf , where ( ) > 0 for < <
. suppose that = ( ) is a strictly monotone (increasing or decreasing) function of . Assume
that this function is differentiable ( and hence continuous) for all . Then the random variable Y
defined as = ( )has a pdf g given by,
( ) = (H (y)) ∗ H (y) ℎ H (y) = x
Example
Theorem: Let X be a continuous random variable with pdf f and Y = . Then the random
variable Y has the pdf given by: g(y) =
1
2 [f( ]
y ) + f(
2. Suppose that the pdf of a random variable X is given by: f(x) = 1 0 < x < 1
0 otherwise
Find the pdf of Y = ln(X)
- )
-1
Find the pdf of Y = e
Let the pdf of X is given as f(x) = 1/2 if -1 < x < 1, and 0 else where. If Y = 4 - X, then find
the pdf of Y.
2
1. Let X be a random variable with pdf: f(x) = 
otherwise
x 0 < x < 1
-x
{
Example

More Related Content

What's hot

Classification of singularity
Classification of singularityClassification of singularity
Classification of singularityRaj Parekh
 
Function an old french mathematician said[1]12
Function an old french mathematician said[1]12Function an old french mathematician said[1]12
Function an old french mathematician said[1]12Mark Hilbert
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlightedAmanSaeed11
 
Numarical values
Numarical valuesNumarical values
Numarical valuesAmanSaeed11
 
Discrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDiscrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDataminingTools Inc
 
S Project 1st Rough Draft
S Project 1st Rough DraftS Project 1st Rough Draft
S Project 1st Rough DraftJordan Laubler
 
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATIONSERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATIONKavin Raval
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JMJapheth Muthama
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations University of Windsor
 
Chapter4
Chapter4Chapter4
Chapter4Vu Vo
 
Eigenvalue eigenvector slides
Eigenvalue eigenvector slidesEigenvalue eigenvector slides
Eigenvalue eigenvector slidesAmanSaeed11
 

What's hot (19)

Classification of singularity
Classification of singularityClassification of singularity
Classification of singularity
 
Function an old french mathematician said[1]12
Function an old french mathematician said[1]12Function an old french mathematician said[1]12
Function an old french mathematician said[1]12
 
Congress
Congress Congress
Congress
 
Ch07 5
Ch07 5Ch07 5
Ch07 5
 
Prob review
Prob reviewProb review
Prob review
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlighted
 
Numarical values
Numarical valuesNumarical values
Numarical values
 
Discrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDiscrete Random Variables And Probability Distributions
Discrete Random Variables And Probability Distributions
 
S Project 1st Rough Draft
S Project 1st Rough DraftS Project 1st Rough Draft
S Project 1st Rough Draft
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATIONSERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
 
Probable
ProbableProbable
Probable
 
Lecture 1 review
Lecture 1   reviewLecture 1   review
Lecture 1 review
 
Chapter4
Chapter4Chapter4
Chapter4
 
patel
patelpatel
patel
 
Eigenvalue eigenvector slides
Eigenvalue eigenvector slidesEigenvalue eigenvector slides
Eigenvalue eigenvector slides
 
Summer Proj.
Summer Proj.Summer Proj.
Summer Proj.
 

Similar to Functions of Random Variables Distributions

this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...BhojRajAdhikari5
 
Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdfRajaSekaran923497
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variablesRohan Bhatkar
 
Probability distribution
Probability distributionProbability distribution
Probability distributionManoj Bhambu
 
Random variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.pptRandom variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.pptsadafshahbaz7777
 
Appendix 2 Probability And Statistics
Appendix 2  Probability And StatisticsAppendix 2  Probability And Statistics
Appendix 2 Probability And StatisticsSarah Morrow
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfCarlosLazo45
 
DerivativesXP.ppt
DerivativesXP.pptDerivativesXP.ppt
DerivativesXP.pptSnehSinha6
 
MA500-2 Topological Structures 2016Aisling McCluskey, Dar.docx
MA500-2 Topological Structures 2016Aisling McCluskey, Dar.docxMA500-2 Topological Structures 2016Aisling McCluskey, Dar.docx
MA500-2 Topological Structures 2016Aisling McCluskey, Dar.docxsmile790243
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptAlyasarJabbarli
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheetJoachim Gwoke
 
Solution set 3
Solution set 3Solution set 3
Solution set 3慧环 赵
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equationsIlya Gikhman
 
Econometrics 2.pptx
Econometrics 2.pptxEconometrics 2.pptx
Econometrics 2.pptxfuad80
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Christian Robert
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approachSpringer
 
Random variables
Random variablesRandom variables
Random variablesMenglinLiu1
 

Similar to Functions of Random Variables Distributions (20)

this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...
 
Communication Theory - Random Process.pdf
Communication Theory - Random Process.pdfCommunication Theory - Random Process.pdf
Communication Theory - Random Process.pdf
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
Galichon jds
Galichon jdsGalichon jds
Galichon jds
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
 
Random variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.pptRandom variable, distributive function lect3a.ppt
Random variable, distributive function lect3a.ppt
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
Appendix 2 Probability And Statistics
Appendix 2  Probability And StatisticsAppendix 2  Probability And Statistics
Appendix 2 Probability And Statistics
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
DerivativesXP.ppt
DerivativesXP.pptDerivativesXP.ppt
DerivativesXP.ppt
 
stochastic notes
stochastic notes stochastic notes
stochastic notes
 
MA500-2 Topological Structures 2016Aisling McCluskey, Dar.docx
MA500-2 Topological Structures 2016Aisling McCluskey, Dar.docxMA500-2 Topological Structures 2016Aisling McCluskey, Dar.docx
MA500-2 Topological Structures 2016Aisling McCluskey, Dar.docx
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.ppt
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
 
Solution set 3
Solution set 3Solution set 3
Solution set 3
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equations
 
Econometrics 2.pptx
Econometrics 2.pptxEconometrics 2.pptx
Econometrics 2.pptx
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approach
 
Random variables
Random variablesRandom variables
Random variables
 

More from mekuannintdemeke

More from mekuannintdemeke (16)

2.1. HRP.pdf
2.1. HRP.pdf2.1. HRP.pdf
2.1. HRP.pdf
 
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.pptCOTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
 
COTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pptCOTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
COTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
 
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.pptCOTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
 
CE6503_Highway_Materials_Lec1_April21.pptx.pdf
CE6503_Highway_Materials_Lec1_April21.pptx.pdfCE6503_Highway_Materials_Lec1_April21.pptx.pdf
CE6503_Highway_Materials_Lec1_April21.pptx.pdf
 
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdfCOTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
 
Chapter One Procrument An Overview.pdf
Chapter One Procrument An Overview.pdfChapter One Procrument An Overview.pdf
Chapter One Procrument An Overview.pdf
 
Chapter -Two (3).pdf
Chapter -Two (3).pdfChapter -Two (3).pdf
Chapter -Two (3).pdf
 
Chapter -Two (2).pdf
Chapter -Two (2).pdfChapter -Two (2).pdf
Chapter -Two (2).pdf
 
CH1.pdf
CH1.pdfCH1.pdf
CH1.pdf
 
CH3.pdf
CH3.pdfCH3.pdf
CH3.pdf
 
CH2.pdf
CH2.pdfCH2.pdf
CH2.pdf
 
exercises.pdf
exercises.pdfexercises.pdf
exercises.pdf
 
Ch3
Ch3Ch3
Ch3
 
Ch2
Ch2Ch2
Ch2
 
Ch1
Ch1Ch1
Ch1
 

Recently uploaded

Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...nagunakhan
 
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝soniya singh
 
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一ga6c6bdl
 
Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...
Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...
Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...Pooja Nehwal
 
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service GayaGaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service Gayasrsj9000
 
(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...
(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...
(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...ranjana rawat
 
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /WhatsappsBeautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsappssapnasaifi408
 
Call Girls Dubai Slut Wife O525547819 Call Girls Dubai Gaped
Call Girls Dubai Slut Wife O525547819 Call Girls Dubai GapedCall Girls Dubai Slut Wife O525547819 Call Girls Dubai Gaped
Call Girls Dubai Slut Wife O525547819 Call Girls Dubai Gapedkojalkojal131
 
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...anilsa9823
 
定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一
定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一
定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一zul5vf0pq
 
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311  Call Girls in Thane , Independent Escort Service ThanePallawi 9167673311  Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service ThanePooja Nehwal
 
Call Girls Delhi {Rohini} 9711199012 high profile service
Call Girls Delhi {Rohini} 9711199012 high profile serviceCall Girls Delhi {Rohini} 9711199012 high profile service
Call Girls Delhi {Rohini} 9711199012 high profile servicerehmti665
 
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...Call Girls in Nagpur High Profile
 
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...ur8mqw8e
 
9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...
9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...
9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...Pooja Nehwal
 
Alambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service LucknowAlambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service Lucknowmakika9823
 
Russian Call Girls Kolkata Chhaya 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls Kolkata Chhaya 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls Kolkata Chhaya 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls Kolkata Chhaya 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 

Recently uploaded (20)

Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
Russian Call Girls In South Delhi Delhi 9711199012 💋✔💕😘 Independent Escorts D...
 
Low rate Call girls in Delhi Justdial | 9953330565
Low rate Call girls in Delhi Justdial | 9953330565Low rate Call girls in Delhi Justdial | 9953330565
Low rate Call girls in Delhi Justdial | 9953330565
 
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
 
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
 
Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...
Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...
Call Girls in Thane 9892124323, Vashi cAll girls Serivces Juhu Escorts, powai...
 
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service GayaGaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
 
(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...
(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...
(MEGHA) Hinjewadi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune E...
 
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /WhatsappsBeautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
Beautiful Sapna Call Girls CP 9711199012 ☎ Call /Whatsapps
 
young call girls in Sainik Farm 🔝 9953056974 🔝 Delhi escort Service
young call girls in Sainik Farm 🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Sainik Farm 🔝 9953056974 🔝 Delhi escort Service
young call girls in Sainik Farm 🔝 9953056974 🔝 Delhi escort Service
 
Call Girls Dubai Slut Wife O525547819 Call Girls Dubai Gaped
Call Girls Dubai Slut Wife O525547819 Call Girls Dubai GapedCall Girls Dubai Slut Wife O525547819 Call Girls Dubai Gaped
Call Girls Dubai Slut Wife O525547819 Call Girls Dubai Gaped
 
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
Lucknow 💋 Call Girls Adil Nagar | ₹,9500 Pay Cash 8923113531 Free Home Delive...
 
定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一
定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一
定制加拿大滑铁卢大学毕业证(Waterloo毕业证书)成绩单(文凭)原版一比一
 
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311  Call Girls in Thane , Independent Escort Service ThanePallawi 9167673311  Call Girls in Thane , Independent Escort Service Thane
Pallawi 9167673311 Call Girls in Thane , Independent Escort Service Thane
 
Call Girls Delhi {Rohini} 9711199012 high profile service
Call Girls Delhi {Rohini} 9711199012 high profile serviceCall Girls Delhi {Rohini} 9711199012 high profile service
Call Girls Delhi {Rohini} 9711199012 high profile service
 
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
VVIP Pune Call Girls Balaji Nagar (7001035870) Pune Escorts Nearby with Compl...
 
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
 
9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...
9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...
9892124323 Pooja Nehwal Call Girls Services Call Girls service in Santacruz A...
 
Alambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service LucknowAlambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service Lucknow
 
🔝 9953056974🔝 Delhi Call Girls in Ajmeri Gate
🔝 9953056974🔝 Delhi Call Girls in Ajmeri Gate🔝 9953056974🔝 Delhi Call Girls in Ajmeri Gate
🔝 9953056974🔝 Delhi Call Girls in Ajmeri Gate
 
Russian Call Girls Kolkata Chhaya 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls Kolkata Chhaya 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls Kolkata Chhaya 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls Kolkata Chhaya 🤌 8250192130 🚀 Vip Call Girls Kolkata
 

Functions of Random Variables Distributions

  • 1. Page 1 of 6 CHAPTER FOUR 4. FUNCTIONS OF RANDOM VARIABLES 4.1. Equivalent events 4.2. Functions of discrete random variables and their distributions 4.3. Functions of continuous random variables and their distributions Introduction It is often the case that we know the probability distribution of the random variable X and we are interested in determining the probability distribution of some function of X. For example, given the distribution of X, we may be interested to determine the distribution of the mean of X. The type of problem considered in this chapter is as follows: Given the random variable X with known distribution and a function H, how do we find the probability distribution of a random variable Y = H(X)? The transformation process is presented in the following diagram. Note that Y is a real valued function of the random variable X with domain Rx and range Ry. Thus, the function Y itself is also a random variable. More formally, let E be an experiment, S be a sample space associated with E and X be a random varaible defined on S. Suppose that Y = H (X)is a real valued function of X, then Y = H(X) is also a random variable since for every s∈S, a value of Y is determined, say y = H(X(s)). As before, we call Rx the range space of X, the set of all possible values of the function X. Similarly, we define R the range space of Y, the set of all possible values of the function Y. Examlple 1. Let X be a random variable that represents the radius of a circle. Consider another variable Y that represents the area of a circle. Clearly, Y is a function of X, and their functional relationship is presented as Y=X2. 2. In standard statistical methods, the result of statistical hypothesis testing, estimation, or even statistical graphics does not involve a single random variable but, rather, functions of one or more random variables. As a result, statistical inference requires the distributions of these functions. For example, the use of averages of random variables is common. In addition, sums and more general linear combinations are important. We are often interested in the distribution of sums of squares of random variables, particularly in the use of analysis of variance techniques. Y
  • 2. Page 2 of 6 4.1. Equivalent events D De ef fi in ni it ti io on n: Let C be an event associated with the range space of Y, RY, i.e. C . Moreover, let  be defined as B = {x ∶ H(x)C}. Then B and C are equivalent events. Meaning, each and every element in C is a function of a corresponding element in B. Note  Mathematically, if for all H(x)  C, we can find event B such that B = {x  Rx: H(x)  C} then BC.  When we speak of equivalent events (in the above sense), these events are associated with different sample spaces. 1. Suppose that ( ) = . Then the events ={ >2 } ={ >4 } are equivalent. Thus, for if Y =  X , then {X > 2}occurs if and only if {Y > 4}occurs. Definition: Suppose X is a random variable defined on the sample space S and Rx be its range space. Let Y=H(X) be a random variable with range space Ry. Then for any event  R , P(C) is defined as: P(C) = P{x  R : H(x)  C} In words :The probability of an event associated with the range space of Y is defined as the probability of the equivalent event (in terms of X). In other words, we can evaluate probabilities involving events associated with the function of the random variable X if the p.d.f of X is known and if it is possible to determine the equivalent event.Note that if B and C are equivalent events, then P (B) = P (C). E Ex xa am mp pl le e1 1: : L Le et t X X r re ep pr re es se en nt t t th he e r ra ad di ii i o of f c ci ir rc cl le es s. . S Su up pp po os se e t th ha at t H H( (x x) )= =2 2 x x. . B B1 1= ={ {x x> >2 2} } i is s e eq qu ui iv va al le en nt t t to o C C1 1= ={ {y y> >4 4 } } B B2 2= ={ {x x 5 5} } i is s e eq qu ui iv va al le en nt t t to o C C2 2= ={ {y y 1 10 0 } } H He en nc ce e, , P P( (B B1 1) )= =P P( (C C1 1) ) a an nd d P P( (B B2 2) )= =P P( (C C2 2) ) E Ex xa am mp pl le e 2 2: : L Le et t X X b be e a a c co on nt ti in nu uo ou us s r ra an nd do om m v va ar ri ia ab bl le e w wi it th h p.d.f .      therwise 0 0 x if e ) ( -x O x f S Su up pp po os se e t th ha at t a a r ra an nd do om m v va ar ri ia ab bl le e Y Y i is s d de ef fi in ne ed d b by y 2 1   X Y . . I If f = = {Y Y : :  7 7} }, , f fi in nd d P P( (C C) ). . 2. Consider an experiment of tossing a coin twice. Let X be a random variable indicating a count for heads. Let B= {1} be an event with respect to Rx. Then find an event A such that A B. Example
  • 3. Page 3 of 6 S So ol lu ut ti io on n: : I It t c ca an n b be e s se ee en n t th ha at t R RX X= = { { X: X> > 0 0} } a an nd d R RY Y= = { {Y: Y > > 1 1/ /2 2} }, , w wh hi ic ch h i im mp pl li ie es s t th ha at t C C R RY Y. . 15 X 7 2 1 X 7       Y T Th hu us s, , d de ef fi in ne e B B a as s B B= ={ {X X: : X X   1 15 5} } s so o t th ha at t B B a an nd d C C a ar re e e eq qu ui iv va al le en nt t. . H He en nc ce e, , 15 15 1 P(B) P(C) e dx e x       E Ex xe er rc ci is se e: : S Su up pp po os se e t th ha at t t th he e l le en ng gt th h o of f t ti im me e i it t t ta ak ke es s Aaron to drive work e ev ve er ry yd da ay y i is s a a r ra an nd do om m v va ar ri ia ab bl le e X X ( (m me ea as su ur re ed d i in n h ho ou ur rs s) ) w wi it th h d di is st tr ri ib bu ut ti io on n f fu un nc ct ti io on n, ,         therwise 0 4 3 x 4 1 if ) 4 1 - 8(x ) ( O x f I If f w we e d de ef fi in ne e a a r ra an nd do om m v va ar ri ia ab bl le e Y Y a as s Y Y= =6 60 0X X, , t th he en n f fi in nd d P P( (Y Y< <4 45 5) ). . R Re em ma ar rk k: : T Th he e o ot th he er r p pr ro oc ce ed du ur re e f fo or r f fi in nd di in ng g p pr ro ob ba ab bi il li it ti ie es s a as ss so oc ci ia at te ed d w wi it th h Y Y i is s t to o f fi in nd d p. .d d. .f f o of f Y Y f fr ro om m t th he e k kn no ow wn n p. .d d. .f f o of f X X. . 4.2. Functions of Discrete Random Variables and their Distributions C Ca as se e I I: : X X i is s a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e: : I If f X X i is s d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e a an nd d Y Y= =H H( (X X) ), , t th he en n i it t f fo ol ll lo ow ws s i im mm me ed di ia at te el ly y t th ha at t Y Y i is s a al ls so o a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e. . T Th ha at t i is s, i if f t th he e p po os ss si ib bl le e v va al lu ue es s o of f X X a ar re e x x1 1, ,x x2 2, ,… …, ,x xn n t th he en n t th he e p po os ss si ib bl le e v va al lu ue es s o of f Y Y a ar re e H H( (x x1 1) ), ,H H( (x x2 2) ), ,… …, ,H H( (x xn n) ). . D De ef fi in ni it ti io on n: : If x , x , … , x , …. are the possible values of X, P(x ) = P(X = x ), and H is a function such that to each value y there corresponds exactly one value x, then the probability distribution of Y is obtained as follows: Possible values of Y: y = H(x ), i = 1,2, … , n, … Probabilities of Y: q(y ) = P(Y = y ) = P(x ) Example 1: Let X assumes three values: -1, 0, and 1 with probabilities 1/3, 1/2, and 1/6 respectively. Then find the probability distributions for: i) Y = 3X + 1 ii) Y = X + 5 Suppose that the event C is defined as C = {Y > 5}. Determine the event B such that B= {x  Rx: H(x)  C} where Y= H(X) = 2X +1. 3
  • 4. Page 4 of 6 Note It may happen that several values of X lead to the same value of Y. In other words, the relation between X and Y may not necessarily be One-to-One, as the following examples illustrate. 2. Consider the second example given above, and suppose that Y = X + 2. Then the possible values Definition 1. Suppose that X is a discrete random variable with probability function P(X=x). Then the probability distribution of Y = H(X) is given by P(Y=y) = P(H(X) = y) = {P(X = xi)} where H(xi) = y 2. Suppose that X is a discrete random variable with probability funtion f(x). Let Y = H(X) define a one-to-one transformation between the values of X and Y so that the equation y = H(x) can be uniquely solved for x in terms of y, say x = w(y). Then the probability distribution of Y is g(y) = f[w(y)]. E Ex xa am mp pl le e 1 1: : S Su up pp po os se e t th he e p pr ro ob ba ab bi il li it ty y f fu un nc ct ti io on n o of f a a d di is sc cr re et te e r ra an nd do om m v va ar ri ia ab bl le e X X i is s - -1 1 0 0 1 1 2 2 ( ( = = ) ) 7 7 30 30 8 8 30 30 4 4 30 30 11 11 30 30 F Fi in nd d t th he e p pr ro ob ba ab bi il li it ty y f fu un nc ct ti io on n o of f Y Y i if f a a) ) Y Y= =X X2 2 b b) )Y Y= =2 2X X+ +5 5 Example 2: Let X be a discrete random variable having the possible values 1, 2, 3, . . . , n, . .. and suppose that P(X = x) = . Find the probability distribution of Y if = 1 −1 Case II: If X is a continuous random variable. X may assume all real values while Y is defined to be +1 if > 0 and -1 if < 0. In order to obtain the probability distribution of Y, simply determine the equivalent event (in the range 2. Suppose that X has the following probability distribution: x: -2 -1 0 1 2 3 4 P(X=x): 0.1 0.2 0.1 0.1 0.1 0.2 0.2 Find the probability distribution of Y = 2X - 2 Example 1. Recall the first example where X assumes three values: -1, 0, and 1. If Y = X, then find the possible values and their corresponding probabilities for Y. 2 2 of Y are 2, 3, 6, 11 and 18 with probabilities 0.1, 0.3, 0.2, 0.2 and 0.2 respectively. For example, Y = 3 corresponds to not only one possible value in the range space of X but it refers to two possible values, namely x = -1 and x = 1. Accordingly P(Y=3) = P(X=-1) + P(X=1) = 0.2 + 0.1
  • 5. Page 5 of 6 space Rx) corresponding to the different values of Y. In the above case, ( = 1) = ( > 0) and ( = −1) = ( ≤ 0). In general case, if { = } is equivalent to an event, say A, in the range space of X, then g( ) = ( = ) = ( ) 4.3. Functions of Continuous Random Variables and their Distributions In this section, our interest is to determine the Probability Density Function of a function of a continuous random variable. Let X be a continuous random variable and Y be another random variable which is a function of X. That is Y=H(X). Moreover, assume that the random variable Y is a continuous random variable. To find or determine the p.d.f of Y=H(X), we follow the steps below. a) Obtain the Cumulative Distribution Function (cdf) of Y, denoted by G(y), where ( ) = (  )in terms of the cdf or p.d.f of X by finding an event A in Rx which is equivalent to the event Yy. b) Differentiate G(y) with respect to y in order to obtain g(y),which is going to be the p.d.f of Y. c) Determine those values of y in the range space of Y for which g(y)>0. E Ex xa am mp pl le e 1 1: : S Su up pp po os se e t th ha at t X X h ha as s p.d.f . . g gi iv ve en n b by y: :         therwise 0 2 x 0 if 2 x ) ( O x f L Le et t H H( (X X) )= =2 2X X+ +4 4. . F Fi in nd d the p.d.f o of f Y Y= =H H( (X X) ) E Ex xe er rc ci is se e: : L Le et t a a r ra an nd do om m v va ar ri ia ab bl le e X X h ha as s a a d de en ns si it ty y f fu un nc ct ti io on n       therwise 0 1 x 0 if 1 ) ( O x f . . L Le et t H H( (X X) )= =e ex x . . T Th he en n f fi in nd d t th he e p.d.f o of f Y Y= =H H( (X X) ). . Example: suppose that X has the pdf f(x) = 2x, 0 < < 1 0 otherwise Solution: If Y = 3X + 1, then find the pdf of Y
  • 6. Page 6 of 6 The other method of obtaining ( ). ( ) = ( ≤ ) = ≤ − 1 3 = − 1 3 , Where F is the cdf of X; that is ( ) = ( ≤ ). In order to calculate the derivative of G, ( ), we use the chain rule for differentiation as follows: ( ) = ( ) = ( ) ; ℎ = − 1 3 Hence ( ) = ( ) ∗ 1 3 = ( ) ∗ 1 3 = 2 ∗ − 1 3 ∗ 1 3 = 2 9 ( − 1) Theorem: Let X be a continuous random variable with pdf , where ( ) > 0 for < < . suppose that = ( ) is a strictly monotone (increasing or decreasing) function of . Assume that this function is differentiable ( and hence continuous) for all . Then the random variable Y defined as = ( )has a pdf g given by, ( ) = (H (y)) ∗ H (y) ℎ H (y) = x Example Theorem: Let X be a continuous random variable with pdf f and Y = . Then the random variable Y has the pdf given by: g(y) = 1 2 [f( ] y ) + f( 2. Suppose that the pdf of a random variable X is given by: f(x) = 1 0 < x < 1 0 otherwise Find the pdf of Y = ln(X) - ) -1 Find the pdf of Y = e Let the pdf of X is given as f(x) = 1/2 if -1 < x < 1, and 0 else where. If Y = 4 - X, then find the pdf of Y. 2 1. Let X be a random variable with pdf: f(x) =  otherwise x 0 < x < 1 -x { Example