SlideShare a Scribd company logo
1 of 18
Download to read offline
Page 1 of 18
CHAPTER ONE
INTRODUCTION
1.1. Deterministic and non-deterministic models
1.2. Review of set theory: sets, union, intersection, complementation, De-Morgan’s rules
1.3. Random experiments, sample space and events
1.4. Finite sample spaces and equally likely outcomes
1.5. Counting techniques
1.6. Definitions of probability
1.7. Derived theorems of probability
1.1. Deterministic and non-deterministic models
Models are integral parts of both social and natural sciences. In both cases we construct or fit
models to represent the interrelationship between two or more variables. Particularly, in the
fields like Statistics and Economics models are fitted for the sake of forecasting. I
It
t i
is
s p
po
os
ss
si
ib
bl
le
e t
to
o
c
cl
la
as
ss
si
if
fy
y m
mo
od
de
el
ls
s i
in
n t
to
o d
di
if
ff
fe
er
re
en
nt
t g
gr
ro
ou
up
ps
s b
ba
as
se
ed
d o
on
n v
va
ar
ri
ie
ed
d a
at
tt
tr
ri
ib
bu
ut
te
es
s o
or
r c
cr
ri
it
te
er
ri
ia
a.
. B
Ba
as
se
ed
d o
on
n t
th
he
e t
ty
yp
pe
e o
of
f
e
ex
xp
pe
er
ri
im
me
en
nt
t f
fo
or
r w
wh
hi
ic
ch
h w
we
e f
fi
it
t t
th
he
e m
mo
od
de
el
l,
, w
we
e c
cl
la
as
ss
si
if
fy
y m
mo
od
de
el
l a
as
s D
De
et
te
er
rm
mi
in
ni
is
st
ti
ic
c a
an
nd
d N
No
on
n-
-
d
de
et
te
er
rm
mi
in
ni
is
st
ti
ic
c m
mo
od
de
el
ls
s.
.
Definition: Experiment is any activity (process or action) that we intended to do under certain
condition to obtain a well defined results, usually called the outcome of an experiment. The
possible results of an experiment may be one or more. Based on the number of possible results,
we may classify an experiment as Deterministic and Non-deterministic experiment.
A- Deterministic experiment: this is an experim ent for which the outcomes can be
predicted in advance and is known prior to its conduct. For this type
of experiment we have only one possible result (certain and unique). The result of an
experiment is assumed to be dependent on the condition under which an experiment is
performed. A mathematical form of equations to be defined on this experiment is called a
deterministic model.
Definition: Deterministic model is a model that stipulates the condition under which an
experiment is performed determine the outcome of that experiment.
Introduction to probability theory (Stat 276) Department of Statistics (AAU)
Page 2 of 18
Examples: An experiment conducted to verify the Newton Laws of Motion: F = ma; an
experiment conducted to determine the economic law of demand: where Q is a
quantity demand, P is the price and t is a time; etc…
Note: Most of the experiments that we conduct to verify science law is an example of
deterministic experiment.
B- Non-deterministic experiment: this is an experiment for which the outcome of a given trial
cannot be predicted in advance prior to its conduct. We also call this experiment as unpredictable
or probabilistic or stochastic or random experiment. Usually the result of this experiment is
subjected to chance and is possibly more than one. In this experiment, whatever the condition
under which an experiment is performed, one cannot tell with certainty which outcome occurs
at any particular execution of an experiment though it is possible to list those outcoes.
This types of experiments are characterized by the following three properties:
I. The experiment is repeatable under identical conditions.
II. The outcome in any particular trial is variable, i.e., it depends on some chance or random
mechanism.
III. If the experiment is repeated a large number of times, then some regularity becomes
apparent in the outcomes obtained. This regularity enables us to set some mathematical
form of equations called non-deterministic model.
Definition: Non-deterministic model is a mathematical description of an uncertain situation.
Example: The experiment of tossing a coin: there are two possible outcomes i.e. getting a
Head or Tail. Though we know the possible outcomes, we cannot for sure predict that we
can get for example a Tail if we flip the coin in a particular manner and so on.
Note: the quantitative measure of uncertainty regarding one or more outcomes of a random
experiment is called a probability.
Exercise: I
Id
de
en
nt
ti
if
fy
y t
th
he
e f
fo
ol
ll
lo
ow
wi
in
ng
g m
mo
od
de
el
ls
s a
as
s d
de
et
te
er
rm
mi
in
ni
is
st
ti
ic
c o
or
r N
No
on
n-
-d
de
et
te
er
rm
mi
in
ni
is
st
ti
ic
c
a
a)
) E
Eq
qu
ua
at
ti
io
on
n o
of
f a
a s
st
tr
ra
ai
ig
gh
ht
t l
li
in
ne
e.
.
b
b)
) V
Va
ar
ri
ia
ab
bl
le
e c
co
os
st
t=
=(
(C
Co
os
st
t p
pe
er
r u
un
ni
it
t)
)(
(Q
Qu
ua
an
nt
ti
it
ty
y p
pr
ro
od
du
uc
ce
ed
d)
)
Page 3 of 18
c
c)
) Y
Yi
i=
=A
AX
Xi
i+
+e
ei
i w
wh
he
er
re
e e
ei
i i
is
s t
th
he
e e
er
rr
ro
or
r t
te
er
rm
m (
(o
or
r r
ra
an
nd
do
om
m c
co
om
mp
po
on
ne
en
nt
t)
) a
as
ss
so
oc
ci
ia
at
te
ed
d w
wi
it
th
h t
th
he
e i
it
th
h
o
ob
bs
se
er
rv
va
at
ti
io
on
n.
.
1.2. Review of set theory: sets, union, intersection, complementation, De-Morgan’s rules
D
De
ef
fi
in
ni
it
ti
io
on
n a
an
nd
d T
Ty
yp
pe
es
s o
of
f S
Se
et
ts
s
S
Se
et
t:
: A
A s
se
et
t i
is
s a
a w
we
el
ll
l-
-d
de
ef
fi
in
ne
ed
d c
co
ol
ll
le
ec
ct
ti
io
on
n o
or
r l
li
is
st
t o
of
f o
ob
bj
je
ec
ct
ts
s.
.
A
An
n o
ob
bj
je
ec
ct
t t
th
ha
at
t b
be
el
lo
on
ng
gs
s t
to
o a
a p
pa
ar
rt
ti
ic
cu
ul
la
ar
r s
se
et
t i
is
s c
ca
al
ll
le
ed
d a
an
n e
el
le
em
me
en
nt
t.
. S
Se
et
ts
s a
ar
re
e u
us
su
ua
al
ll
ly
y d
de
en
no
ot
te
ed
d b
by
y c
ca
ap
pi
it
ta
al
l
l
le
et
tt
te
er
rs
s (
(A
A,
, B
B,
, C
C e
et
tc
c)
).
. O
On
n t
th
he
e o
ot
th
he
er
r h
ha
an
nd
d,
, e
el
le
em
me
en
nt
ts
s o
of
f s
se
et
ts
s a
ar
re
e u
us
su
ua
al
ll
ly
y d
de
en
no
ot
te
ed
d b
by
y s
sm
ma
al
ll
l l
le
et
tt
te
er
rs
s (
(a
a,
,
b
b,
, c
c e
et
tc
c)
).
.
E
Ex
xa
am
mp
pl
le
es
s:
: T
Th
he
e s
se
et
t o
of
f s
st
tu
ud
de
en
nt
ts
s i
in
n a
a c
cl
la
as
ss
s;
; t
th
he
e s
se
et
t o
of
f e
ev
ve
en
n n
nu
um
mb
be
er
rs
s;
; t
th
he
e s
se
et
t o
of
f p
po
os
ss
si
ib
bl
le
e o
ou
ut
tc
co
om
me
es
s
o
of
f a
an
n e
ex
xp
pe
er
ri
im
me
en
nt
t;
; e
et
tc
c.
.
N
No
ot
te
e:
: I
If
f X
X b
be
el
lo
on
ng
gs
s t
to
o s
se
et
t A
A w
we
e w
wr
ri
it
te
e X
X ∈
∈ A
A,
, a
an
nd
d i
if
f X
X d
do
oe
es
s n
no
ot
t b
be
el
lo
on
ng
g t
to
o s
se
et
t A
A w
we
e w
wr
ri
it
te
e X
X ∉
∉ A
A
T
Tw
wo
o S
Sp
pe
ec
ci
ia
al
l S
Se
et
ts
s
U
Un
ni
iv
ve
er
rs
sa
al
l s
se
et
t (
(U
U)
):
: U
Un
ni
iv
ve
er
rs
sa
al
l s
se
et
t i
is
s t
th
he
e c
co
ol
ll
le
ec
ct
ti
io
on
n o
of
f a
al
ll
l o
ob
bj
je
ec
ct
ts
s u
un
nd
de
er
r c
co
on
ns
si
id
de
er
ra
at
ti
io
on
n.
. U
Un
ni
iv
ve
er
rs
sa
al
l s
se
et
t
f
fo
or
r a
a g
gi
iv
ve
en
n d
di
is
sc
cu
us
ss
si
io
on
n i
is
s f
fi
ix
xe
ed
d a
an
nd
d p
pr
re
e-
-d
de
et
te
er
rm
mi
in
ne
ed
d.
.
E
Ex
xa
am
mp
pl
le
e:
: *
* T
Th
he
e s
se
et
t o
of
f r
re
ea
al
l n
nu
um
mb
be
er
rs
s c
ca
an
n b
be
e s
se
ee
en
n t
to
o b
be
e u
un
ni
iv
ve
er
rs
sa
al
l s
se
et
t o
of
f n
nu
um
mb
be
er
rs
s.
.
*
* C
Co
on
ns
si
id
de
er
r a
an
n e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f r
ro
ol
ll
li
in
ng
g a
a b
ba
al
la
an
nc
ce
ed
d d
di
ie
e.
. T
Th
he
en
n,
, t
th
he
e s
se
et
t o
of
f a
al
ll
l p
po
os
ss
si
ib
bl
le
e
o
ou
ut
tc
co
om
me
es
s o
of
f t
th
hi
is
s e
ex
xp
pe
er
ri
im
me
en
nt
t c
ca
an
n b
be
e c
co
on
ns
si
id
de
er
re
ed
d a
as
s t
th
he
e u
un
ni
iv
ve
er
rs
sa
al
l s
se
et
t.
. U
U=
={
{1
1,
,2
2,
,3
3,
,4
4,
,5
5,
,6
6}
}
E
Em
mp
pt
ty
y s
se
et
t (
(φ
φ o
or
r{
{}
})
):
: A
A s
se
et
t w
wi
it
th
h n
no
o e
el
le
em
me
en
nt
t i
is
s c
ca
al
ll
le
ed
d e
em
mp
pt
ty
y s
se
et
t.
.
E
Ex
xa
am
mp
pl
le
e:
: I
In
n t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f t
to
os
ss
si
in
ng
g t
tw
wo
o d
di
ic
ce
e a
at
t t
th
he
e s
sa
am
me
e t
ti
im
me
e,
, d
de
ef
fi
in
ne
e A
A t
to
o b
be
e a
a s
se
et
t w
wh
ho
os
se
e
e
el
le
em
me
en
nt
ts
s a
ar
re
e p
pa
ai
ir
rs
s o
of
f o
ou
ut
tc
co
om
me
es
s f
fr
ro
om
m t
th
he
e t
tw
wo
o d
di
ic
ce
e w
wi
it
th
h s
su
um
m g
gr
re
ea
at
te
er
r t
th
ha
an
n 2
20
0.
. O
Ob
bv
vi
io
ou
us
sl
ly
y,
, t
th
he
e s
se
et
t A
A
i
is
s e
em
mp
pt
ty
y s
se
et
t b
be
ec
ca
au
us
se
e t
th
he
e m
ma
ax
xi
im
mu
um
m p
po
os
ss
si
ib
bl
le
e s
su
um
m i
is
s 1
12
2,
, w
wh
hi
ic
ch
h i
is
s a
at
tt
ta
ai
in
ne
ed
d w
wh
he
en
n b
bo
ot
th
h t
th
he
e o
ou
ut
tc
co
om
me
es
s
a
ar
re
e 6
6.
.
S
Su
ub
bs
se
et
t:
: A
A ⊆
⊆ B
B i
if
ff
f X
X ∈
∈ A
A ⇒
⇒ X
X ∈
∈ B
B f
fo
or
r a
al
ll
l X
X e
el
le
em
me
en
nt
t i
in
n t
th
he
e u
un
ni
iv
ve
er
rs
sa
al
l s
se
et
t.
.
1
1.
.2
2.
.1
1 S
Se
et
t o
op
pe
er
ra
at
ti
io
on
ns
s
O
On
ne
e c
ca
an
n i
id
de
en
nt
ti
if
fy
y t
th
hr
re
ee
e b
ba
as
si
ic
c s
se
et
t o
op
pe
er
ra
at
ti
io
on
ns
s.
. T
Th
he
es
se
e a
ar
re
e:
:
Page 4 of 18
a
a.
. C
Co
om
mp
pl
le
em
me
en
nt
t:
: F
Fo
or
r a
an
ny
y s
se
et
t A
A,
, t
th
he
e c
co
om
mp
pl
le
em
me
en
nt
t o
of
f A
A d
de
en
no
ot
te
ed
d b
by
y A
A/
/
,
, o
or
r A
Ac
c
o
or
r Ā
Ā i
is
s g
gi
iv
ve
en
n b
by
y  
 
{
{X
X ∈
∈ U
U/
/ X
X∉
∉A
A}
}
N
No
ot
te
e:
: U
U/
/
=
= φ
φ ;
; φ
φ/
/
=
= U
U ;
; (
( A
A/
/
)
)/
/
=
= A
A
b
b.
. U
Un
ni
io
on
n:
: G
Gi
iv
ve
en
n t
tw
wo
o s
se
et
ts
s A
A a
an
nd
d B
B,
, t
th
he
e u
un
ni
io
on
n o
of
f A
A a
an
nd
d B
B d
de
en
no
ot
te
ed
d b
by
y A
A∪ B
B i
is
s t
th
he
e s
se
et
t o
of
f a
al
ll
l
e
el
le
em
me
en
nt
ts
s,
, w
wh
hi
ic
ch
h b
be
el
lo
on
ng
g t
to
o s
se
et
t A
A o
or
r B
B,
, o
or
r b
bo
ot
th
h.
. 
 
A
A∪
∪B
B =
={
{ X
X:
: X
X ∈
∈ A
A ∨
∨ X
X∈
∈ B
B}
};
; h
he
er
re
e t
th
he
e l
lo
og
gi
ic
ca
al
l c
co
on
nn
ne
ec
ct
ti
iv
ve
e ∨
∨ (
(O
OR
R)
) i
is
s u
us
se
ed
d i
in
n i
it
ts
s i
in
nc
cl
lu
us
si
iv
ve
e s
se
en
ns
se
e.
.
I
In
n g
ge
en
ne
er
ra
al
l,
, i
if
f w
we
e h
ha
av
ve
e a
a s
se
eq
qu
ue
en
nc
ce
e o
of
f s
se
et
ts
s A
A1
1,
, A
A2
2,
, …
…,
, A
An
n t
th
he
en
n
A
A1
1 ∪
∪A
A2
2∪
∪ …
… ∪
∪A
An
n =
= n}
and
1
between
i
one
least
at
for
:
{
1
i
n
i
i A
X
U
X
A ∈
∈
=
=
U
R
Re
ec
ca
al
ll
l t
th
ha
at
t A
A ∪
∪ φ
φ =
= A
A a
an
nd
d A
A ∪
∪ U
U =
= U
U
c
c.
. I
In
nt
te
er
rs
se
ec
ct
ti
io
on
n:
: F
Fo
or
r a
an
ny
y t
tw
wo
o s
se
et
ts
s A
A a
an
nd
d B
B t
th
he
e i
in
nt
te
er
rs
se
ec
ct
ti
io
on
n o
of
f A
A a
an
nd
d B
B i
is
s d
de
ef
fi
in
ne
ed
d t
to
o b
be
e t
th
he
e s
se
et
t o
of
f
a
al
ll
l e
el
le
em
me
en
nt
ts
s t
th
ha
at
t o
oc
cc
cu
ur
r i
in
n b
bo
ot
th
h s
se
et
t A
A a
an
nd
d a
al
ls
so
o s
se
et
t B
B.
. S
Sy
ym
mb
bo
ol
li
ic
ca
al
ll
ly
y,
, w
we
e w
wr
ri
it
te
e  
 
A
A ∩
∩ B
B =
={
{ X
X ∈
∈ U
U /
/ X
X ∈
∈ A
A ∧
∧ X
X∈
∈B
B}
}
A
A1
1 ∩
∩ A
A2
2 ∩
∩ …
… ∩
∩ A
An
n =
= n}
and
1
between
i
all
for
:
{
1
i
n
i
i A
X
U
X
A ∈
∈
=
=
I
S
Se
et
ts
s w
wi
it
th
h n
no
o i
in
nt
te
er
rs
se
ec
ct
ti
io
on
n a
ar
re
e c
ca
al
ll
le
ed
d d
di
is
sj
jo
oi
in
nt
t s
se
et
ts
s.
. A
A a
an
nd
d B
B a
ar
re
e d
di
is
sj
jo
oi
in
nt
t i
if
f A
A ∩
∩ B
B =
= φ
φ.
.
1
1.
.2
2.
.2
2 P
Pr
ro
op
pe
er
rt
ti
ie
es
s o
of
f s
se
et
t o
op
pe
er
ra
at
ti
io
on
ns
s
I
I.
. C
Co
om
mm
mu
ut
ta
at
ti
iv
ve
e l
la
aw
w
i
i)
) A
A∪
∪ B
B =
= B
B∪
∪ A
A,
, a
an
nd
d
i
ii
i)
)A
A ∩
∩ B
B =
= B
B ∩
∩ A
A
I
II
I.
. A
As
ss
so
oc
ci
ia
at
ti
iv
ve
e l
la
aw
w
i
i)
) A
A∪
∪ (
(B
B ∪
∪ C
C)
) =
= (
(A
A ∪
∪ B
B)
) ∪
∪ C
C,
, a
an
nd
d
i
ii
i)
) A
A ∩
∩ (
(B
B ∩
∩ C
C)
) =
= (
(A
A ∩
∩ B
B)
) ∩
∩ C
C
Page 5 of 18
I
II
II
I.
.D
Di
is
st
tr
ri
ib
bu
ut
ti
iv
ve
e l
la
aw
w
i
i)
) A
A ∪
∪ (
(B
B ∩
∩ C
C)
) =
= (
(A
A ∪
∪ B
B)
) ∩
∩ (
(A
A ∪
∪ C
C)
),
,
i
ii
i)
)A
A ∩
∩ (
(B
B ∪
∪ C
C)
) =
= (
(A
A ∩
∩B
B)
) ∪
∪ (
(A
A ∩
∩ C
C)
),
,
M
Mo
or
re
e g
ge
en
ne
er
ra
al
ll
ly
y,
,
( )
( )
I U
U I
U I
I U
n
i
i
n
i
i
n
i
i
n
i
i
B
A
B
A
and
B
A
B
A
1
1
1
1
,
=
=
=
=
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
I
IV
V.
. D
De
em
mo
or
rg
ga
an
n’
’s
s l
la
aw
w
(
(A
A∪
∪ B
B)
)/
/
=
= A
A/
/
∩
∩ B
B/
/
a
an
nd
d (
(A
A ∩
∩B
B)
)/
/
=
= A
A/
/
∪
∪ B
B/
/
M
Mo
or
re
e g
ge
en
ne
er
ra
al
ll
ly
y,
,
U
I
I
U
n
i
i
n
i
i
n
i
i
n
i
i A
A
and
A
A
1
'
'
1
1
'
'
1
,
=
=
=
=
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
1.3. Random experiments, sample space and events
I
In
nt
tr
ro
od
du
uc
ct
ti
io
on
n
P
Pe
er
rh
ha
ap
ps
s t
th
he
e c
co
on
nc
ce
ep
pt
t o
of
f s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e a
an
nd
d e
ev
ve
en
nt
ts
s m
ma
ay
y b
be
e c
co
on
ns
si
id
de
er
re
ed
d a
as
s t
th
he
e c
co
or
rn
ne
er
r s
st
to
on
ne
es
s f
fo
or
r t
th
he
e
w
wh
ho
ol
le
e d
di
is
sc
cu
us
ss
si
io
on
n i
in
n p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y.
. T
Th
he
e c
co
on
nc
ce
ep
pt
t o
of
f p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y c
ca
an
n n
ne
ev
ve
er
r b
be
e a
ad
dd
dr
re
es
ss
se
ed
d w
wi
it
th
ho
ou
ut
t
f
fu
ur
rn
ni
is
sh
hi
in
ng
g t
th
he
e i
id
de
ea
a o
of
f s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e a
an
nd
d e
ev
ve
en
nt
ts
s.
. T
Th
he
e g
go
oo
od
d n
ne
ew
ws
s i
is
s t
th
ha
at
t o
on
ne
e c
ca
an
n e
ea
as
si
il
ly
y g
gr
ra
as
sp
p t
th
he
e
c
co
on
nc
ce
ep
pt
t o
of
f s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e a
an
nd
d e
ev
ve
en
nt
ts
s p
pr
ro
ov
vi
id
de
ed
d t
th
he
er
re
e i
is
s a
a c
cl
le
ea
ar
r u
un
nd
de
er
rs
st
ta
an
nd
di
in
ng
g o
of
f u
un
ni
iv
ve
er
rs
sa
al
l s
se
et
t a
an
nd
d
s
su
ub
bs
se
et
ts
s,
, w
wh
hi
ic
ch
h a
ar
re
e e
el
le
em
me
en
nt
ta
ar
ry
y c
co
on
nc
ce
ep
pt
ts
s i
in
n s
se
et
t t
th
he
eo
or
ry
y.
. W
We
e h
ha
av
ve
e a
a p
pe
er
rf
fe
ec
ct
t a
an
na
al
lo
og
gy
y.
. T
Th
he
e c
co
on
nc
ce
ep
pt
ts
s o
of
f
u
un
ni
iv
ve
er
rs
sa
al
l s
se
et
t a
an
nd
d s
su
ub
bs
se
et
ts
s i
in
n t
th
he
e t
th
he
eo
or
ry
y o
of
f s
se
et
ts
s d
di
ir
re
ec
ct
tl
ly
y c
co
or
rr
re
es
sp
po
on
nd
d,
, r
re
es
sp
pe
ec
ct
ti
iv
ve
el
ly
y,
, t
to
o t
th
he
e c
co
on
nc
ce
ep
pt
ts
s
s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e a
an
nd
d e
ev
ve
en
nt
ts
s w
wh
he
en
n i
it
t c
co
om
me
es
s t
to
o t
th
he
e t
th
he
eo
or
ry
y o
of
f p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y.
.
1
1.
. R
Ra
an
nd
do
om
m E
Ex
xp
pe
er
ri
im
me
en
nt
t:
: I
It
t i
is
s a
an
n e
ex
xp
pe
er
ri
im
me
en
nt
t t
th
ha
at
t c
ca
an
n b
be
e r
re
ep
pe
ea
at
te
ed
d a
an
ny
y n
nu
um
mb
be
er
r o
of
f t
ti
im
me
es
s u
un
nd
de
er
r
s
si
im
mi
il
la
ar
r c
co
on
nd
di
it
ti
io
on
ns
s a
an
nd
d i
it
t i
is
s p
po
os
ss
si
ib
bl
le
e t
to
o e
en
nu
um
me
er
ra
at
te
e t
th
he
e t
to
ot
ta
al
l n
nu
um
mb
be
er
r o
of
f o
ou
ut
tc
co
om
me
es
s w
wi
it
th
h o
ou
ut
t
p
pr
re
ed
di
ic
ct
ti
in
ng
g a
an
n i
in
nd
di
iv
vi
id
du
ua
al
l o
ou
ut
t c
co
om
me
e.
. R
Ra
an
nd
do
om
m e
ex
xp
pe
er
ri
im
me
en
nt
ts
s a
ar
re
e a
as
ss
so
oc
ci
ia
at
te
ed
d w
wi
it
th
h p
pr
ro
ob
ba
ab
bi
il
li
it
ty
y
m
mo
od
de
el
ls
s.
. A
As
s t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t i
is
s r
re
ep
pe
ea
at
te
ed
d a
a l
la
ar
rg
ge
e n
nu
um
mb
be
er
r o
of
f t
ti
im
me
e a
a c
ce
er
rt
ta
ai
in
n p
pa
at
tt
te
er
rn
ns
s a
ap
pp
pe
ea
ar
r.
.
Page 6 of 18
S
So
om
me
e f
fe
ea
at
tu
ur
re
es
s o
of
f a
a r
ra
an
nd
do
om
m e
ex
xp
pe
er
ri
im
me
en
nt
t
9
9 E
Ea
ac
ch
h e
ex
xp
pe
er
ri
im
me
en
nt
t i
is
s c
ca
ap
pa
ab
bl
le
e o
of
f b
be
ei
in
ng
g r
re
ep
pe
ea
at
te
ed
d i
in
nd
de
ef
fi
in
ni
it
te
el
ly
y u
un
nd
de
er
r e
es
ss
se
en
nt
ti
ia
al
ll
ly
y u
un
nc
ch
ha
an
ng
ge
ed
d
c
co
on
nd
di
it
ti
io
on
ns
s,
,
9
9 A
Al
lt
th
ho
ou
ug
gh
h w
we
e a
ar
re
e,
, i
in
n g
ge
en
ne
er
ra
al
l,
, u
un
na
ab
bl
le
e t
to
o d
de
et
te
er
rm
mi
in
ne
e w
wh
hi
ic
ch
h p
po
os
ss
si
ib
bl
le
e o
ou
ut
tc
co
om
me
e w
wi
il
ll
l r
re
es
su
ul
lt
t i
in
n a
a
s
si
in
ng
gl
le
e t
tr
ri
ia
al
l o
of
f t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t,
, w
we
e a
ar
re
e a
ab
bl
le
e t
to
o d
de
es
sc
cr
ri
ib
be
e t
th
he
e s
se
et
t o
of
f a
al
ll
l p
po
os
ss
si
ib
bl
le
e o
ou
ut
tc
co
om
me
es
s.
.
9
9 A
As
s t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t i
is
s r
re
ep
pe
ea
at
te
ed
d a
a l
la
ar
rg
ge
e n
nu
um
mb
be
er
r o
of
f t
ti
im
me
es
s a
a d
de
ef
fi
in
ni
it
te
e p
pa
at
tt
te
er
rn
n o
or
r r
re
eg
gu
ul
la
ar
ri
it
ty
y i
is
s
e
ex
xp
pe
ec
ct
te
ed
d t
to
o a
ap
pp
pe
ea
ar
r.
. F
Fr
ro
om
m t
th
hi
is
s r
re
eg
gu
ul
la
ar
ri
it
ty
y w
we
e c
ca
an
n c
co
on
ns
st
tr
ru
uc
ct
t a
a p
pr
re
ec
ci
is
se
e m
ma
at
th
he
em
ma
at
ti
ic
ca
al
l m
mo
od
de
el
l.
.
E
Ex
xa
am
mp
pl
le
e:
: C
Co
on
ns
si
id
de
er
r t
th
he
e r
ra
an
nd
do
om
m e
ex
xp
pe
er
ri
im
me
en
nt
ts
s g
gi
iv
ve
en
n a
ab
bo
ov
ve
e
i
i)
) F
Fo
or
r t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f f
fl
li
ip
pp
pi
in
ng
g a
a c
co
oi
in
n t
th
he
e p
po
os
ss
si
ib
bl
le
e o
ou
ut
tc
co
om
me
es
s a
ar
re
e e
ei
it
th
he
er
r H
He
ea
ad
d (
(H
H)
) o
or
r
T
Ta
ai
il
l (
(T
T)
).
. H
He
en
nc
ce
e,
, t
th
he
e s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e w
wi
il
ll
l b
be
e S
S =
={
{H
H,
, T
T }
}
i
ii
i)
) F
Fo
or
r t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f r
ro
ol
ll
li
in
ng
g a
a d
di
ie
e t
th
he
e p
po
os
ss
si
ib
bl
le
e o
ou
ut
tc
co
om
me
es
s a
ar
re
e t
th
he
e s
si
ix
x s
si
id
de
es
s o
of
f t
th
he
e d
di
ie
e
t
th
ha
at
t a
ar
re
e n
nu
um
mb
be
er
re
ed
d f
fr
ro
om
m 1
1 t
to
o 6
6.
. T
Th
hu
us
s,
, t
th
he
e s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e w
wi
il
ll
l b
be
e S
S=
={
{1
1,
,2
2,
,3
3,
,4
4,
,5
5,
,6
6}
}
i
ii
ii
i)
) T
To
os
ss
s a
a c
co
oi
in
n t
tw
wi
ic
ce
e a
an
nd
d o
ob
bs
se
er
rv
ve
e t
th
he
e f
fa
ac
ce
e u
up
p.
. T
Th
he
e s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e o
of
f t
th
hi
is
s e
ex
xp
pe
er
ri
im
me
en
nt
t i
is
s S
S
=
={
{H
HH
H,
, H
HT
T,
, T
TH
H,
, T
TT
T }
}.
. W
Wh
ha
at
t w
wo
ou
ul
ld
d b
be
e t
th
he
e s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e i
if
f y
yo
ou
u w
we
er
re
e t
to
o t
to
os
ss
s t
th
hr
re
ee
e
t
ti
im
me
es
s?
?
i
iv
v)
) F
Fo
or
r t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f d
dr
ra
aw
wi
in
ng
g a
a c
ca
ar
rd
d f
fr
ro
om
m a
a d
de
ec
ck
k o
of
f c
ca
ar
rd
ds
s t
th
he
e f
fo
ol
ll
lo
ow
wi
in
ng
g s
se
et
ts
s c
ca
an
n b
be
e
p
po
os
ss
si
ib
bl
le
e s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
es
s.
.
S
S=
={
{H
He
ea
ar
rt
t,
, S
Sp
pi
id
de
er
r,
, D
Di
ia
am
mo
on
nd
d,
, F
Fl
lo
ow
we
er
r}
}
S
S=
={
{1
1s
s,
, 2
2s
s,
, 3
3s
s,
, …
… ,
, Q
Qs
s,
, K
Ks
s,
, j
jo
ok
ke
er
rs
s}
}
S
S=
={
{B
Bl
la
ac
ck
k c
ca
ar
rd
d,
, R
Re
ed
d c
ca
ar
rd
d}
}
A
As
s t
th
he
e l
la
as
st
t c
ca
as
se
e o
of
f t
th
he
e a
ab
bo
ov
ve
e e
ex
xa
am
mp
pl
le
e i
in
nd
di
ic
ca
at
te
es
s i
it
t i
is
s p
po
os
ss
si
ib
bl
le
e t
to
o h
ha
av
ve
e m
mo
or
re
e t
th
ha
an
n o
on
ne
e s
sa
am
mp
pl
le
e s
sp
pa
ac
ce
e
f
fo
or
r a
a g
gi
iv
ve
en
n r
ra
an
nd
do
om
m e
ex
xp
pe
er
ri
im
me
en
nt
t.
. H
He
en
nc
ce
e,
, w
we
e c
ca
an
n s
st
ta
at
te
e t
th
he
e f
fo
ol
ll
lo
ow
wi
in
ng
g r
re
em
ma
ar
rk
k.
.
There are different types of sample space:-
9 Finite sample space: if they have a finite number of elements. Example:
• Tossing a coin. S={Heads, Tails}
• Throwing a die. S={1, 2, 3, 4, 5, 6}
• Throwing a coin and a die. S={H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}.
9 Countably infinite sample space: if there is a one-to-one mapping between the elements
of S and the natural numbers;
• S={0, 1, 2, 3, …}
• S={ … -3, -2, -1, 0, 1, 2, 3, …}
Page 7 of 18
• S={p: p is prime} = {2, 3, 5, 7, 11, 13, 17, …}
• S={1/r: r is a positive natural number} = {1/2, 1/3, 1/4, 1/5, … }
9 Uncountable sample space: if there are an infinite number of elements in S and there is
not a one-to-one mapping between the elements and the natural numbers.
• S=(0, ∞)
• S=(–∞, ∞)
• S={(x, y): 0≤ x≤ 1; y>0}
2. Outcome: The result of a single trial of experiment
3. Event: It is a subset of sample space. It is a statement about one or more outcomes of a
random experiment. It is denoted by capital letter.
E
Ex
xa
am
mp
pl
le
es
s:
:
¾
¾ I
In
n t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f f
fl
li
ip
pp
pi
in
ng
g a
a d
di
ie
e w
we
e c
ca
an
n d
de
ef
fi
in
ne
e a
an
n e
ev
ve
en
nt
t E
E1
1=
=H
He
ea
ad
ds
s s
sh
ho
ow
ws
s u
up
p=
={
{H
H}
}
¾
¾ I
In
n t
th
he
e e
ex
xp
pe
er
ri
im
me
en
nt
t o
of
f r
ro
ol
ll
li
in
ng
g a
a d
di
ie
e w
we
e c
ca
an
n d
de
ef
fi
in
ne
e a
an
n e
ev
ve
en
nt
t C
C2
2=
=T
Th
he
e n
nu
um
mb
be
er
r i
is
s o
od
dd
d {
{1
1,
,3
3,
,5
5}
}
¾
¾ I
In
n t
to
os
ss
si
in
ng
g a
a c
co
oi
in
n t
tw
wi
ic
ce
e w
we
e c
ca
an
n d
de
ef
fi
in
ne
e a
an
n e
ev
ve
en
nt
t D
D1
1=
=A
At
t l
le
ea
as
st
t o
on
ne
e h
he
ea
ad
d o
oc
cc
cu
ur
rs
s=
={
{H
HH
H,
, T
TT
T,
,
T
TH
H}
}
N
No
ot
te
e:
:
9 If S has n members, then there are exactly 2n
subsets or events.
9 Recall that any set is the subset of itself. Accordingly, the sample space S by itself is an
event called a sure event or certain event.
9 An event occurs if any one of its elements turns out to be the outcome of the experiment.
9 Empty set (φ) is called an impossible event.
9 Any event which consists of a single outcome in the sample space is called an
elementary or simple event whereas events which consist of more than one outcome are
called compound events.
4
4.
. M
Mu
ut
tu
ua
al
ll
ly
y E
Ex
xc
cl
lu
us
si
iv
ve
e e
ev
ve
en
nt
ts
s:
: T
Tw
wo
o e
ev
ve
en
nt
ts
s A
A a
an
nd
d B
B a
ar
re
e s
sa
ai
id
d t
to
o b
be
e m
mu
ut
tu
ua
al
ll
ly
y e
ex
xc
cl
lu
us
si
iv
ve
e i
if
f t
th
he
ey
y
c
ca
an
nn
no
ot
t o
oc
cc
cu
ur
r s
si
im
mu
ul
lt
ta
an
ne
eo
ou
us
sl
ly
y (
(t
to
og
ge
et
th
he
er
r)
) o
or
r A
A ∩
∩ B
B =
= φ
φ
E
Ex
xa
am
mp
pl
le
e:
: E
Ex
xp
pe
er
ri
im
me
en
nt
t -
-T
To
os
ss
s a
a c
co
oi
in
n t
tw
wi
ic
ce
e
S
S=
= {
{H
HH
H,
, H
HT
T,
, T
TH
H,
, T
TT
T}
}
L
Le
et
t A
A=
= T
Tw
wo
o h
he
ea
ad
ds
s o
oc
cc
cu
ur
r {
{H
HH
H}
}
Page 8 of 18
B
B=
= T
Tw
wo
o t
ta
ai
il
ls
s o
oc
cc
cu
ur
r {
{T
TT
T}
}
C
C=
= A
At
t l
le
ea
as
st
t o
on
ne
e h
he
ea
ad
d o
oc
cc
cu
ur
r {
{H
HH
H,
, H
HT
T,
, T
TH
H}
}
A
A ∩
∩ B
B=
= φ
φ ⇒
⇒ A
A a
an
nd
d B
B a
ar
re
e m
mu
ut
tu
ua
al
ll
ly
y e
ex
xc
cl
lu
us
si
iv
ve
e e
ev
ve
en
nt
ts
s
B
B ∩
∩ C
C=
= φ
φ ⇒
⇒ B
B a
an
nd
d C
C a
ar
re
e m
mu
ut
tu
ua
al
ll
ly
y e
ex
xc
cl
lu
us
si
iv
ve
e e
ev
ve
en
nt
ts
s
A
A ∩
∩ C
C=
= {
{H
HH
H}
} ⇒
⇒ A
A a
an
nd
d C
C a
ar
re
e n
no
ot
t m
mu
ut
tu
ua
al
ll
ly
y e
ex
xc
cl
lu
us
si
iv
ve
e
5. Independent Events: Two events are said to be independent if the occurrence of one does
not affect probability of the other occurring.
6. Dependent Events: Two events are dependent if the first event affects the outcome or
occurrence of the second event in a way the probability is changed.
7
7.
. C
Co
om
mb
bi
in
na
at
ti
io
on
n o
of
f e
ev
ve
en
nt
ts
s
a) Union: The event A∪ B occurs if either A or B or both occur.
I
If
f A
Ai
i,
, i
i=
=1
1,
, 2
2,
, 3
3…
…,
, n
n i
is
s a
an
ny
y f
fi
in
ni
it
te
e c
co
ol
ll
le
ec
ct
ti
io
on
n o
of
f e
ev
ve
en
nt
ts
s,
, t
th
he
en
n U
n
i
i
A
1
=
o
oc
cc
cu
ur
rs
s i
if
f a
at
t l
le
ea
as
st
t o
on
ne
e o
of
f
t
th
he
e e
ev
ve
en
nt
ts
s (
(A
Ai
i)
) o
oc
cc
cu
ur
rs
s.
.
b) Intersection: The event A ∩ B occurs if both A and B occur.
I
If
f A
Ai
i,
, i
i=
=1
1,
,2
2,
,3
3,
,…
…,
,n
n i
is
s a
an
ny
y f
fi
in
ni
it
te
e c
co
ol
ll
le
ec
ct
ti
io
on
n o
of
f e
ev
ve
en
nt
ts
s,
, t
th
he
en
n I
n
i
i
A
1
=
o
oc
cc
cu
ur
rs
s i
if
f a
al
ll
l A
Ai
i o
oc
cc
cu
ur
r.
.
c
c)
) Complement of an Event: the complement of an event A means nonoccurrence of A and
is denoted by A or A or A contains those points of the sample space which don’t belong
to A. S
S
)
) A
A∪ 
 A
A/
/
 
 =
= 
 S
S 
 
)
) A
A∩ 
 A
A/
/
=
= 
 φ 
 
E
Ex
xe
er
rc
ci
is
se
e 1
1:
: A
A p
pe
er
rs
so
on
n i
is
s s
se
el
le
ec
ct
te
ed
d a
at
t r
ra
an
nd
do
om
m f
fr
ro
om
m a
a p
po
op
pu
ul
la
at
ti
io
on
n o
of
f a
a g
gi
iv
ve
en
n t
to
ow
wn
n
A
A:
: b
be
e t
th
he
e e
ev
ve
en
nt
t t
th
ha
at
t t
th
he
e p
pe
er
rs
so
on
n i
is
s m
ma
al
le
e
B
B:
: b
be
e t
th
he
e e
ev
ve
en
nt
t t
th
ha
at
t t
th
he
e p
pe
er
rs
so
on
n i
is
s u
un
nd
de
er
r 3
30
0 y
ye
ea
ar
rs
s
C
C:
: b
be
e t
th
he
e e
ev
ve
en
nt
t t
th
ha
at
t t
th
he
e p
pe
er
rs
so
on
n s
sp
pe
ea
ak
ks
s f
fo
or
re
ei
ig
gn
n l
la
an
ng
gu
ua
ag
ge
e
D
De
es
sc
cr
ri
ib
be
e t
th
he
e f
fo
ol
ll
lo
ow
wi
in
ng
g e
ev
ve
en
nt
ts
s s
sy
ym
mb
bo
ol
li
ic
ca
al
ll
ly
y
a
a)
) A
A m
ma
al
le
e u
un
nd
de
er
r 3
30
0 y
ye
ea
ar
rs
s w
wh
ho
o d
do
oe
es
s n
no
ot
t s
sp
pe
ea
ak
k f
fo
or
re
ei
ig
gn
n l
la
an
ng
gu
ua
ag
ge
e.
. (
(A
A ∩
∩ B
B)
) ∩
∩ C
C/
/
Page 9 of 18
b
b)
) A
A f
fe
em
ma
al
le
e w
wh
ho
o i
is
s e
ei
it
th
he
er
r u
un
nd
de
er
r 3
30
0 o
or
r s
sp
pe
ea
ak
ks
s f
fo
or
re
ei
ig
gn
n l
la
an
ng
gu
ua
ag
ge
e.
. A
A/
/
∩
∩ (
(B
B ∪
∪ C
C)
)
c
c)
) A
A p
pe
er
rs
so
on
n w
wh
ho
o i
is
s e
ei
it
th
he
er
r u
un
nd
de
er
r 3
30
0 o
or
r f
fe
em
ma
al
le
e b
bu
ut
t n
no
ot
t b
bo
ot
th
h.
. (
(B
B ∪
∪ A
A/
/
)
) ∩
∩ (
(B
B ∩
∩ A
A/
))c
d
d)
) M
Ma
al
le
e w
wh
ho
o i
is
s e
ei
it
th
he
er
r u
un
nd
de
er
r 3
30
0 o
or
r s
sp
pe
ea
ak
ks
s f
fo
or
re
ei
ig
gn
n l
la
an
ng
gu
ua
ag
ge
e b
bu
ut
t n
no
ot
t b
bo
ot
th
h.
.
A
A ∩
∩ [
[(
(B
B ∪
∪ C
C)
) ∩
∩ (
(B
B ∩
∩ C
C)
)/
/
]
]
E
Ex
xe
er
rc
ci
is
se
e 2
2:
: L
Le
et
t A
A,
, B
B a
an
nd
d C
C b
be
e t
th
hr
re
ee
e e
ev
ve
en
nt
ts
s a
as
ss
so
oc
ci
ia
at
te
ed
d w
wi
it
th
h a
an
n e
ex
xp
pe
er
ri
im
me
en
nt
t.
. D
De
es
sc
cr
ri
ib
be
e t
th
he
e
f
fo
ol
ll
lo
ow
wi
in
ng
g i
in
n s
sy
ym
mb
bo
ol
ls
s.
.
a
a)
) a
at
t l
le
ea
as
st
t o
on
ne
e o
of
f t
th
he
e e
ev
ve
en
nt
ts
s o
oc
cc
cu
ur
rs
s
b
b)
) o
on
nl
ly
y B
B o
oc
cc
cu
ur
rs
s
c
c)
) e
ex
xa
ac
ct
tl
ly
y o
on
ne
e o
of
f t
th
he
e e
ev
ve
en
nt
ts
s o
oc
cc
cu
ur
r
d
d)
) e
ex
xa
ac
ct
tl
ly
y t
tw
wo
o o
of
f t
th
he
e e
ev
ve
en
nt
ts
s o
oc
cc
cu
ur
r
e
e)
) a
at
t l
le
ea
as
st
t t
tw
wo
o o
of
f t
th
he
e e
ev
ve
en
nt
ts
s o
oc
cc
cu
ur
r
f
f)
) a
at
t m
mo
os
st
t t
tw
wo
o o
of
f t
th
he
e e
ev
ve
en
nt
ts
s o
oc
cc
cu
ur
r
g
g)
) n
no
on
ne
e o
of
f t
th
he
e e
ev
ve
en
nt
ts
s o
oc
cc
cu
ur
r
A
An
ns
sw
we
er
r:
:
a
a)
) A
AU
UB
BU
UC
C b
b)
) C
A
B ′
∩
′
∩ c
c)
) )
(
)
(
)
( A
B
C
C
A
B
C
B
A ′
∩
′
∩
∪
′
∩
′
∩
∪
′
∩
′
∩
d
d)
) )
(
)
(
)
( A
B
C
C
A
B
C
B
A ∩
′
∩
∪
∩
′
∩
∪
′
∩
∩
e
e)
) ))
)
(
)
)
(
)
)
(( A
B
C
B
C
A
C
B
A ∪
∩
∪
∪
∩
∪
∪
∩
f
f)
) C
B
A
C
B
A ′
∪
′
∪
′
=
′
∩
∩ )
( g
g)
) )
( C
B
A ′
∩
′
∩
′
1.4. Counting Techniques
In order to calculate probabilities, we have to know
• The number of elements of an event
• The number of elements of the sample space.
That is, in order to judge what is probable
, we have to know what is possible.
• In order to determine the number of outcomes, one can use several rules of counting.
) The addition rule
) The multiplication rule
) Permutation rule
) Combination rule
I. Addition Rule
Let E1 and E2 be any two mutually exclusive events (i.e. there are no common outcomes).
(A ∩ B∩C)
∪
Page 10 of 18
Let an event E describes the situation where either event E1 or event E2 will occur. Then
the number of times event E will occur can be given by the expression:
n(E) = n(E1) + n(E2)
where
n(E) = Number of outcomes of event E
n(E1) = Number of outcomes of event E1
n(E2) = Number of outcomes of event E2
In general, if there are k procedures and the procedure can be performed in ways,
1, 2, … . , , then the number of ways in which we may perform procedure 1 or 2 or….. or
procedure k is given by . ∑ , assuming no procedures may be
performed together.
Example 1: Suppose that we are planning a trip and deciding between bus and train
transportation. If there are three bus routes and two train routes. How many different routes are
available for the trip?
Solution: Let A= {an event for bus transportation}, B= {an event for train transportation}.
Then, we have 3 and 2; assuming that we are going to use only one route, by the
addition rule we have 3 2 5 different possible routes are available for the trip.
Example 2: Consider a set of numbers S = {-4, -2, 1, 3, 5, 6, 7, 8, 9, 10}
Let the events E1, E2 and E3 be defined as:
E = choosing a negative or an odd number from S;
E1= choosing a negative number from S;
E2 = choosing an odd number from S.
Find n(E).
Solution:
E1 and E2 are mutually exclusive events (i.e. no common outcomes).
n(E) = n(E1) + n(E2)
= 2 + 5
= 7
Example 3
In how many ways can a number be chosen from 1 to 22 such that it is a multiple of 3 or 8?
Solution:
Page 11 of 18
Here, E1 = multiples of 3:
E1 = {3, 6, 9,12, 15, 18, 21}
n(E1) = 7
E2 = multiples of 8:
E2 = {8, 16}
n(E2) = 2
Events E1 and E2 are mutually exclusive.
n(E) = n(E1) + n(E2) = 7 + 2 = 9
II. The Multiplication Rule
If there are k procedures and the procedure can be performed in ways, 1, 2, … . , , then
the procedure consisting of procedure 1 followed by procedure 2,…, followed by procedure k
may be performed in … ∏ ways.
Example 1: Suppose that there are three different types of meal for lunch and four different
types of soft drinks. How many choices of meal and soft drinks can be made?
Solution: 3 4 hence 3 4 12 different choices of meal and soft
drinks can be made.
Example 2: How many two digit numerals can be written by choosing the ten’s digit from
A={1,3,5,7,9} and the units digit from B= {2,4,6,8}
Solution: The selection consists of two steps where the 1 st
can be made in 5 different ways for
the ten’s digits and for each of these the 2nd
can be made in 4 different ways for the units digit,
Hence the whole selection one after the other can be made in 5 x 4 different ways. i.e. there are
20 two digit numerals
i.e. = 5 and = 4
Example 3: The digits 0, 1, 2, 3, and 4 are to be used in 4 digit identification card. How many
different cards are possible if
a) Repetitions are permitted.
b) Repetitions are not permitted.
Solution:
a) There are four steps
1st
digit 2nd
digit 3rd
digit 4th
digit
5 5 5 5
Page 12 of 18
1. Selecting the 1st
digit, this can be made in 5 ways.
2. Selecting the 2nd
digit, this can be made in 5 ways.
3. Selecting the 3rd
digit, this can be made in 5 ways.
4. Selecting the 4th
digit, this can be made in 5 ways.
Hence, 5 5 5 5 625 different cards are possible.
b) There are four steps
1st
digit 2nd
digit 3rd
digit 4th
digit
5 4 3 2
1. Selecting the 1st
digit, this can be made in 5 ways.
2. Selecting the 2nd
digit, this can be made in 4 ways.
3. Selecting the 3rd
digit, this can be made in 3 ways.
4. Selecting the 4th
digit, this can be made in 2 ways.
Hence, 5 4 3 2 120 different cards are possible.
Example 4: There are 6 roads between A and B and 4 roads between B and C.
a. In how many ways can one drive from A to C by way of B?
b. In how many ways can one drive from A to C and back to A, passing through B on both
trip?
c. In how many ways can one drive the circular trip described in (b) without using the same
road more than once?
Ans. 24, 576 and 360 resp
III. Permutation
An arrangement of n objects in a specified order is called permutation of the objects.
Permutation Rules:
1. The number of permutations of distinct objects taken all together is n!
Where ! 1 2 … 2 1. Note that: 0! 1
2. The arrangement of objects in a specified order using objects at a time is called the
permutation of objects taken r objects at a time. It is written as n Pr and the formula is
( )!
r
n
n!
=
Pr
n
−
3. The number of distinct permutation of n objects in which are alike, are alike ---- etc is
!
*
....
!*
!* 2
1 k n
n
n
n! ,where n = n1+n2+...+nk
Page 13 of 18
4. An arrangement of distinct objects around a circle is (n-1)! ways.
Example 1: Suppose we have the letters A, B, C, and D
a) How many permutations are there by taking all the four?
b) How many permutations can be formed by taking two letters at a time?
Solution: a) Here 4, there are four distinct objects. Hence, there are 4! 24 permutations.
b) Here 4 2. There are
( )
12
2
24
2
4
4
2
4 =
=
− !
!
=
P permutations.
Example 2: How many different permutations can be made from the letters in the word
“CORRECTION”?
Ans: 453600
Example 3: In how many ways can a party of 7 people arrange themselves
a) on a row of 7 chairs?
b) around a circular table?
c) How many ways are there if two of the persons are not allowed to sit next to each
other?
Ans.: 5040, 720 and 3600 respectively.
IV. Combination
A selection of r objects from n objects without regard to order is called combination.
Example: Given the letters A, B, C, and D list the permutation and combination for selecting
two letters.
Solution:
Permutation Combination
AB, BA, CA , DA,
AC, BC, CB, DB,
AD, BD, CD, DC
AB, BC,
AC, BD,
AD, DC
Note that: in permutation AB is different from BA. But in combination AB is the same as BA.
Combination Rule
The number of combinations of r objects selected from n objects is denoted by nСr or and is
given by the formula:
!
! !
(The arrangement is in a row)
Page 14 of 18
Example 1: In how many ways can a committee of 5 people be chosen out of 9 people?
Ans: 126 ways
Example 2: Among 15 clocks there are two defectives. In how m any ways can an inspector
choose three of the clocks for inspection so that:
a) there is no restriction,
b) none of the defective clocks is included,
c) only one of the defective clocks is included,
d) two of the defective clocks is included.
Ans: 455, 286, 156, and 13 ways, respectively.
Example 3: A delegation of four peopleis selected each year from a college to attend a meeting.
a. In haw many ways can the delegation be chosen if there are 12 eligible students?
b. In how many ways if two of the eligible students will not attend the meeting together?
c. In how many ways if two of the eligible students are married and will only attend the
meeting together?
12C4=495, 10C4=210 + 2C1*10C3=240=450, 10C4=210+ 2C2*10C0 = 211
Some remarks
1. When we select objects from distinct objects, we have objects unselected and
hence there are as many ways of selecting from as there are not selected objects.
Thus
a.
b.
2. Binomial Coefficients
T
Th
he
e q
qu
ua
an
nt
ti
it
ty
y ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
r
n
i
is
s a
al
ls
so
o k
kn
no
ow
wn
n a
as
s a
a b
bi
in
no
om
mi
ia
al
l c
co
oe
ef
ff
fi
ic
ci
ie
en
nt
t b
be
ec
ca
au
us
se
e i
it
t i
is
s t
th
he
e c
co
oe
ef
ff
fi
ic
ci
ie
en
nt
t o
of
f t
th
he
e t
te
er
rm
m
a
an
n-
-r
r
b
br
r
i
in
n t
th
he
e e
ex
xp
pa
an
ns
si
io
on
n o
of
f t
th
he
e e
ex
xp
pr
re
es
ss
si
io
on
n (
( +
+ )
)n
n
.
.
B
Bi
in
no
om
mi
ia
al
l T
Th
he
eo
or
re
em
m
F
Fo
or
r a
an
ny
y t
tw
wo
o r
re
ea
al
l n
nu
um
mb
be
er
rs
s a
a a
an
nd
d b
b a
an
nd
d a
an
ny
y p
po
os
si
it
ti
iv
ve
e i
in
nt
te
eg
ge
er
r n
n w
we
e h
ha
av
ve
e ∑
=
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
+
n
r
r
n
r
b
a
r
n
0
n
b)
(a
b a
Page 15 of 18
S
Sp
pe
ec
ci
ia
al
l c
ca
as
se
es
s
( ) 0
)
1
(
1
-
1
4.
2
1)
(1
.
3
)
(
a)
-
(1
2.
1)
(a
1.
0
0
n
0
n
0
n
=
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
+
∑
∑
∑
∑
=
=
=
=
r
n
r
n
n
n
r
n
r
r
n
r
r
r
n
r
n
a
r
n
a
r
n
1.5.Definitions of probability
In any random experiment there is always uncertainty as to whether a particular event will or will
not occur. Thus, if is an event associated with an experiment, we cannot state with certainty
that an event will occur or will not occur. Hence, it becomes very important to try to associate
a number with the event A which will measure how likely is the event will occur in the defined
sample space. This leads to the theory of probability in which we are going to consider the
quantitative measure of uncertainty.
Approaches to Measuring Probability
There are four different conceptual approaches to study probability theory. These are:
9 The classical approach.
9 The frequentist approach.
9 The subjective approach.
9 The axiomatic approach.
A. The classical approach
This approach is used when:
) All outcomes are equally likely and mutually exclusive.
) Total number of outcomes is finite, say N.
Definition: If a random experiment with N equally likely outcomes is conducted and out of these
NA outcomes are favorable to the event A, then the probability that event A occurs denoted P (A)
is defined as:
o . of outcomes favorable to the event A
Total nuber outcomes
Example 1: A fair die is tossed once. What is the probability of getting
a) Number 4?
b) An odd number?
Page 16 of 18
c) Number greater than 4?
d) Either 1 or 2 or …. or 6
Example 2: A box of 80 candles consists of 30 defective and 50 non-defective candles. If 10
of these candles are selected at random, what is the probability?
a) All will be defective.
b) 6 will be non defective
c) All will be non defective
Solution:
Let A be the event that all will be defective.
The total ways in which will occur=
Hence,
0.00001825
Ans: 0.265, and 0.00624 for b and c, respectively.
Limitation: The classical approach cannot be employed if:
9 it is not possible to enumerate all the possible outcomes for an experiment.
9 the sample points (outcomes) are not mutually exclusive.
9 each and every outcomes is not equally likely.
B. The Frequentist Approach
This is based on the relative frequencies of outcomes belonging to an event.
Definition: The probability of an event A is the proportion of outcomes favorable to A in the
long run when the experiment is repeated under same condition.
lim
Example 1: If records show that 60 out of 100,000 bulbs produced are defective. What is the
probability of a newly produced bulb to be defective?
lim
60
100,000
0.0006
Limitations of frequentist approach:
9 If repeated trials are not possible we cannot use this approach
9 The limit as N approaches to infinity has no clear meaning (How large is large??)
Page 17 of 18
9 Generating infinite trials has cost imposition.
C. Subjective Approach
It is always based on some prior body of knowledge. Hence subjective measures of uncertainty
are always conditional on this prior knowledge.
Definition: Subjective probability is the degree of believe assigned to the occurrence of an event
by a particular individual.
Examples: - A medical Dr. may assign the probability that a patient recovers from a disease.
- Estimating the likelyhood that you will earn an A grade in this course.
D. Axiomatic Approach:
Let E be a random experiment and S be a sample space associated with E. With each event A
defined on S. We can associate a real number called the probability of A satisfying the following
properties called axioms of probability or postulates of probability.
1. 0 (i.e. the probability of any event is non-negative real number)
2. 1 (Sure event)
3. If and are two mutually exclusive events, the probability that one or the other occur
equals the sum of the two probabilities. i. e. .
4. If , , …. form a sequence of pair wise mutually exclusive events (meaning they
satisfy for all then
, … .
1.6.Derived theorems of probability
1. 0 for any sample space S
2. If ′ is the complement of event , then ′
1
3. If are any two events in S, then
4. If then
5. For any two events say, A and B, the probability that exactly one of the events A or B
occurs but not both is :
2
Page 18 of 18
E
Ex
xa
am
mp
pl
le
es
s
1
1)
) F
Fo
or
r a
an
ny
y e
ev
ve
en
nt
ts
s A
A a
an
nd
d B
B s
sh
ho
ow
w t
th
ha
at
t P
P(
(A
A ∪
∪ B
B)
) ≤
≤ P
P(
(A
A)
) +
+ P
P(
(B
B)
)
2
2)
) S
Su
up
pp
po
os
se
e A
A a
an
nd
d B
B a
ar
re
e e
ev
ve
en
nt
ts
s f
fo
or
r w
wh
hi
ic
ch
h
P
P (
(A
A)
) =
=x
x P
P(
(B
B)
) =
= y
y a
an
nd
d P
P(
(A
A ∩
∩ B
B)
) =
=z
z
F
Fi
in
nd
d i
i.
. P
P (
(A
A/
/
∪
∪ B
B)
) i
ii
i)
) P
P (
(A
A/
/
∩
∩ B
B/
/
)
)
3
3)
) I
If
f P
P(
(A
A)
)=
= ¾
¾ a
an
nd
d P
P(
(B
B/
/
)
) =
=1
1/
/4
4, caan
n A
A a
an
nd
d B
B b
be
e mutually exclusive?
4
4)
) I
If
f P
P(
(A
Ac
=
=a
a P
P(
(B
B/
/
)
) =
=b
b S
Sh
ho
ow
w t
th
ha
at
t P
P(
(A
A ∩
∩ B
B)
) ≥
≥ 1
1-
-a
a-
-b
b
)

More Related Content

Similar to Ch3

Statistik Chapter 3
Statistik Chapter 3Statistik Chapter 3
Statistik Chapter 3WanBK Leo
 
TPCMFinalACone
TPCMFinalAConeTPCMFinalACone
TPCMFinalAConeAdam Cone
 
Module-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data scienceModule-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data sciencepujashri1975
 
Binomial distribution
Binomial distributionBinomial distribution
Binomial distributionGlobal Polis
 
09 ch ken black solution
09 ch ken black solution09 ch ken black solution
09 ch ken black solutionKrunal Shah
 
Introduction to Quantitative Research Methods
Introduction to Quantitative Research MethodsIntroduction to Quantitative Research Methods
Introduction to Quantitative Research MethodsIman Ardekani
 
Sampling-and-Sampling-Distribution .pptx
Sampling-and-Sampling-Distribution .pptxSampling-and-Sampling-Distribution .pptx
Sampling-and-Sampling-Distribution .pptxKayraTheressGubat
 
Kostogryzov-for china-2013
 Kostogryzov-for china-2013 Kostogryzov-for china-2013
Kostogryzov-for china-2013Mathmodels Net
 
1.3.1 Inductive and Deductive Reasoning
1.3.1 Inductive and Deductive Reasoning1.3.1 Inductive and Deductive Reasoning
1.3.1 Inductive and Deductive Reasoningsmiller5
 
Fundamentals Probability 08072009
Fundamentals Probability 08072009Fundamentals Probability 08072009
Fundamentals Probability 08072009Sri Harsha gadiraju
 
PSY 341 Judgement, Decisions, Reasoning Notes Abyana
PSY 341 Judgement, Decisions, Reasoning Notes AbyanaPSY 341 Judgement, Decisions, Reasoning Notes Abyana
PSY 341 Judgement, Decisions, Reasoning Notes AbyanaNurulAbyana
 
4 1 probability and discrete probability distributions
4 1 probability and discrete    probability distributions4 1 probability and discrete    probability distributions
4 1 probability and discrete probability distributionsLama K Banna
 
STATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docx
STATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docxSTATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docx
STATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docxdessiechisomjj4
 
Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...
Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...
Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...Professional Training Academy
 

Similar to Ch3 (20)

Statistik Chapter 3
Statistik Chapter 3Statistik Chapter 3
Statistik Chapter 3
 
TPCMFinalACone
TPCMFinalAConeTPCMFinalACone
TPCMFinalACone
 
Module-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data scienceModule-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data science
 
Binomial distribution
Binomial distributionBinomial distribution
Binomial distribution
 
09 ch ken black solution
09 ch ken black solution09 ch ken black solution
09 ch ken black solution
 
Introduction to Quantitative Research Methods
Introduction to Quantitative Research MethodsIntroduction to Quantitative Research Methods
Introduction to Quantitative Research Methods
 
Sampling-and-Sampling-Distribution .pptx
Sampling-and-Sampling-Distribution .pptxSampling-and-Sampling-Distribution .pptx
Sampling-and-Sampling-Distribution .pptx
 
Kostogryzov-for china-2013
 Kostogryzov-for china-2013 Kostogryzov-for china-2013
Kostogryzov-for china-2013
 
Basic concepts of probability
Basic concepts of probability Basic concepts of probability
Basic concepts of probability
 
Chap 2 (1).pdf
Chap 2 (1).pdfChap 2 (1).pdf
Chap 2 (1).pdf
 
1.3.1 Inductive and Deductive Reasoning
1.3.1 Inductive and Deductive Reasoning1.3.1 Inductive and Deductive Reasoning
1.3.1 Inductive and Deductive Reasoning
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Fundamentals Probability 08072009
Fundamentals Probability 08072009Fundamentals Probability 08072009
Fundamentals Probability 08072009
 
PSY 341 Judgement, Decisions, Reasoning Notes Abyana
PSY 341 Judgement, Decisions, Reasoning Notes AbyanaPSY 341 Judgement, Decisions, Reasoning Notes Abyana
PSY 341 Judgement, Decisions, Reasoning Notes Abyana
 
4 1 probability and discrete probability distributions
4 1 probability and discrete    probability distributions4 1 probability and discrete    probability distributions
4 1 probability and discrete probability distributions
 
Probability
ProbabilityProbability
Probability
 
Module1, probablity
Module1, probablityModule1, probablity
Module1, probablity
 
STATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docx
STATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docxSTATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docx
STATISTICAL DIVERSIONSPeter Petocz and Eric SoweyMacquarie.docx
 
Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...
Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...
Risk Management - CH 6 - Statistical Analysis | CMT Level 3 | Chartered Marke...
 
Statistics
StatisticsStatistics
Statistics
 

More from mekuannintdemeke (18)

2.1. HRP.pdf
2.1. HRP.pdf2.1. HRP.pdf
2.1. HRP.pdf
 
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.pptCOTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
 
COTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pptCOTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
COTM 4192 Chapter 2-3 Stablized Pavement Materials.ppt
 
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.pptCOTM 4192 Chapter 2-2 Bituminous Materials.ppt
COTM 4192 Chapter 2-2 Bituminous Materials.ppt
 
CE6503_Highway_Materials_Lec1_April21.pptx.pdf
CE6503_Highway_Materials_Lec1_April21.pptx.pdfCE6503_Highway_Materials_Lec1_April21.pptx.pdf
CE6503_Highway_Materials_Lec1_April21.pptx.pdf
 
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdfCOTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
COTM 4192 Chapter 2-3 Stablized Pavement Materials.pdf
 
Chapter One Procrument An Overview.pdf
Chapter One Procrument An Overview.pdfChapter One Procrument An Overview.pdf
Chapter One Procrument An Overview.pdf
 
Chapter -Two (3).pdf
Chapter -Two (3).pdfChapter -Two (3).pdf
Chapter -Two (3).pdf
 
Chapter -Two (2).pdf
Chapter -Two (2).pdfChapter -Two (2).pdf
Chapter -Two (2).pdf
 
CH1.pdf
CH1.pdfCH1.pdf
CH1.pdf
 
CH3.pdf
CH3.pdfCH3.pdf
CH3.pdf
 
CH2.pdf
CH2.pdfCH2.pdf
CH2.pdf
 
CH6.pdf
CH6.pdfCH6.pdf
CH6.pdf
 
exercises.pdf
exercises.pdfexercises.pdf
exercises.pdf
 
Ch6
Ch6Ch6
Ch6
 
Ch5
Ch5Ch5
Ch5
 
Ch2
Ch2Ch2
Ch2
 
Ch1
Ch1Ch1
Ch1
 

Recently uploaded

Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxolyaivanovalion
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfadriantubila
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Probability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsProbability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsJoseMangaJr1
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionfulawalesam
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz1
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxolyaivanovalion
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxolyaivanovalion
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...amitlee9823
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightDelhi Call girls
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...amitlee9823
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...amitlee9823
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Valters Lauzums
 

Recently uploaded (20)

Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get CytotecAbortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Probability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsProbability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter Lessons
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 

Ch3

  • 1. Page 1 of 18 CHAPTER ONE INTRODUCTION 1.1. Deterministic and non-deterministic models 1.2. Review of set theory: sets, union, intersection, complementation, De-Morgan’s rules 1.3. Random experiments, sample space and events 1.4. Finite sample spaces and equally likely outcomes 1.5. Counting techniques 1.6. Definitions of probability 1.7. Derived theorems of probability 1.1. Deterministic and non-deterministic models Models are integral parts of both social and natural sciences. In both cases we construct or fit models to represent the interrelationship between two or more variables. Particularly, in the fields like Statistics and Economics models are fitted for the sake of forecasting. I It t i is s p po os ss si ib bl le e t to o c cl la as ss si if fy y m mo od de el ls s i in n t to o d di if ff fe er re en nt t g gr ro ou up ps s b ba as se ed d o on n v va ar ri ie ed d a at tt tr ri ib bu ut te es s o or r c cr ri it te er ri ia a. . B Ba as se ed d o on n t th he e t ty yp pe e o of f e ex xp pe er ri im me en nt t f fo or r w wh hi ic ch h w we e f fi it t t th he e m mo od de el l, , w we e c cl la as ss si if fy y m mo od de el l a as s D De et te er rm mi in ni is st ti ic c a an nd d N No on n- - d de et te er rm mi in ni is st ti ic c m mo od de el ls s. . Definition: Experiment is any activity (process or action) that we intended to do under certain condition to obtain a well defined results, usually called the outcome of an experiment. The possible results of an experiment may be one or more. Based on the number of possible results, we may classify an experiment as Deterministic and Non-deterministic experiment. A- Deterministic experiment: this is an experim ent for which the outcomes can be predicted in advance and is known prior to its conduct. For this type of experiment we have only one possible result (certain and unique). The result of an experiment is assumed to be dependent on the condition under which an experiment is performed. A mathematical form of equations to be defined on this experiment is called a deterministic model. Definition: Deterministic model is a model that stipulates the condition under which an experiment is performed determine the outcome of that experiment.
  • 2. Introduction to probability theory (Stat 276) Department of Statistics (AAU) Page 2 of 18 Examples: An experiment conducted to verify the Newton Laws of Motion: F = ma; an experiment conducted to determine the economic law of demand: where Q is a quantity demand, P is the price and t is a time; etc… Note: Most of the experiments that we conduct to verify science law is an example of deterministic experiment. B- Non-deterministic experiment: this is an experiment for which the outcome of a given trial cannot be predicted in advance prior to its conduct. We also call this experiment as unpredictable or probabilistic or stochastic or random experiment. Usually the result of this experiment is subjected to chance and is possibly more than one. In this experiment, whatever the condition under which an experiment is performed, one cannot tell with certainty which outcome occurs at any particular execution of an experiment though it is possible to list those outcoes. This types of experiments are characterized by the following three properties: I. The experiment is repeatable under identical conditions. II. The outcome in any particular trial is variable, i.e., it depends on some chance or random mechanism. III. If the experiment is repeated a large number of times, then some regularity becomes apparent in the outcomes obtained. This regularity enables us to set some mathematical form of equations called non-deterministic model. Definition: Non-deterministic model is a mathematical description of an uncertain situation. Example: The experiment of tossing a coin: there are two possible outcomes i.e. getting a Head or Tail. Though we know the possible outcomes, we cannot for sure predict that we can get for example a Tail if we flip the coin in a particular manner and so on. Note: the quantitative measure of uncertainty regarding one or more outcomes of a random experiment is called a probability. Exercise: I Id de en nt ti if fy y t th he e f fo ol ll lo ow wi in ng g m mo od de el ls s a as s d de et te er rm mi in ni is st ti ic c o or r N No on n- -d de et te er rm mi in ni is st ti ic c a a) ) E Eq qu ua at ti io on n o of f a a s st tr ra ai ig gh ht t l li in ne e. . b b) ) V Va ar ri ia ab bl le e c co os st t= =( (C Co os st t p pe er r u un ni it t) )( (Q Qu ua an nt ti it ty y p pr ro od du uc ce ed d) )
  • 3. Page 3 of 18 c c) ) Y Yi i= =A AX Xi i+ +e ei i w wh he er re e e ei i i is s t th he e e er rr ro or r t te er rm m ( (o or r r ra an nd do om m c co om mp po on ne en nt t) ) a as ss so oc ci ia at te ed d w wi it th h t th he e i it th h o ob bs se er rv va at ti io on n. . 1.2. Review of set theory: sets, union, intersection, complementation, De-Morgan’s rules D De ef fi in ni it ti io on n a an nd d T Ty yp pe es s o of f S Se et ts s S Se et t: : A A s se et t i is s a a w we el ll l- -d de ef fi in ne ed d c co ol ll le ec ct ti io on n o or r l li is st t o of f o ob bj je ec ct ts s. . A An n o ob bj je ec ct t t th ha at t b be el lo on ng gs s t to o a a p pa ar rt ti ic cu ul la ar r s se et t i is s c ca al ll le ed d a an n e el le em me en nt t. . S Se et ts s a ar re e u us su ua al ll ly y d de en no ot te ed d b by y c ca ap pi it ta al l l le et tt te er rs s ( (A A, , B B, , C C e et tc c) ). . O On n t th he e o ot th he er r h ha an nd d, , e el le em me en nt ts s o of f s se et ts s a ar re e u us su ua al ll ly y d de en no ot te ed d b by y s sm ma al ll l l le et tt te er rs s ( (a a, , b b, , c c e et tc c) ). . E Ex xa am mp pl le es s: : T Th he e s se et t o of f s st tu ud de en nt ts s i in n a a c cl la as ss s; ; t th he e s se et t o of f e ev ve en n n nu um mb be er rs s; ; t th he e s se et t o of f p po os ss si ib bl le e o ou ut tc co om me es s o of f a an n e ex xp pe er ri im me en nt t; ; e et tc c. . N No ot te e: : I If f X X b be el lo on ng gs s t to o s se et t A A w we e w wr ri it te e X X ∈ ∈ A A, , a an nd d i if f X X d do oe es s n no ot t b be el lo on ng g t to o s se et t A A w we e w wr ri it te e X X ∉ ∉ A A T Tw wo o S Sp pe ec ci ia al l S Se et ts s U Un ni iv ve er rs sa al l s se et t ( (U U) ): : U Un ni iv ve er rs sa al l s se et t i is s t th he e c co ol ll le ec ct ti io on n o of f a al ll l o ob bj je ec ct ts s u un nd de er r c co on ns si id de er ra at ti io on n. . U Un ni iv ve er rs sa al l s se et t f fo or r a a g gi iv ve en n d di is sc cu us ss si io on n i is s f fi ix xe ed d a an nd d p pr re e- -d de et te er rm mi in ne ed d. . E Ex xa am mp pl le e: : * * T Th he e s se et t o of f r re ea al l n nu um mb be er rs s c ca an n b be e s se ee en n t to o b be e u un ni iv ve er rs sa al l s se et t o of f n nu um mb be er rs s. . * * C Co on ns si id de er r a an n e ex xp pe er ri im me en nt t o of f r ro ol ll li in ng g a a b ba al la an nc ce ed d d di ie e. . T Th he en n, , t th he e s se et t o of f a al ll l p po os ss si ib bl le e o ou ut tc co om me es s o of f t th hi is s e ex xp pe er ri im me en nt t c ca an n b be e c co on ns si id de er re ed d a as s t th he e u un ni iv ve er rs sa al l s se et t. . U U= ={ {1 1, ,2 2, ,3 3, ,4 4, ,5 5, ,6 6} } E Em mp pt ty y s se et t ( (φ φ o or r{ {} }) ): : A A s se et t w wi it th h n no o e el le em me en nt t i is s c ca al ll le ed d e em mp pt ty y s se et t. . E Ex xa am mp pl le e: : I In n t th he e e ex xp pe er ri im me en nt t o of f t to os ss si in ng g t tw wo o d di ic ce e a at t t th he e s sa am me e t ti im me e, , d de ef fi in ne e A A t to o b be e a a s se et t w wh ho os se e e el le em me en nt ts s a ar re e p pa ai ir rs s o of f o ou ut tc co om me es s f fr ro om m t th he e t tw wo o d di ic ce e w wi it th h s su um m g gr re ea at te er r t th ha an n 2 20 0. . O Ob bv vi io ou us sl ly y, , t th he e s se et t A A i is s e em mp pt ty y s se et t b be ec ca au us se e t th he e m ma ax xi im mu um m p po os ss si ib bl le e s su um m i is s 1 12 2, , w wh hi ic ch h i is s a at tt ta ai in ne ed d w wh he en n b bo ot th h t th he e o ou ut tc co om me es s a ar re e 6 6. . S Su ub bs se et t: : A A ⊆ ⊆ B B i if ff f X X ∈ ∈ A A ⇒ ⇒ X X ∈ ∈ B B f fo or r a al ll l X X e el le em me en nt t i in n t th he e u un ni iv ve er rs sa al l s se et t. . 1 1. .2 2. .1 1 S Se et t o op pe er ra at ti io on ns s O On ne e c ca an n i id de en nt ti if fy y t th hr re ee e b ba as si ic c s se et t o op pe er ra at ti io on ns s. . T Th he es se e a ar re e: :
  • 4. Page 4 of 18 a a. . C Co om mp pl le em me en nt t: : F Fo or r a an ny y s se et t A A, , t th he e c co om mp pl le em me en nt t o of f A A d de en no ot te ed d b by y A A/ / , , o or r A Ac c o or r Ā Ā i is s g gi iv ve en n b by y     { {X X ∈ ∈ U U/ / X X∉ ∉A A} } N No ot te e: : U U/ / = = φ φ ; ; φ φ/ / = = U U ; ; ( ( A A/ / ) )/ / = = A A b b. . U Un ni io on n: : G Gi iv ve en n t tw wo o s se et ts s A A a an nd d B B, , t th he e u un ni io on n o of f A A a an nd d B B d de en no ot te ed d b by y A A∪ B B i is s t th he e s se et t o of f a al ll l e el le em me en nt ts s, , w wh hi ic ch h b be el lo on ng g t to o s se et t A A o or r B B, , o or r b bo ot th h. .    A A∪ ∪B B = ={ { X X: : X X ∈ ∈ A A ∨ ∨ X X∈ ∈ B B} }; ; h he er re e t th he e l lo og gi ic ca al l c co on nn ne ec ct ti iv ve e ∨ ∨ ( (O OR R) ) i is s u us se ed d i in n i it ts s i in nc cl lu us si iv ve e s se en ns se e. . I In n g ge en ne er ra al l, , i if f w we e h ha av ve e a a s se eq qu ue en nc ce e o of f s se et ts s A A1 1, , A A2 2, , … …, , A An n t th he en n A A1 1 ∪ ∪A A2 2∪ ∪ … … ∪ ∪A An n = = n} and 1 between i one least at for : { 1 i n i i A X U X A ∈ ∈ = = U R Re ec ca al ll l t th ha at t A A ∪ ∪ φ φ = = A A a an nd d A A ∪ ∪ U U = = U U c c. . I In nt te er rs se ec ct ti io on n: : F Fo or r a an ny y t tw wo o s se et ts s A A a an nd d B B t th he e i in nt te er rs se ec ct ti io on n o of f A A a an nd d B B i is s d de ef fi in ne ed d t to o b be e t th he e s se et t o of f a al ll l e el le em me en nt ts s t th ha at t o oc cc cu ur r i in n b bo ot th h s se et t A A a an nd d a al ls so o s se et t B B. . S Sy ym mb bo ol li ic ca al ll ly y, , w we e w wr ri it te e     A A ∩ ∩ B B = ={ { X X ∈ ∈ U U / / X X ∈ ∈ A A ∧ ∧ X X∈ ∈B B} } A A1 1 ∩ ∩ A A2 2 ∩ ∩ … … ∩ ∩ A An n = = n} and 1 between i all for : { 1 i n i i A X U X A ∈ ∈ = = I S Se et ts s w wi it th h n no o i in nt te er rs se ec ct ti io on n a ar re e c ca al ll le ed d d di is sj jo oi in nt t s se et ts s. . A A a an nd d B B a ar re e d di is sj jo oi in nt t i if f A A ∩ ∩ B B = = φ φ. . 1 1. .2 2. .2 2 P Pr ro op pe er rt ti ie es s o of f s se et t o op pe er ra at ti io on ns s I I. . C Co om mm mu ut ta at ti iv ve e l la aw w i i) ) A A∪ ∪ B B = = B B∪ ∪ A A, , a an nd d i ii i) )A A ∩ ∩ B B = = B B ∩ ∩ A A I II I. . A As ss so oc ci ia at ti iv ve e l la aw w i i) ) A A∪ ∪ ( (B B ∪ ∪ C C) ) = = ( (A A ∪ ∪ B B) ) ∪ ∪ C C, , a an nd d i ii i) ) A A ∩ ∩ ( (B B ∩ ∩ C C) ) = = ( (A A ∩ ∩ B B) ) ∩ ∩ C C
  • 5. Page 5 of 18 I II II I. .D Di is st tr ri ib bu ut ti iv ve e l la aw w i i) ) A A ∪ ∪ ( (B B ∩ ∩ C C) ) = = ( (A A ∪ ∪ B B) ) ∩ ∩ ( (A A ∪ ∪ C C) ), , i ii i) )A A ∩ ∩ ( (B B ∪ ∪ C C) ) = = ( (A A ∩ ∩B B) ) ∪ ∪ ( (A A ∩ ∩ C C) ), , M Mo or re e g ge en ne er ra al ll ly y, , ( ) ( ) I U U I U I I U n i i n i i n i i n i i B A B A and B A B A 1 1 1 1 , = = = = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ I IV V. . D De em mo or rg ga an n’ ’s s l la aw w ( (A A∪ ∪ B B) )/ / = = A A/ / ∩ ∩ B B/ / a an nd d ( (A A ∩ ∩B B) )/ / = = A A/ / ∪ ∪ B B/ / M Mo or re e g ge en ne er ra al ll ly y, , U I I U n i i n i i n i i n i i A A and A A 1 ' ' 1 1 ' ' 1 , = = = = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 1.3. Random experiments, sample space and events I In nt tr ro od du uc ct ti io on n P Pe er rh ha ap ps s t th he e c co on nc ce ep pt t o of f s sa am mp pl le e s sp pa ac ce e a an nd d e ev ve en nt ts s m ma ay y b be e c co on ns si id de er re ed d a as s t th he e c co or rn ne er r s st to on ne es s f fo or r t th he e w wh ho ol le e d di is sc cu us ss si io on n i in n p pr ro ob ba ab bi il li it ty y. . T Th he e c co on nc ce ep pt t o of f p pr ro ob ba ab bi il li it ty y c ca an n n ne ev ve er r b be e a ad dd dr re es ss se ed d w wi it th ho ou ut t f fu ur rn ni is sh hi in ng g t th he e i id de ea a o of f s sa am mp pl le e s sp pa ac ce e a an nd d e ev ve en nt ts s. . T Th he e g go oo od d n ne ew ws s i is s t th ha at t o on ne e c ca an n e ea as si il ly y g gr ra as sp p t th he e c co on nc ce ep pt t o of f s sa am mp pl le e s sp pa ac ce e a an nd d e ev ve en nt ts s p pr ro ov vi id de ed d t th he er re e i is s a a c cl le ea ar r u un nd de er rs st ta an nd di in ng g o of f u un ni iv ve er rs sa al l s se et t a an nd d s su ub bs se et ts s, , w wh hi ic ch h a ar re e e el le em me en nt ta ar ry y c co on nc ce ep pt ts s i in n s se et t t th he eo or ry y. . W We e h ha av ve e a a p pe er rf fe ec ct t a an na al lo og gy y. . T Th he e c co on nc ce ep pt ts s o of f u un ni iv ve er rs sa al l s se et t a an nd d s su ub bs se et ts s i in n t th he e t th he eo or ry y o of f s se et ts s d di ir re ec ct tl ly y c co or rr re es sp po on nd d, , r re es sp pe ec ct ti iv ve el ly y, , t to o t th he e c co on nc ce ep pt ts s s sa am mp pl le e s sp pa ac ce e a an nd d e ev ve en nt ts s w wh he en n i it t c co om me es s t to o t th he e t th he eo or ry y o of f p pr ro ob ba ab bi il li it ty y. . 1 1. . R Ra an nd do om m E Ex xp pe er ri im me en nt t: : I It t i is s a an n e ex xp pe er ri im me en nt t t th ha at t c ca an n b be e r re ep pe ea at te ed d a an ny y n nu um mb be er r o of f t ti im me es s u un nd de er r s si im mi il la ar r c co on nd di it ti io on ns s a an nd d i it t i is s p po os ss si ib bl le e t to o e en nu um me er ra at te e t th he e t to ot ta al l n nu um mb be er r o of f o ou ut tc co om me es s w wi it th h o ou ut t p pr re ed di ic ct ti in ng g a an n i in nd di iv vi id du ua al l o ou ut t c co om me e. . R Ra an nd do om m e ex xp pe er ri im me en nt ts s a ar re e a as ss so oc ci ia at te ed d w wi it th h p pr ro ob ba ab bi il li it ty y m mo od de el ls s. . A As s t th he e e ex xp pe er ri im me en nt t i is s r re ep pe ea at te ed d a a l la ar rg ge e n nu um mb be er r o of f t ti im me e a a c ce er rt ta ai in n p pa at tt te er rn ns s a ap pp pe ea ar r. .
  • 6. Page 6 of 18 S So om me e f fe ea at tu ur re es s o of f a a r ra an nd do om m e ex xp pe er ri im me en nt t 9 9 E Ea ac ch h e ex xp pe er ri im me en nt t i is s c ca ap pa ab bl le e o of f b be ei in ng g r re ep pe ea at te ed d i in nd de ef fi in ni it te el ly y u un nd de er r e es ss se en nt ti ia al ll ly y u un nc ch ha an ng ge ed d c co on nd di it ti io on ns s, , 9 9 A Al lt th ho ou ug gh h w we e a ar re e, , i in n g ge en ne er ra al l, , u un na ab bl le e t to o d de et te er rm mi in ne e w wh hi ic ch h p po os ss si ib bl le e o ou ut tc co om me e w wi il ll l r re es su ul lt t i in n a a s si in ng gl le e t tr ri ia al l o of f t th he e e ex xp pe er ri im me en nt t, , w we e a ar re e a ab bl le e t to o d de es sc cr ri ib be e t th he e s se et t o of f a al ll l p po os ss si ib bl le e o ou ut tc co om me es s. . 9 9 A As s t th he e e ex xp pe er ri im me en nt t i is s r re ep pe ea at te ed d a a l la ar rg ge e n nu um mb be er r o of f t ti im me es s a a d de ef fi in ni it te e p pa at tt te er rn n o or r r re eg gu ul la ar ri it ty y i is s e ex xp pe ec ct te ed d t to o a ap pp pe ea ar r. . F Fr ro om m t th hi is s r re eg gu ul la ar ri it ty y w we e c ca an n c co on ns st tr ru uc ct t a a p pr re ec ci is se e m ma at th he em ma at ti ic ca al l m mo od de el l. . E Ex xa am mp pl le e: : C Co on ns si id de er r t th he e r ra an nd do om m e ex xp pe er ri im me en nt ts s g gi iv ve en n a ab bo ov ve e i i) ) F Fo or r t th he e e ex xp pe er ri im me en nt t o of f f fl li ip pp pi in ng g a a c co oi in n t th he e p po os ss si ib bl le e o ou ut tc co om me es s a ar re e e ei it th he er r H He ea ad d ( (H H) ) o or r T Ta ai il l ( (T T) ). . H He en nc ce e, , t th he e s sa am mp pl le e s sp pa ac ce e w wi il ll l b be e S S = ={ {H H, , T T } } i ii i) ) F Fo or r t th he e e ex xp pe er ri im me en nt t o of f r ro ol ll li in ng g a a d di ie e t th he e p po os ss si ib bl le e o ou ut tc co om me es s a ar re e t th he e s si ix x s si id de es s o of f t th he e d di ie e t th ha at t a ar re e n nu um mb be er re ed d f fr ro om m 1 1 t to o 6 6. . T Th hu us s, , t th he e s sa am mp pl le e s sp pa ac ce e w wi il ll l b be e S S= ={ {1 1, ,2 2, ,3 3, ,4 4, ,5 5, ,6 6} } i ii ii i) ) T To os ss s a a c co oi in n t tw wi ic ce e a an nd d o ob bs se er rv ve e t th he e f fa ac ce e u up p. . T Th he e s sa am mp pl le e s sp pa ac ce e o of f t th hi is s e ex xp pe er ri im me en nt t i is s S S = ={ {H HH H, , H HT T, , T TH H, , T TT T } }. . W Wh ha at t w wo ou ul ld d b be e t th he e s sa am mp pl le e s sp pa ac ce e i if f y yo ou u w we er re e t to o t to os ss s t th hr re ee e t ti im me es s? ? i iv v) ) F Fo or r t th he e e ex xp pe er ri im me en nt t o of f d dr ra aw wi in ng g a a c ca ar rd d f fr ro om m a a d de ec ck k o of f c ca ar rd ds s t th he e f fo ol ll lo ow wi in ng g s se et ts s c ca an n b be e p po os ss si ib bl le e s sa am mp pl le e s sp pa ac ce es s. . S S= ={ {H He ea ar rt t, , S Sp pi id de er r, , D Di ia am mo on nd d, , F Fl lo ow we er r} } S S= ={ {1 1s s, , 2 2s s, , 3 3s s, , … … , , Q Qs s, , K Ks s, , j jo ok ke er rs s} } S S= ={ {B Bl la ac ck k c ca ar rd d, , R Re ed d c ca ar rd d} } A As s t th he e l la as st t c ca as se e o of f t th he e a ab bo ov ve e e ex xa am mp pl le e i in nd di ic ca at te es s i it t i is s p po os ss si ib bl le e t to o h ha av ve e m mo or re e t th ha an n o on ne e s sa am mp pl le e s sp pa ac ce e f fo or r a a g gi iv ve en n r ra an nd do om m e ex xp pe er ri im me en nt t. . H He en nc ce e, , w we e c ca an n s st ta at te e t th he e f fo ol ll lo ow wi in ng g r re em ma ar rk k. . There are different types of sample space:- 9 Finite sample space: if they have a finite number of elements. Example: • Tossing a coin. S={Heads, Tails} • Throwing a die. S={1, 2, 3, 4, 5, 6} • Throwing a coin and a die. S={H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}. 9 Countably infinite sample space: if there is a one-to-one mapping between the elements of S and the natural numbers; • S={0, 1, 2, 3, …} • S={ … -3, -2, -1, 0, 1, 2, 3, …}
  • 7. Page 7 of 18 • S={p: p is prime} = {2, 3, 5, 7, 11, 13, 17, …} • S={1/r: r is a positive natural number} = {1/2, 1/3, 1/4, 1/5, … } 9 Uncountable sample space: if there are an infinite number of elements in S and there is not a one-to-one mapping between the elements and the natural numbers. • S=(0, ∞) • S=(–∞, ∞) • S={(x, y): 0≤ x≤ 1; y>0} 2. Outcome: The result of a single trial of experiment 3. Event: It is a subset of sample space. It is a statement about one or more outcomes of a random experiment. It is denoted by capital letter. E Ex xa am mp pl le es s: : ¾ ¾ I In n t th he e e ex xp pe er ri im me en nt t o of f f fl li ip pp pi in ng g a a d di ie e w we e c ca an n d de ef fi in ne e a an n e ev ve en nt t E E1 1= =H He ea ad ds s s sh ho ow ws s u up p= ={ {H H} } ¾ ¾ I In n t th he e e ex xp pe er ri im me en nt t o of f r ro ol ll li in ng g a a d di ie e w we e c ca an n d de ef fi in ne e a an n e ev ve en nt t C C2 2= =T Th he e n nu um mb be er r i is s o od dd d { {1 1, ,3 3, ,5 5} } ¾ ¾ I In n t to os ss si in ng g a a c co oi in n t tw wi ic ce e w we e c ca an n d de ef fi in ne e a an n e ev ve en nt t D D1 1= =A At t l le ea as st t o on ne e h he ea ad d o oc cc cu ur rs s= ={ {H HH H, , T TT T, , T TH H} } N No ot te e: : 9 If S has n members, then there are exactly 2n subsets or events. 9 Recall that any set is the subset of itself. Accordingly, the sample space S by itself is an event called a sure event or certain event. 9 An event occurs if any one of its elements turns out to be the outcome of the experiment. 9 Empty set (φ) is called an impossible event. 9 Any event which consists of a single outcome in the sample space is called an elementary or simple event whereas events which consist of more than one outcome are called compound events. 4 4. . M Mu ut tu ua al ll ly y E Ex xc cl lu us si iv ve e e ev ve en nt ts s: : T Tw wo o e ev ve en nt ts s A A a an nd d B B a ar re e s sa ai id d t to o b be e m mu ut tu ua al ll ly y e ex xc cl lu us si iv ve e i if f t th he ey y c ca an nn no ot t o oc cc cu ur r s si im mu ul lt ta an ne eo ou us sl ly y ( (t to og ge et th he er r) ) o or r A A ∩ ∩ B B = = φ φ E Ex xa am mp pl le e: : E Ex xp pe er ri im me en nt t - -T To os ss s a a c co oi in n t tw wi ic ce e S S= = { {H HH H, , H HT T, , T TH H, , T TT T} } L Le et t A A= = T Tw wo o h he ea ad ds s o oc cc cu ur r { {H HH H} }
  • 8. Page 8 of 18 B B= = T Tw wo o t ta ai il ls s o oc cc cu ur r { {T TT T} } C C= = A At t l le ea as st t o on ne e h he ea ad d o oc cc cu ur r { {H HH H, , H HT T, , T TH H} } A A ∩ ∩ B B= = φ φ ⇒ ⇒ A A a an nd d B B a ar re e m mu ut tu ua al ll ly y e ex xc cl lu us si iv ve e e ev ve en nt ts s B B ∩ ∩ C C= = φ φ ⇒ ⇒ B B a an nd d C C a ar re e m mu ut tu ua al ll ly y e ex xc cl lu us si iv ve e e ev ve en nt ts s A A ∩ ∩ C C= = { {H HH H} } ⇒ ⇒ A A a an nd d C C a ar re e n no ot t m mu ut tu ua al ll ly y e ex xc cl lu us si iv ve e 5. Independent Events: Two events are said to be independent if the occurrence of one does not affect probability of the other occurring. 6. Dependent Events: Two events are dependent if the first event affects the outcome or occurrence of the second event in a way the probability is changed. 7 7. . C Co om mb bi in na at ti io on n o of f e ev ve en nt ts s a) Union: The event A∪ B occurs if either A or B or both occur. I If f A Ai i, , i i= =1 1, , 2 2, , 3 3… …, , n n i is s a an ny y f fi in ni it te e c co ol ll le ec ct ti io on n o of f e ev ve en nt ts s, , t th he en n U n i i A 1 = o oc cc cu ur rs s i if f a at t l le ea as st t o on ne e o of f t th he e e ev ve en nt ts s ( (A Ai i) ) o oc cc cu ur rs s. . b) Intersection: The event A ∩ B occurs if both A and B occur. I If f A Ai i, , i i= =1 1, ,2 2, ,3 3, ,… …, ,n n i is s a an ny y f fi in ni it te e c co ol ll le ec ct ti io on n o of f e ev ve en nt ts s, , t th he en n I n i i A 1 = o oc cc cu ur rs s i if f a al ll l A Ai i o oc cc cu ur r. . c c) ) Complement of an Event: the complement of an event A means nonoccurrence of A and is denoted by A or A or A contains those points of the sample space which don’t belong to A. S S ) ) A A∪   A A/ /    = =   S S    ) ) A A∩   A A/ / = =   φ    E Ex xe er rc ci is se e 1 1: : A A p pe er rs so on n i is s s se el le ec ct te ed d a at t r ra an nd do om m f fr ro om m a a p po op pu ul la at ti io on n o of f a a g gi iv ve en n t to ow wn n A A: : b be e t th he e e ev ve en nt t t th ha at t t th he e p pe er rs so on n i is s m ma al le e B B: : b be e t th he e e ev ve en nt t t th ha at t t th he e p pe er rs so on n i is s u un nd de er r 3 30 0 y ye ea ar rs s C C: : b be e t th he e e ev ve en nt t t th ha at t t th he e p pe er rs so on n s sp pe ea ak ks s f fo or re ei ig gn n l la an ng gu ua ag ge e D De es sc cr ri ib be e t th he e f fo ol ll lo ow wi in ng g e ev ve en nt ts s s sy ym mb bo ol li ic ca al ll ly y a a) ) A A m ma al le e u un nd de er r 3 30 0 y ye ea ar rs s w wh ho o d do oe es s n no ot t s sp pe ea ak k f fo or re ei ig gn n l la an ng gu ua ag ge e. . ( (A A ∩ ∩ B B) ) ∩ ∩ C C/ /
  • 9. Page 9 of 18 b b) ) A A f fe em ma al le e w wh ho o i is s e ei it th he er r u un nd de er r 3 30 0 o or r s sp pe ea ak ks s f fo or re ei ig gn n l la an ng gu ua ag ge e. . A A/ / ∩ ∩ ( (B B ∪ ∪ C C) ) c c) ) A A p pe er rs so on n w wh ho o i is s e ei it th he er r u un nd de er r 3 30 0 o or r f fe em ma al le e b bu ut t n no ot t b bo ot th h. . ( (B B ∪ ∪ A A/ / ) ) ∩ ∩ ( (B B ∩ ∩ A A/ ))c d d) ) M Ma al le e w wh ho o i is s e ei it th he er r u un nd de er r 3 30 0 o or r s sp pe ea ak ks s f fo or re ei ig gn n l la an ng gu ua ag ge e b bu ut t n no ot t b bo ot th h. . A A ∩ ∩ [ [( (B B ∪ ∪ C C) ) ∩ ∩ ( (B B ∩ ∩ C C) )/ / ] ] E Ex xe er rc ci is se e 2 2: : L Le et t A A, , B B a an nd d C C b be e t th hr re ee e e ev ve en nt ts s a as ss so oc ci ia at te ed d w wi it th h a an n e ex xp pe er ri im me en nt t. . D De es sc cr ri ib be e t th he e f fo ol ll lo ow wi in ng g i in n s sy ym mb bo ol ls s. . a a) ) a at t l le ea as st t o on ne e o of f t th he e e ev ve en nt ts s o oc cc cu ur rs s b b) ) o on nl ly y B B o oc cc cu ur rs s c c) ) e ex xa ac ct tl ly y o on ne e o of f t th he e e ev ve en nt ts s o oc cc cu ur r d d) ) e ex xa ac ct tl ly y t tw wo o o of f t th he e e ev ve en nt ts s o oc cc cu ur r e e) ) a at t l le ea as st t t tw wo o o of f t th he e e ev ve en nt ts s o oc cc cu ur r f f) ) a at t m mo os st t t tw wo o o of f t th he e e ev ve en nt ts s o oc cc cu ur r g g) ) n no on ne e o of f t th he e e ev ve en nt ts s o oc cc cu ur r A An ns sw we er r: : a a) ) A AU UB BU UC C b b) ) C A B ′ ∩ ′ ∩ c c) ) ) ( ) ( ) ( A B C C A B C B A ′ ∩ ′ ∩ ∪ ′ ∩ ′ ∩ ∪ ′ ∩ ′ ∩ d d) ) ) ( ) ( ) ( A B C C A B C B A ∩ ′ ∩ ∪ ∩ ′ ∩ ∪ ′ ∩ ∩ e e) ) )) ) ( ) ) ( ) ) (( A B C B C A C B A ∪ ∩ ∪ ∪ ∩ ∪ ∪ ∩ f f) ) C B A C B A ′ ∪ ′ ∪ ′ = ′ ∩ ∩ ) ( g g) ) ) ( C B A ′ ∩ ′ ∩ ′ 1.4. Counting Techniques In order to calculate probabilities, we have to know • The number of elements of an event • The number of elements of the sample space. That is, in order to judge what is probable , we have to know what is possible. • In order to determine the number of outcomes, one can use several rules of counting. ) The addition rule ) The multiplication rule ) Permutation rule ) Combination rule I. Addition Rule Let E1 and E2 be any two mutually exclusive events (i.e. there are no common outcomes). (A ∩ B∩C) ∪
  • 10. Page 10 of 18 Let an event E describes the situation where either event E1 or event E2 will occur. Then the number of times event E will occur can be given by the expression: n(E) = n(E1) + n(E2) where n(E) = Number of outcomes of event E n(E1) = Number of outcomes of event E1 n(E2) = Number of outcomes of event E2 In general, if there are k procedures and the procedure can be performed in ways, 1, 2, … . , , then the number of ways in which we may perform procedure 1 or 2 or….. or procedure k is given by . ∑ , assuming no procedures may be performed together. Example 1: Suppose that we are planning a trip and deciding between bus and train transportation. If there are three bus routes and two train routes. How many different routes are available for the trip? Solution: Let A= {an event for bus transportation}, B= {an event for train transportation}. Then, we have 3 and 2; assuming that we are going to use only one route, by the addition rule we have 3 2 5 different possible routes are available for the trip. Example 2: Consider a set of numbers S = {-4, -2, 1, 3, 5, 6, 7, 8, 9, 10} Let the events E1, E2 and E3 be defined as: E = choosing a negative or an odd number from S; E1= choosing a negative number from S; E2 = choosing an odd number from S. Find n(E). Solution: E1 and E2 are mutually exclusive events (i.e. no common outcomes). n(E) = n(E1) + n(E2) = 2 + 5 = 7 Example 3 In how many ways can a number be chosen from 1 to 22 such that it is a multiple of 3 or 8? Solution:
  • 11. Page 11 of 18 Here, E1 = multiples of 3: E1 = {3, 6, 9,12, 15, 18, 21} n(E1) = 7 E2 = multiples of 8: E2 = {8, 16} n(E2) = 2 Events E1 and E2 are mutually exclusive. n(E) = n(E1) + n(E2) = 7 + 2 = 9 II. The Multiplication Rule If there are k procedures and the procedure can be performed in ways, 1, 2, … . , , then the procedure consisting of procedure 1 followed by procedure 2,…, followed by procedure k may be performed in … ∏ ways. Example 1: Suppose that there are three different types of meal for lunch and four different types of soft drinks. How many choices of meal and soft drinks can be made? Solution: 3 4 hence 3 4 12 different choices of meal and soft drinks can be made. Example 2: How many two digit numerals can be written by choosing the ten’s digit from A={1,3,5,7,9} and the units digit from B= {2,4,6,8} Solution: The selection consists of two steps where the 1 st can be made in 5 different ways for the ten’s digits and for each of these the 2nd can be made in 4 different ways for the units digit, Hence the whole selection one after the other can be made in 5 x 4 different ways. i.e. there are 20 two digit numerals i.e. = 5 and = 4 Example 3: The digits 0, 1, 2, 3, and 4 are to be used in 4 digit identification card. How many different cards are possible if a) Repetitions are permitted. b) Repetitions are not permitted. Solution: a) There are four steps 1st digit 2nd digit 3rd digit 4th digit 5 5 5 5
  • 12. Page 12 of 18 1. Selecting the 1st digit, this can be made in 5 ways. 2. Selecting the 2nd digit, this can be made in 5 ways. 3. Selecting the 3rd digit, this can be made in 5 ways. 4. Selecting the 4th digit, this can be made in 5 ways. Hence, 5 5 5 5 625 different cards are possible. b) There are four steps 1st digit 2nd digit 3rd digit 4th digit 5 4 3 2 1. Selecting the 1st digit, this can be made in 5 ways. 2. Selecting the 2nd digit, this can be made in 4 ways. 3. Selecting the 3rd digit, this can be made in 3 ways. 4. Selecting the 4th digit, this can be made in 2 ways. Hence, 5 4 3 2 120 different cards are possible. Example 4: There are 6 roads between A and B and 4 roads between B and C. a. In how many ways can one drive from A to C by way of B? b. In how many ways can one drive from A to C and back to A, passing through B on both trip? c. In how many ways can one drive the circular trip described in (b) without using the same road more than once? Ans. 24, 576 and 360 resp III. Permutation An arrangement of n objects in a specified order is called permutation of the objects. Permutation Rules: 1. The number of permutations of distinct objects taken all together is n! Where ! 1 2 … 2 1. Note that: 0! 1 2. The arrangement of objects in a specified order using objects at a time is called the permutation of objects taken r objects at a time. It is written as n Pr and the formula is ( )! r n n! = Pr n − 3. The number of distinct permutation of n objects in which are alike, are alike ---- etc is ! * .... !* !* 2 1 k n n n n! ,where n = n1+n2+...+nk
  • 13. Page 13 of 18 4. An arrangement of distinct objects around a circle is (n-1)! ways. Example 1: Suppose we have the letters A, B, C, and D a) How many permutations are there by taking all the four? b) How many permutations can be formed by taking two letters at a time? Solution: a) Here 4, there are four distinct objects. Hence, there are 4! 24 permutations. b) Here 4 2. There are ( ) 12 2 24 2 4 4 2 4 = = − ! ! = P permutations. Example 2: How many different permutations can be made from the letters in the word “CORRECTION”? Ans: 453600 Example 3: In how many ways can a party of 7 people arrange themselves a) on a row of 7 chairs? b) around a circular table? c) How many ways are there if two of the persons are not allowed to sit next to each other? Ans.: 5040, 720 and 3600 respectively. IV. Combination A selection of r objects from n objects without regard to order is called combination. Example: Given the letters A, B, C, and D list the permutation and combination for selecting two letters. Solution: Permutation Combination AB, BA, CA , DA, AC, BC, CB, DB, AD, BD, CD, DC AB, BC, AC, BD, AD, DC Note that: in permutation AB is different from BA. But in combination AB is the same as BA. Combination Rule The number of combinations of r objects selected from n objects is denoted by nСr or and is given by the formula: ! ! ! (The arrangement is in a row)
  • 14. Page 14 of 18 Example 1: In how many ways can a committee of 5 people be chosen out of 9 people? Ans: 126 ways Example 2: Among 15 clocks there are two defectives. In how m any ways can an inspector choose three of the clocks for inspection so that: a) there is no restriction, b) none of the defective clocks is included, c) only one of the defective clocks is included, d) two of the defective clocks is included. Ans: 455, 286, 156, and 13 ways, respectively. Example 3: A delegation of four peopleis selected each year from a college to attend a meeting. a. In haw many ways can the delegation be chosen if there are 12 eligible students? b. In how many ways if two of the eligible students will not attend the meeting together? c. In how many ways if two of the eligible students are married and will only attend the meeting together? 12C4=495, 10C4=210 + 2C1*10C3=240=450, 10C4=210+ 2C2*10C0 = 211 Some remarks 1. When we select objects from distinct objects, we have objects unselected and hence there are as many ways of selecting from as there are not selected objects. Thus a. b. 2. Binomial Coefficients T Th he e q qu ua an nt ti it ty y ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ r n i is s a al ls so o k kn no ow wn n a as s a a b bi in no om mi ia al l c co oe ef ff fi ic ci ie en nt t b be ec ca au us se e i it t i is s t th he e c co oe ef ff fi ic ci ie en nt t o of f t th he e t te er rm m a an n- -r r b br r i in n t th he e e ex xp pa an ns si io on n o of f t th he e e ex xp pr re es ss si io on n ( ( + + ) )n n . . B Bi in no om mi ia al l T Th he eo or re em m F Fo or r a an ny y t tw wo o r re ea al l n nu um mb be er rs s a a a an nd d b b a an nd d a an ny y p po os si it ti iv ve e i in nt te eg ge er r n n w we e h ha av ve e ∑ = − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = + n r r n r b a r n 0 n b) (a b a
  • 15. Page 15 of 18 S Sp pe ec ci ia al l c ca as se es s ( ) 0 ) 1 ( 1 - 1 4. 2 1) (1 . 3 ) ( a) - (1 2. 1) (a 1. 0 0 n 0 n 0 n = − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = + ∑ ∑ ∑ ∑ = = = = r n r n n n r n r r n r r r n r n a r n a r n 1.5.Definitions of probability In any random experiment there is always uncertainty as to whether a particular event will or will not occur. Thus, if is an event associated with an experiment, we cannot state with certainty that an event will occur or will not occur. Hence, it becomes very important to try to associate a number with the event A which will measure how likely is the event will occur in the defined sample space. This leads to the theory of probability in which we are going to consider the quantitative measure of uncertainty. Approaches to Measuring Probability There are four different conceptual approaches to study probability theory. These are: 9 The classical approach. 9 The frequentist approach. 9 The subjective approach. 9 The axiomatic approach. A. The classical approach This approach is used when: ) All outcomes are equally likely and mutually exclusive. ) Total number of outcomes is finite, say N. Definition: If a random experiment with N equally likely outcomes is conducted and out of these NA outcomes are favorable to the event A, then the probability that event A occurs denoted P (A) is defined as: o . of outcomes favorable to the event A Total nuber outcomes Example 1: A fair die is tossed once. What is the probability of getting a) Number 4? b) An odd number?
  • 16. Page 16 of 18 c) Number greater than 4? d) Either 1 or 2 or …. or 6 Example 2: A box of 80 candles consists of 30 defective and 50 non-defective candles. If 10 of these candles are selected at random, what is the probability? a) All will be defective. b) 6 will be non defective c) All will be non defective Solution: Let A be the event that all will be defective. The total ways in which will occur= Hence, 0.00001825 Ans: 0.265, and 0.00624 for b and c, respectively. Limitation: The classical approach cannot be employed if: 9 it is not possible to enumerate all the possible outcomes for an experiment. 9 the sample points (outcomes) are not mutually exclusive. 9 each and every outcomes is not equally likely. B. The Frequentist Approach This is based on the relative frequencies of outcomes belonging to an event. Definition: The probability of an event A is the proportion of outcomes favorable to A in the long run when the experiment is repeated under same condition. lim Example 1: If records show that 60 out of 100,000 bulbs produced are defective. What is the probability of a newly produced bulb to be defective? lim 60 100,000 0.0006 Limitations of frequentist approach: 9 If repeated trials are not possible we cannot use this approach 9 The limit as N approaches to infinity has no clear meaning (How large is large??)
  • 17. Page 17 of 18 9 Generating infinite trials has cost imposition. C. Subjective Approach It is always based on some prior body of knowledge. Hence subjective measures of uncertainty are always conditional on this prior knowledge. Definition: Subjective probability is the degree of believe assigned to the occurrence of an event by a particular individual. Examples: - A medical Dr. may assign the probability that a patient recovers from a disease. - Estimating the likelyhood that you will earn an A grade in this course. D. Axiomatic Approach: Let E be a random experiment and S be a sample space associated with E. With each event A defined on S. We can associate a real number called the probability of A satisfying the following properties called axioms of probability or postulates of probability. 1. 0 (i.e. the probability of any event is non-negative real number) 2. 1 (Sure event) 3. If and are two mutually exclusive events, the probability that one or the other occur equals the sum of the two probabilities. i. e. . 4. If , , …. form a sequence of pair wise mutually exclusive events (meaning they satisfy for all then , … . 1.6.Derived theorems of probability 1. 0 for any sample space S 2. If ′ is the complement of event , then ′ 1 3. If are any two events in S, then 4. If then 5. For any two events say, A and B, the probability that exactly one of the events A or B occurs but not both is : 2
  • 18. Page 18 of 18 E Ex xa am mp pl le es s 1 1) ) F Fo or r a an ny y e ev ve en nt ts s A A a an nd d B B s sh ho ow w t th ha at t P P( (A A ∪ ∪ B B) ) ≤ ≤ P P( (A A) ) + + P P( (B B) ) 2 2) ) S Su up pp po os se e A A a an nd d B B a ar re e e ev ve en nt ts s f fo or r w wh hi ic ch h P P ( (A A) ) = =x x P P( (B B) ) = = y y a an nd d P P( (A A ∩ ∩ B B) ) = =z z F Fi in nd d i i. . P P ( (A A/ / ∪ ∪ B B) ) i ii i) ) P P ( (A A/ / ∩ ∩ B B/ / ) ) 3 3) ) I If f P P( (A A) )= = ¾ ¾ a an nd d P P( (B B/ / ) ) = =1 1/ /4 4, caan n A A a an nd d B B b be e mutually exclusive? 4 4) ) I If f P P( (A Ac = =a a P P( (B B/ / ) ) = =b b S Sh ho ow w t th ha at t P P( (A A ∩ ∩ B B) ) ≥ ≥ 1 1- -a a- -b b )