SlideShare a Scribd company logo
Plant Growth Models
Experiences with cassava: Highlighting
dangers and pitfalls.
What use are they?
• To ask difficult to answer questions of “What…if?”
• To predict production for management purposes.
• To understand better how little we know.
Lobell et al. (2014) NCC
B
Types of models?
• Statistical
• Mechanistic or process models.
Both have important but distinct roles to play, but none of the models are
totally trustworthy…..you must treat output with caution!
Hawkins et al. (2012) GCB
B
Difficult what if questions.
The questions may be difficult due to long time
frames, high costs, or technical difficulties of using
more traditional experimental methods. These models
are more interested in trends and tendencies than a
perfect estimate of production.
• How to manage difficult to reproduce situations like
climate change.
• What happens if I include a new trait into a breeding
programme.
• Long term fertility effects.
Ramirez-Villegas & Challinor (2016)
B
Early work on cassava models
JC
The Current Cassava Model
Objectives.
• To answer “What if?” questions, especially management and
climate change.
• Better understand the crop.
The model had to be process based or mechanistic to meet these
objectives.
JRV
What could we build on?
We would use, wherever possible existing code or subroutines.
• We decided to use the best currently available model, GUMCAS,
which had been converted (supposedly) to DSSAT format.
• The advantage of using a DSSAT based model is the existence of
routines already coded for many processes common to all plants
(e.g. water balance).
• There was little information on cassava grown outside the area o
12N and 12S so we limited the model to these limits, but made it
readily adaptable when information comes available.
JRV
Unpleasant surprises.
• The CSCAS model, supposedly based on GUMCAS, was a cereal
model converted to model cassava and had lost many of GUMCAS’s
features, but not all.
• The CSCAS model was poorly documented, not efficiently
programmed by an agronomist and difficult to understand.
• We were not quite sure what the best team composition should be
We now strongly suspect that we would have been better off
building a completely new cassava model, based on DSSAT
routines.
JRV
What’s different with cassava
Following the philosophy of buidling on code that already exists we
identified the following characteristics of cassava which distinguish
it from other crops and available routines:
1. Cassava does not have distinct growth phases like annual crops.
2. Cassava does not have a specific maturity date as in many crops.
3. Water conservation via stomatal response to both VPD and soil
water status rather than leaf water potential (φ).
4. Cassava restricts leaf area according to nutrient availability and
does not dilute nutrients when they are deficient.
JC
A very simple but
highly intelligent
plant!
Nodal units that consist of leaf
(inlcuding petiole), axillary buds,
node and internode, fibrous roots
and swollen roots that store starch.
Branching occurs as forking when
the terminal apex becomes
reproductive and the axillary bugs
immediately below the apex
develop as branches. (Note: the
model does not contemplate lateral
branches.)
JC
Model structure –cohorts
A group of nodes of the
same age, regardless of
branching
JC
The model structure to take account of
cassava’s specific traits.
• The basic structure is the nodal unit, which subtend leaves that
intercept incoming solar radiation.
• The total number of nodes is determined by the plant density and the
forking.
• Radiation use efficiency of the intercepted radation is used to determine
available carbohydrates for growth.
• The nodal units and the fibrous feeder roots have first call on
carbohydrate with excess going to the storage roots.
• Nodal unit number and development is restricted when insufficient
carbohydrate or nutrients are available and also by temperature and
water dficit. With nutrients (N) leaf expansion varies to maintain
constant leaf N content.
• The stomatal conductivity is reduced by reduced available water in the
soil and leaf to air vapour pressure déficit.
Rather than use black boxes we tried to use wherever possible
observable parameters.
JC
Model structure
Phenology
Time to branching
Growth
Node weight
Leafcanopy
Carbohydrate
production (RUE)
Feeder roots
Storage roots
Emergence
Temperature
(thermal time,
plant age)
Soil
water
balanceRainfall
Soil type
Soil
water
stress
Node number
Leaf area
Leaf weight
Leaf duration
Demand
Supply
SpilloverRadiation
VPD
Nitrogen
stress
JRV
Top growth preference over
storage root growh.
• Increasing assimilate by misting or decreasing it by
shading has minimal effect on top growth and very
large effects on root growth.
• Hence, we assume top growth has preference.
JC
The number of nodal
units per ápex and
branch number.
JC
Leaf area of
individual leaf
Data from Irikura et al. (1979)
JC
Evidence for constant leaf nutrient content
and photosynthesis.
Fertility
level
LAI Nitrogen per unit
area (mg-1 dm-2)
Nitrogen as %
dry matter of leaf
with petiole
Low 1.7 21.7 3.5
Medium 3.5 20.2 3.7
High 5.4 18.9 3.7
LAI and leaf nitrogen content of MMex 59 at three fertility levels.
Source: Cock and Parra (Cock 1984)
Photosynthetic rate with and without N.
Stomatal Conductance
• Stomatal conductance is affected by soil
water and VPD.
• The model uses percentage readily
available wate (RAW) as a measure of
soil water stress, and estimates VPD
from maximum and minimum daily
temperatures.
• There is no correlation between
photosynthesis and leaf water potential,
but a high correlation with leaf
conductance.
• The stomatal conductance is then used
to estimate the reduction in Radiation
Use Efficiency (RUE) on an hourly basis
to determine the assimilate produced
each day.
JC
Soil water stress
• Readily available soil water
and leaf growth.
JC
List of model features
JRV
Problems with developing the model
• Early on a clear picture of important cassava processes and their
reaction to stress.
• Difficulties in converting this into code in the CSCAS model due to:
• More expertise in physiology and agronomy than in programming.
• Complicated coding and poor documentation of the original model.
• Lack of clearly defined modules for individual processes in original code.
• Lack of confidence to eliminate original code and write new routines.
Conclusion: it is often better to write your own code than to try and
correct others, and one needs a well rounded team with programmers,
agronomists and physiologists working together.
Moraleja: Zapatero a su zapatos.....y es mejor hacer zapatos nuevos que
repararlos!
JC
….more learning
• It is important to test the model, but testing has to be at the right
time. A critical number of features need to be developed before
testing.
• Although difficult, it is important to identify what parameters and
processes are most important. We spent too much time on fiddling
with unimportant parameters (eg. Length of leaf senescence
period and elongation of underground stems after germination.)
JC
Where are we now?
• Testing and refining the model.
• We abhor fudge factors and black boxes, so we try to refine the parameters
of the processes rather than putting in general “calibration” factors. This is
more complicated, but should lead to a more robust model.
JRV
Leaf number per apex with and without
water stress.
• We seem to be doing pretty
well, except we have too
many leaves formed in the
early period.
• We suspect we need to look
at the initial soil water status
in the experiment we are
simulating and the time to
germination. An extra few
days would make a big
difference!
JRV
Data from Connor & Cock (1981)
MCol-22
MMex-59
Santander de Quilichao, 1979, water stress experiment
Response to temperatures (Manrique, 1992),
cv. Ceiba, Hawaii
Temperature effect on RUE?
282 m
640 m
1,097 m
JRV
Detailed analysis of even 1 experiment can
be quite informative
Velktamp (1986) PhD Thesis. Experiment in 1978 to assess varietal differences.
Here we analyze MCol-1984
Branching times
Determined by 2 parameters
1. TT to first branch (B01ND)
2. TT from first to second branch
(B12ND)
Leaf number per stem
Determined by 1 parameter:
1. Slope of node production curve
(LNSLP)
Phenology
Period of
water stress
JRV
Detailed analysis of even 1 experiment can
be quite informative
Determined by 1 parameter
1. Weight of node (NODWT)
Stem weight
But also influenced by other parameters, including
(1) Radiation use efficiency (PARUE) –Ecotype
(2) Extinction coefficient (KCAN) –Ecotype
(3) Growth of other organs, esp. leaves
JRV
Canopy development
Branching pattern before DAS 150 seems ok
But… BR1FX, BR2FX, BR3FX are taken directly from measured
data (from Velktamp)
BR1FX=2.1 BR2FX=3.1 BR3FX=2.7 BR4FX=1.0
Apex death
??
JRV
Canopy development
BR4FX=1.5
Note LAI. Goes up but
doesn’t come down
as in observations
JRV
Canopy development
BR4FX=2.7 (=BR3FX)
Note issue with LAI
intensifies.
Remarks
• LAI is sensitive to
branching pattern
• Missing mechanism
for apex death?
JRV
Harvest (storage root) yield
Harvest weight
Heavily influenced by
1. Radiation use efficiency (PARUE) –Ecotype
2. Extinction coefficient (KCAN) –Ecotype
3. Growth of other organs, esp. leaves
And also sink size, i.e. carbohydrate going to stems
and leaves.
– Do we need stronger reduction of leaf size?
- Maybe missing water stress effects on RUE or
KCAN?
Yet, the end-of-season yield is ok.
JRV
Looking at the bigger picture
Node number
(calibration)
Node number
(evaluation)
Harvest yield
(calibration)
Harvest yield
(evaluation)
Moreno-Cadena (2018)
JRV
Final comments:
• We are getting there!
• Do not underestimate the difficulties of modifying someone elses
code. It may be better to write your own.
• You need a well rounded team with distinct strengths….Falcao
would be a hopeless goal keeper!
• Get the model as near complete as possible before trying to
further refine it by calibrating processes, not the whole model.
• Don’t waste time perfecting unimportant processes
JC

More Related Content

Similar to Cassava simulation model

R. serraj. Screening and trait based selection for drought resistance in rice
R. serraj. Screening and trait based selection for drought resistance in rice R. serraj. Screening and trait based selection for drought resistance in rice
R. serraj. Screening and trait based selection for drought resistance in rice
FOODCROPS
 
Developing drought resilient crops for improving productivity of drought pron...
Developing drought resilient crops for improving productivity of drought pron...Developing drought resilient crops for improving productivity of drought pron...
Developing drought resilient crops for improving productivity of drought pron...
ICRISAT
 
Biofuels and Biomaterial Research in the Porter Alliance
Biofuels and Biomaterial Research in the Porter AllianceBiofuels and Biomaterial Research in the Porter Alliance
Biofuels and Biomaterial Research in the Porter Alliance
CTBE - Brazilian Bioethanol Sci&Tech Laboratory
 
Plant Architecture to Boost Quality Production in Fruit crops.pptx
Plant Architecture to Boost Quality Production in Fruit crops.pptxPlant Architecture to Boost Quality Production in Fruit crops.pptx
Plant Architecture to Boost Quality Production in Fruit crops.pptx
prathapraghavan2
 
Session 2 cassava model in dssat to support scheduled planting and high starc...
Session 2 cassava model in dssat to support scheduled planting and high starc...Session 2 cassava model in dssat to support scheduled planting and high starc...
Session 2 cassava model in dssat to support scheduled planting and high starc...
African Cassava Agronomy Initiative
 
Effects of tuber age and variety on physical properties
Effects of tuber age and variety on physical propertiesEffects of tuber age and variety on physical properties
Effects of tuber age and variety on physical properties
Alexander Decker
 
Inside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockadayInside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockaday
MecklerMedia
 
Drought Smart future crops.pptx
Drought Smart future crops.pptxDrought Smart future crops.pptx
Drought Smart future crops.pptx
latief bashir
 
Tomer - Targeted Monitoring
Tomer - Targeted MonitoringTomer - Targeted Monitoring
Tomer - Targeted Monitoring
Soil and Water Conservation Society
 
Theme 4: Roots, Tubers and Bananas: planning for climate resilience
Theme 4: Roots, Tubers and Bananas: planning for climate resilience Theme 4: Roots, Tubers and Bananas: planning for climate resilience
Theme 4: Roots, Tubers and Bananas: planning for climate resilience
African Potato Association (APA)
 
Monday kns peech 1115 1145 room 2 thiele
Monday kns peech 1115 1145 room 2 thieleMonday kns peech 1115 1145 room 2 thiele
Monday kns peech 1115 1145 room 2 thiele
African Potato Association (APA)
 
Growth and development of Horticulture Crops.pptx
Growth and development of Horticulture Crops.pptxGrowth and development of Horticulture Crops.pptx
Growth and development of Horticulture Crops.pptx
AgriHORTICO'S WORLD
 
Cassava model in DSSAT to support scheduled planting and high starch content ...
Cassava model in DSSAT to support scheduled planting and high starch content ...Cassava model in DSSAT to support scheduled planting and high starch content ...
Cassava model in DSSAT to support scheduled planting and high starch content ...
IITA Communications
 
JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017
Irina Silva
 
NSF presentation poster
NSF presentation posterNSF presentation poster
NSF presentation posterBriena Healy
 
Using functional-structural plant modelling to study Arabidopsis response to ...
Using functional-structural plant modelling to study Arabidopsis response to ...Using functional-structural plant modelling to study Arabidopsis response to ...
Using functional-structural plant modelling to study Arabidopsis response to ...
Alejandro Morales Sierra
 
PMDC-MDCAT-Curriculum-2023.pdf
PMDC-MDCAT-Curriculum-2023.pdfPMDC-MDCAT-Curriculum-2023.pdf
PMDC-MDCAT-Curriculum-2023.pdf
kaaif623
 

Similar to Cassava simulation model (20)

R. serraj. Screening and trait based selection for drought resistance in rice
R. serraj. Screening and trait based selection for drought resistance in rice R. serraj. Screening and trait based selection for drought resistance in rice
R. serraj. Screening and trait based selection for drought resistance in rice
 
Thesis DEFENSE
Thesis DEFENSEThesis DEFENSE
Thesis DEFENSE
 
Developing drought resilient crops for improving productivity of drought pron...
Developing drought resilient crops for improving productivity of drought pron...Developing drought resilient crops for improving productivity of drought pron...
Developing drought resilient crops for improving productivity of drought pron...
 
Biofuels and Biomaterial Research in the Porter Alliance
Biofuels and Biomaterial Research in the Porter AllianceBiofuels and Biomaterial Research in the Porter Alliance
Biofuels and Biomaterial Research in the Porter Alliance
 
Plant Architecture to Boost Quality Production in Fruit crops.pptx
Plant Architecture to Boost Quality Production in Fruit crops.pptxPlant Architecture to Boost Quality Production in Fruit crops.pptx
Plant Architecture to Boost Quality Production in Fruit crops.pptx
 
Session 2 cassava model in dssat to support scheduled planting and high starc...
Session 2 cassava model in dssat to support scheduled planting and high starc...Session 2 cassava model in dssat to support scheduled planting and high starc...
Session 2 cassava model in dssat to support scheduled planting and high starc...
 
Effects of tuber age and variety on physical properties
Effects of tuber age and variety on physical propertiesEffects of tuber age and variety on physical properties
Effects of tuber age and variety on physical properties
 
Inside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockadayInside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockaday
 
Drought Smart future crops.pptx
Drought Smart future crops.pptxDrought Smart future crops.pptx
Drought Smart future crops.pptx
 
Tomer - Targeted Monitoring
Tomer - Targeted MonitoringTomer - Targeted Monitoring
Tomer - Targeted Monitoring
 
Theme 4: Roots, Tubers and Bananas: planning for climate resilience
Theme 4: Roots, Tubers and Bananas: planning for climate resilience Theme 4: Roots, Tubers and Bananas: planning for climate resilience
Theme 4: Roots, Tubers and Bananas: planning for climate resilience
 
How Science works overview
How Science works overviewHow Science works overview
How Science works overview
 
Monday kns peech 1115 1145 room 2 thiele
Monday kns peech 1115 1145 room 2 thieleMonday kns peech 1115 1145 room 2 thiele
Monday kns peech 1115 1145 room 2 thiele
 
Growth and development of Horticulture Crops.pptx
Growth and development of Horticulture Crops.pptxGrowth and development of Horticulture Crops.pptx
Growth and development of Horticulture Crops.pptx
 
Cassava model in DSSAT to support scheduled planting and high starch content ...
Cassava model in DSSAT to support scheduled planting and high starch content ...Cassava model in DSSAT to support scheduled planting and high starch content ...
Cassava model in DSSAT to support scheduled planting and high starch content ...
 
JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017JBEI Research Highlights - January 2017
JBEI Research Highlights - January 2017
 
2012 stamps-mbl-1
2012 stamps-mbl-12012 stamps-mbl-1
2012 stamps-mbl-1
 
NSF presentation poster
NSF presentation posterNSF presentation poster
NSF presentation poster
 
Using functional-structural plant modelling to study Arabidopsis response to ...
Using functional-structural plant modelling to study Arabidopsis response to ...Using functional-structural plant modelling to study Arabidopsis response to ...
Using functional-structural plant modelling to study Arabidopsis response to ...
 
PMDC-MDCAT-Curriculum-2023.pdf
PMDC-MDCAT-Curriculum-2023.pdfPMDC-MDCAT-Curriculum-2023.pdf
PMDC-MDCAT-Curriculum-2023.pdf
 

More from Decision and Policy Analysis Program

Propuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIATPropuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIAT
Decision and Policy Analysis Program
 
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Decision and Policy Analysis Program
 
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Decision and Policy Analysis Program
 
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Decision and Policy Analysis Program
 
Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)
Decision and Policy Analysis Program
 
Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)
Decision and Policy Analysis Program
 
Modelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agriculturaModelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agricultura
Decision and Policy Analysis Program
 
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Decision and Policy Analysis Program
 
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Decision and Policy Analysis Program
 
Modelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agriculturaModelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agricultura
Decision and Policy Analysis Program
 
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climáticoVulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
Decision and Policy Analysis Program
 
Modelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticosModelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticos
Decision and Policy Analysis Program
 
Introducción a los servicios climáticos
Introducción a los servicios climáticosIntroducción a los servicios climáticos
Introducción a los servicios climáticos
Decision and Policy Analysis Program
 
Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...
Decision and Policy Analysis Program
 
Servicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América LatinaServicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América Latina
Decision and Policy Analysis Program
 
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Decision and Policy Analysis Program
 
Mesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro AméricaMesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro América
Decision and Policy Analysis Program
 
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Decision and Policy Analysis Program
 
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Decision and Policy Analysis Program
 
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Decision and Policy Analysis Program
 

More from Decision and Policy Analysis Program (20)

Propuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIATPropuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIAT
 
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
 
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
 
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
 
Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)
 
Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)
 
Modelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agriculturaModelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agricultura
 
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
 
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
 
Modelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agriculturaModelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agricultura
 
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climáticoVulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
 
Modelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticosModelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticos
 
Introducción a los servicios climáticos
Introducción a los servicios climáticosIntroducción a los servicios climáticos
Introducción a los servicios climáticos
 
Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...
 
Servicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América LatinaServicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América Latina
 
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
 
Mesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro AméricaMesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro América
 
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
 
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
 
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
 

Recently uploaded

Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 

Recently uploaded (20)

Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 

Cassava simulation model

  • 1. Plant Growth Models Experiences with cassava: Highlighting dangers and pitfalls.
  • 2. What use are they? • To ask difficult to answer questions of “What…if?” • To predict production for management purposes. • To understand better how little we know. Lobell et al. (2014) NCC B
  • 3. Types of models? • Statistical • Mechanistic or process models. Both have important but distinct roles to play, but none of the models are totally trustworthy…..you must treat output with caution! Hawkins et al. (2012) GCB B
  • 4. Difficult what if questions. The questions may be difficult due to long time frames, high costs, or technical difficulties of using more traditional experimental methods. These models are more interested in trends and tendencies than a perfect estimate of production. • How to manage difficult to reproduce situations like climate change. • What happens if I include a new trait into a breeding programme. • Long term fertility effects. Ramirez-Villegas & Challinor (2016) B
  • 5. Early work on cassava models JC
  • 6. The Current Cassava Model Objectives. • To answer “What if?” questions, especially management and climate change. • Better understand the crop. The model had to be process based or mechanistic to meet these objectives. JRV
  • 7. What could we build on? We would use, wherever possible existing code or subroutines. • We decided to use the best currently available model, GUMCAS, which had been converted (supposedly) to DSSAT format. • The advantage of using a DSSAT based model is the existence of routines already coded for many processes common to all plants (e.g. water balance). • There was little information on cassava grown outside the area o 12N and 12S so we limited the model to these limits, but made it readily adaptable when information comes available. JRV
  • 8. Unpleasant surprises. • The CSCAS model, supposedly based on GUMCAS, was a cereal model converted to model cassava and had lost many of GUMCAS’s features, but not all. • The CSCAS model was poorly documented, not efficiently programmed by an agronomist and difficult to understand. • We were not quite sure what the best team composition should be We now strongly suspect that we would have been better off building a completely new cassava model, based on DSSAT routines. JRV
  • 9. What’s different with cassava Following the philosophy of buidling on code that already exists we identified the following characteristics of cassava which distinguish it from other crops and available routines: 1. Cassava does not have distinct growth phases like annual crops. 2. Cassava does not have a specific maturity date as in many crops. 3. Water conservation via stomatal response to both VPD and soil water status rather than leaf water potential (φ). 4. Cassava restricts leaf area according to nutrient availability and does not dilute nutrients when they are deficient. JC
  • 10. A very simple but highly intelligent plant! Nodal units that consist of leaf (inlcuding petiole), axillary buds, node and internode, fibrous roots and swollen roots that store starch. Branching occurs as forking when the terminal apex becomes reproductive and the axillary bugs immediately below the apex develop as branches. (Note: the model does not contemplate lateral branches.) JC
  • 11. Model structure –cohorts A group of nodes of the same age, regardless of branching JC
  • 12. The model structure to take account of cassava’s specific traits. • The basic structure is the nodal unit, which subtend leaves that intercept incoming solar radiation. • The total number of nodes is determined by the plant density and the forking. • Radiation use efficiency of the intercepted radation is used to determine available carbohydrates for growth. • The nodal units and the fibrous feeder roots have first call on carbohydrate with excess going to the storage roots. • Nodal unit number and development is restricted when insufficient carbohydrate or nutrients are available and also by temperature and water dficit. With nutrients (N) leaf expansion varies to maintain constant leaf N content. • The stomatal conductivity is reduced by reduced available water in the soil and leaf to air vapour pressure déficit. Rather than use black boxes we tried to use wherever possible observable parameters. JC
  • 13. Model structure Phenology Time to branching Growth Node weight Leafcanopy Carbohydrate production (RUE) Feeder roots Storage roots Emergence Temperature (thermal time, plant age) Soil water balanceRainfall Soil type Soil water stress Node number Leaf area Leaf weight Leaf duration Demand Supply SpilloverRadiation VPD Nitrogen stress JRV
  • 14. Top growth preference over storage root growh. • Increasing assimilate by misting or decreasing it by shading has minimal effect on top growth and very large effects on root growth. • Hence, we assume top growth has preference. JC
  • 15. The number of nodal units per ápex and branch number. JC
  • 16. Leaf area of individual leaf Data from Irikura et al. (1979) JC
  • 17. Evidence for constant leaf nutrient content and photosynthesis. Fertility level LAI Nitrogen per unit area (mg-1 dm-2) Nitrogen as % dry matter of leaf with petiole Low 1.7 21.7 3.5 Medium 3.5 20.2 3.7 High 5.4 18.9 3.7 LAI and leaf nitrogen content of MMex 59 at three fertility levels. Source: Cock and Parra (Cock 1984) Photosynthetic rate with and without N.
  • 18. Stomatal Conductance • Stomatal conductance is affected by soil water and VPD. • The model uses percentage readily available wate (RAW) as a measure of soil water stress, and estimates VPD from maximum and minimum daily temperatures. • There is no correlation between photosynthesis and leaf water potential, but a high correlation with leaf conductance. • The stomatal conductance is then used to estimate the reduction in Radiation Use Efficiency (RUE) on an hourly basis to determine the assimilate produced each day. JC
  • 19. Soil water stress • Readily available soil water and leaf growth. JC
  • 20. List of model features JRV
  • 21. Problems with developing the model • Early on a clear picture of important cassava processes and their reaction to stress. • Difficulties in converting this into code in the CSCAS model due to: • More expertise in physiology and agronomy than in programming. • Complicated coding and poor documentation of the original model. • Lack of clearly defined modules for individual processes in original code. • Lack of confidence to eliminate original code and write new routines. Conclusion: it is often better to write your own code than to try and correct others, and one needs a well rounded team with programmers, agronomists and physiologists working together. Moraleja: Zapatero a su zapatos.....y es mejor hacer zapatos nuevos que repararlos! JC
  • 22. ….more learning • It is important to test the model, but testing has to be at the right time. A critical number of features need to be developed before testing. • Although difficult, it is important to identify what parameters and processes are most important. We spent too much time on fiddling with unimportant parameters (eg. Length of leaf senescence period and elongation of underground stems after germination.) JC
  • 23. Where are we now? • Testing and refining the model. • We abhor fudge factors and black boxes, so we try to refine the parameters of the processes rather than putting in general “calibration” factors. This is more complicated, but should lead to a more robust model. JRV
  • 24. Leaf number per apex with and without water stress. • We seem to be doing pretty well, except we have too many leaves formed in the early period. • We suspect we need to look at the initial soil water status in the experiment we are simulating and the time to germination. An extra few days would make a big difference! JRV Data from Connor & Cock (1981) MCol-22 MMex-59 Santander de Quilichao, 1979, water stress experiment
  • 25. Response to temperatures (Manrique, 1992), cv. Ceiba, Hawaii Temperature effect on RUE? 282 m 640 m 1,097 m JRV
  • 26. Detailed analysis of even 1 experiment can be quite informative Velktamp (1986) PhD Thesis. Experiment in 1978 to assess varietal differences. Here we analyze MCol-1984 Branching times Determined by 2 parameters 1. TT to first branch (B01ND) 2. TT from first to second branch (B12ND) Leaf number per stem Determined by 1 parameter: 1. Slope of node production curve (LNSLP) Phenology Period of water stress JRV
  • 27. Detailed analysis of even 1 experiment can be quite informative Determined by 1 parameter 1. Weight of node (NODWT) Stem weight But also influenced by other parameters, including (1) Radiation use efficiency (PARUE) –Ecotype (2) Extinction coefficient (KCAN) –Ecotype (3) Growth of other organs, esp. leaves JRV
  • 28. Canopy development Branching pattern before DAS 150 seems ok But… BR1FX, BR2FX, BR3FX are taken directly from measured data (from Velktamp) BR1FX=2.1 BR2FX=3.1 BR3FX=2.7 BR4FX=1.0 Apex death ?? JRV
  • 29. Canopy development BR4FX=1.5 Note LAI. Goes up but doesn’t come down as in observations JRV
  • 30. Canopy development BR4FX=2.7 (=BR3FX) Note issue with LAI intensifies. Remarks • LAI is sensitive to branching pattern • Missing mechanism for apex death? JRV
  • 31. Harvest (storage root) yield Harvest weight Heavily influenced by 1. Radiation use efficiency (PARUE) –Ecotype 2. Extinction coefficient (KCAN) –Ecotype 3. Growth of other organs, esp. leaves And also sink size, i.e. carbohydrate going to stems and leaves. – Do we need stronger reduction of leaf size? - Maybe missing water stress effects on RUE or KCAN? Yet, the end-of-season yield is ok. JRV
  • 32. Looking at the bigger picture Node number (calibration) Node number (evaluation) Harvest yield (calibration) Harvest yield (evaluation) Moreno-Cadena (2018) JRV
  • 33. Final comments: • We are getting there! • Do not underestimate the difficulties of modifying someone elses code. It may be better to write your own. • You need a well rounded team with distinct strengths….Falcao would be a hopeless goal keeper! • Get the model as near complete as possible before trying to further refine it by calibrating processes, not the whole model. • Don’t waste time perfecting unimportant processes JC

Editor's Notes

  1. The graph shows a prediction and projection of maize yield in France using a statistical model
  2. Statistical very dangerous when extrapolated beyond its range. Process models nore complex and normally have statistical models within them. Also often have lots of fudge factors which negate many of their advantages.
  3. Specifically designed to: Understand varietal traits associated with yield under non stressed conditions. Evaluate type of pest-disease damage most likely to cause serious damage. We also learned how little we know. Eg. Leaf life in cassava not taken into account before models. Which is more damaging, a single defoliation or continuous reduction in photosnthesis.