SlideShare a Scribd company logo
1
Carlos Rallo de la Cruz
M. Arch. UPM
M. Eng. in Fire safety. UC3M
Dipl. Project Management. PUC
PhD Candidate CERTEC. UPC
Contact
carlosrallo@gmail.com
+34 647865702
Madrid, Spain
www.rallodelacruz.com
www.arquitecturayfuego.es
www.linkedin.com/in/carlosrallo
Fire Safety impact in Building Design
01. Prescriptive Design 05/05/2017
02. Performance Based Design 05/05/2017
03. NFPA 101 Live Safety Code 12/05/2017
04. Fire Safety in complex Architecture designs 12/05/2017
05. CFD / Fire Dynamics Simulator 26/05/2017
06. Crowd Dynamics / FDS+Evac, MassMotion 02/06/2017
Máster en Ingeniería de
Seguridad contra Incendios
2
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
04. CFD / Fire Dynamics Simulator
3
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
FDS
PyroSim - Thunderhead Engineering
Examples
Schedule
4
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
1 The Basics of FDS
1. Introduction
2. Getting Started
3. Running FDS
4. User Support
2 Writing an FDS Input File
5 The Basic Structure of an Input file
6 Setting the Bounds of Time and Space
7 Building the Model
8 Fire and Thermal Boundary Conditions
9 Ventilation
10 Atmospheric Effects
11 User-Specified Functions
12 Chemical Species
13 Combustion
14 Radiation
15 Particles and Droplets
16 Devices and Control Logic
17 Output
18 Alphabetical List of Input Parameters
3 FDS and Smokeview Development Tools
19. The FDS/Smokeview Rwpository
20.Compiling FDS
21. Output File Formats
5
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
• The software Fire Dynamics Simulator (FDS), is a computational fluid dynamics (CFD)
model of fire-driven fluid flow.
• FDS solves numerically a form of the Navier-Stokes equations appropriate for low-
speed, thermally-driven flow with an emphasis on smoke and heat transport from fires.
• Smokeview is a separate visualization program that is used to display the results of an
FDS simulation.
• Turbulence is treated by means of Large Eddy Simulation (LES). It is possible to
perform a Direct Numerical Simulation (DNS) if the underlying numerical mesh is fine
enough. LES is the default mode of operation.
1 The Basics of FDS
6
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density,
and μ is the fluid dynamic viscosity. The different terms correspond to the
inertial forces (1), pressure forces (2), viscous forces (3), and the
external forces applied to the fluid (4).
These equations are always solved together with the continuity equation:
The Navier-Stokes equations represent the conservation of momentum, while
the continuity equation represents the conservation of mass.
1 The Basics of FDS
Navier-Stokes equations
These equations are a system of nonlinear partial differential equations
for abstract vector fields of any size.
SFPE Handbook of Fire Protection Engineering - Introduction to
Mechanics of Fluids
https://www.youtube.com/watch?v=EsWvCBqx1Xc
http://www.librosmaravillosos.com/17ecuacionesquecambiaronelmundo/capit
ulo10.html
7
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
• FDS is a computer program that solves equations that describe the evolution of fire.
• It is a Fortran program that reads input parameters from a text file, computes a numerical
solution to the governing equations, and writes user-specified output data to files.
• Smokeview is a companion program that reads FDS output files and produces animations
on the computer screen.
• Each FDS simulation is controlled by a single text-based input file ending with the file
extension .fds. This input file can be written directly with a text editor or with the help of
a third-party graphical user interface (GUI).
1 The Basics of FDS
8
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
• The operation of FDS is based on a single ASCII text file containing parameters organized
into namelist groups.
• ASCII – American Standard Code for Information Interchange. There are 256 characters that
make up the standard ASCII text.
• A namelist is a Fortran input record.
• Parameters are specified within the input file by using namelist formatted records. Each
namelist record begins with the ampersand character, &, followed immediately by the name of
the namelist group, then a comma-delimited list of the input parameters, and finally a forward
slash, /.
• Do not add anything to a namelist line other than the parameters and values appropriate for
that group. Otherwise, FDS will stop immediately upon execution.
1 The Basics of FDS
9
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
How to Acquire FDS and Smokeview
https://pages.nist.gov/fds-smv/
Along with the FDS User’s Guide, there are resources available on the Internet.
• “Issue Tracker” For reporting bugs and requesting new features.
• “Discussion Group” For clarifying questions and discussing.
• “Wiki Pages” That provide supplementary information about FDS-SMV
development, third-party tools, and other resources.
1 The Basics of FDS
10
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
1 The Basics of FDS
11
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
MS Windows
Click Type “cmd” Change directories to where the input file is located
cmd
cd.. => folder back
dir => directory
cd desktop (folder) => open desktop
cd example (file) => open example
To Run the software => fds example.fds
1 The Basics of FDS
12
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
1 The Basics of FDS
13
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
1 The Basics of FDS
14
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
FDS
IMPUT => .FDS
Boundary => .BF
3D Smoke => .S3D
Particle => .PART
Slice / vector => .SF
Iso-Surface => .ISO
Smoke View (Graphics)
.OUT => Resultados
.SMW => Smoke view
Common Error Statements
Input File Errors
Numerical Instability Errors
Inadequate Computer Resources
Run-Time Errors
File Writing Errors
Poisson Initialization
Until STOP: FDS completed successfully
1 The Basics of FDS
15
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Smokeview
1 The Basics of FDS
16
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Smoke view!!!
1 The Basics of FDS
17
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
1 The Basics of FDS
18
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
1 The Basics of FDS
See: Smokeview, A Tool for Visualizing
Fire Dynamics Simulation Data
Volume I: User’s Guide
19
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
There are two ways that FDS can be run in parallel; that is, exploit multiple cores on a single computer or
multiple processors/cores distributed over multiple computers on a network or compute cluster.
The first way is OpenMP (Open Multi-Processing) which allows a single computer to run a single or multiple
mesh FDS simulation on multiple cores.
The use of OpenMP does not require the computational domain to be broken up into multiple meshes, and it
will still work with cases that have multiple meshes defined.
The second way to run FDS in parallel is by way of MPI (Message Passing Interface). Here, the computational
domain must be divided into multiple meshes and typically each mesh is assigned its own process. These
processes can be limited to a single computer, or they can be distributed over a network.
1 The Basics of FDS
20
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
2 Writing an FDS Input File
21
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
&HEAD CHID=‘couch', TITLE=‘Single Couch Test case' /
CHID is a string of 30 characters or less used to tag the output files.
TITLE is a string of 60 characters or less that describes the simulation
The HEAD Namelist Group
2 Writing an FDS Input File
22
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The TIME Namelist Group
&TIME T_END=600. /
If T_END is set to zero, only the set-up work is performed, allowing you to quickly
check the geometry in Smokeview.
If you want the time line to start at a number other than zero, you can use the
parameter T_BEGIN to specify the time written to file for the first time step.
2 Writing an FDS Input File
23
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MESH Namelist Group
&MESH IJK=24,10,24, XB=1.1,3.5,3.6,4.6,0.0,2.4 /
The mesh is subdivided into uniform cells via the parameter IJK.
All FDS calculations must be performed
within a domain that is made up of
rectilinear volumes called meshes. Each
mesh is divided into rectangular cells, the
number of which depends on the desired
resolution of the flow dynamics. MESH is
the namelist group that defines the
computational domain.
2 Writing an FDS Input File
24
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MESH Namelist Group
• Any obstructions or vents that extend beyond the boundary of the mesh are
cut off at the boundary. There is no penalty for defining objects outside of the
mesh, and these objects will not appear in Smokeview.
• If more than one mesh is used, there should be a MESH line for each.
• The order in which these lines are entered in the input file matters. In
general, the meshes should be entered from finest to coarsest.
• FDS assumes that a mesh listed first in the input file has precedence over a
mesh listed second if the two meshes overlap.
2 Writing an FDS Input File
25
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MESH Namelist Group
• Meshes can overlap, abut, or not touch at all.
• To run FDS in parallel using MPI (Message Passing Interface), you must
break up the computational domain into multiple meshes so that the workload
can be divided among the computers.
• Usually in a MPI calculation, each mesh is assigned its own process, and
each process its own processor. However, it is possible to assign more than
one mesh to a single process, and it is possible to assign more than one
process to a single processor.
2 Writing an FDS Input File
26
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MESH Namelist Group
https://www.youtube.com/watch?v=duhhbOb2L2Y
Mesh Alignment
2 Writing an FDS Input File
27
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MESH Namelist Group
Mesh Resolution
Mesh Resolution depends considerably on what you are trying to accomplish. In general, you
should build an FDS input file using a relatively coarse mesh, and then gradually refine the
mesh until you do not see appreciable differences in your results. This is referred to as a mesh
sensitivity study.
For simulations involving buoyant plumes, a measure of how well the flow field is resolved is
given by the non-dimensional expression D=dx, where D is a characteristic fire diameter
and dx is the nominal size of a mesh cell1. The quantity, ˙Q, is the total heat release rate of
the fire. If it changes over time, you should consider the corresponding change in resolution.
The quantity D=dx can be thought of as the number of computational cells spanning the
characteristic (not necessarily the physical)diameter of the fire. The more cells spanning the
fire, the better the resolution of the calculation.
Third Party Tools
http://www.koverholt.com/fds-mesh-size-calc/
2 Writing an FDS Input File
28
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MISC Namelist Group
MISC is the namelist group of global miscellaneous input parameters. It contains parameters that do not
logically fit into any other category.
Only one MISC line should be entered in the data file. For example, the input line &MISC TMPA=25. /
Sets the ambient temperature at 25 C.
DNS A logical parameter that, if .TRUE., directs FDS to perform a Direct
Numerical Simulation, as opposed to the default Large Eddy Simulation
(LES). This feature is appropriate only for simulations that use mesh cells
that are on the order of a millimeter or less in size, or for diagnostic
purposes.
GVEC The 3 components of gravity, in m/s2. The default is GVEC=0,0,-9.81.
NOISE FDS initializes the flow field with a very small amount of “noise” to prevent
the development of a perfectly symmetric flow when the boundary and initial
conditions are perfectly symmetric. To turn this off, set NOISE=.FALSE. To
control the amount of noise, set NOISE_VELOCITY. Its default value is
0.005 m/s.
OVERWRITE If .FALSE. FDS checks for the existence of CHID.out and stops execution if
it exists.
P_INF Background pressure (at the ground) in Pa. The default is 101325 Pa.
TMPA Ambient temperature, the temperature of everything at the start of the
simulation. The default is 20 C.
2 Writing an FDS Input File
29
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MISC Namelist Group
By default, gravity points in the negative z direction, or more simply, downward. However, to change
the direction of gravity to model a sloping roof or tunnel, for example, specify the gravity vector on
the MISC line with a triplet of numbers of the form GVEC=0.,0.,-9.81, with units of m/s2. This is
the default, but it can be changed to be any direction.
The slope of the tunnel might change as you travel through it; thus, you can tell FDS where to
redirect gravity.
See FDS_User_Guide_6.4.6 Special Topic: Defying Gravity
2 Writing an FDS Input File
30
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The INIT Namelist Group
Usually, an FDS simulation begins at time t = 0 with ambient conditions. The air temperature is
assumed constant with height, and the density and pressure decrease with height (the z direction).
This decrease is not noticed in most building scale calculations, but it is important in large outdoor
simulations.
Species Here, within the region whose bounds are given by the sextuplet XB, the
initial mass fractions of oxygen and propane will be initialized to 0.21 and
0.06, respectively. You must specify the gas species using the SPEC
namelist group.
Temperature To modify the local initial temperature:
2 Writing an FDS Input File
31
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The PRES Namelist Group
Pressure Considerations in Long Tunnels or Vents
The CLIP Namelist Group
Temperature and density bounds are input under the namelist group called CLIP. You only need to set these
values if you notice that one of them appears to be “cut off” when examining the results in Smokeview.
2 Writing an FDS Input File
32
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The SURF Namelist Group
Built the model.
Geometry of the space
to be modeled and
applying boundary
conditions to the solid
surfaces.
Defines the structure
of all solid surfaces
or openings within or
bounding the flow
domain.
2 Writing an FDS Input File
33
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The OBST Namelist Group
Used to define obstructions. The entire geometry of the model is made up entirely of rectangular
solids, each one introduced on a single line in the input file.
Obstructions may be created or removed during a simulation.
See Section 16.4.1 for details.
Use SURF_IDS, an array of three character strings specifying the boundary condition IDs for the top,
sides and bottom of the obstruction, respectively
Put a fire on top of the obstruction. This is a simple way of prescribing a burner.
2 Writing an FDS Input File
34
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The OBST Namelist Group
Thin Obstructions
Overlapping Obstructions
If the faces of two obstructions overlap each other, FDS will choose the surface
properties of the obstruction that is specified second in the input file.
2 Writing an FDS Input File
35
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The OBST Namelist Group
Transparent or Outlined Obstructions
Obstructions can be made semi-transparent by assigning a TRANSPARENCY on the
OBST line. This real parameter ranges from 0 to 1, with 0 being fully transparent.
The parameter should always be set along with either COLOR or an RGB triplet. It
can also be specified on the appropriate SURF line, along with a color indicator. If
you want the obstruction to be invisible, set COLOR=’INVISIBLE’.
Obstructions are typically drawn as solids in Smokeview. To draw an outline
representation, set OUTLINE equal to .TRUE.
2 Writing an FDS Input File
36
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The HOLE Namelist Group
Carve a hole out of an existing obstruction
To allow a hole to be controlled with either the CTRL or DEVC namelist groups, you will need to add the CTRL_ID
or DEVC_ID parameter respectively, to the HOLE line.
2 Writing an FDS Input File
37
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The VENT Namelist Group
Used to prescribe planes adjacent to obstructions or external walls.
A VENT must always be attached to a solid obstruction.
Two of the six coordinates must be the same, denoting a plane as opposed to a solid.
A fire, for example, is usually created by first generating a solid obstruction via an OBST line, and
then specifying a VENT somewhere on one of the faces of the solid with a SURF_ID with the
characteristics of the thermal and combustion properties of the fuel.
See Section 9.1 for instructions on specifying different types of fans that allow gases to flow through.
x = XMAX, x = XMIN, y = YMAX, y = YMIN, z = ZMAX or z = ZMIN
Circular Vents
2 Writing an FDS Input File
38
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The VENT Namelist Group
Open Vents SURF_ID=’OPEN’
This is used only if the VENT is applied to the exterior boundary of the computational domain, where
it denotes a passive opening to the outside. By default, FDS assumes that the exterior boundary of
the computational domain (the XBs on the MESH line) is a solid wall.
If you assume a temperature other than ambient, specify TMP_EXTERIOR along with
SURF_ID=’OPEN’.
VENT functionality can be controlled in some cases using “devices” and “controls,” specified via a DEVC_ID or a
CTRL_ID. See Section 16.4.2 for details.
2 Writing an FDS Input File
39
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Coloring Obstructions, Vents, Surfaces
and Meshes
The three RGB integers range from 0 to
255, indicating the amount of Red,
Green and Blue that make up the color.
If you define the COLOR by name, it is
important that you type the name
exactly as it is listed in the color tables.
Color parameters can be specified on a
SURF line, in which case all surfaces of
that type will have that color, or color
parameters can be applied directly to
obstructions or vents.
2 Writing an FDS Input File
40
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Coloring Obstructions, Vents, Surfaces
and Meshes
Texture Maps
Pasting images onto the obstructions for the purpose of making the Smokeview images more realistic.
Assuming that a JPEG file called paneling.jpg exists in the working directory.
2 Writing an FDS Input File
41
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The MULT Namelist Group
Sometimes obstructions, holes and vents are repeated over and over in the input file.
if a particular set of objects repeats itself in a regular pattern, you can use a utility known as a multiplier.
2 Writing an FDS Input File
42
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Fire and Thermal Boundary Conditions
The properties of each material required are designated via the MATL namelist group.
These properties indicate how rapidly the materials heat up, and how they burn. Each MATL entry in
the input file must have an ID, or name, so that they may be associated with a particular SURF via
the parameter MATL_ID.
define a brick wall that is 4.9 m long, 1 m high, and 20 cm thick.
Note that the thickness of the wall indicated by the OBST line is independent of the THICKNESS
specified by the SURF line. This allows an obstruction to snap to the local grid but still have the
heat transfer solution reflect the actual thickness.
The MALT Namelist Group
2 Writing an FDS Input File
43
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Fire and Thermal Boundary Conditions, Heat Conduction in Solids
The MALT Namelist Group
2 Writing an FDS Input File
44
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The easiest way to describe a supply or exhaust fan is to specify a VENT on a solid surface, and designate a SURF_ID with
some form of specified velocity or volume flow rate. The normal component of velocity is usually specified directly via the
parameter VEL. If VEL is negative, the flow is directed into the computational domain, i.e., a supply vent. If VEL is positive,
the flow is drawn out of the domain, i.e., an exhaust vent. For example, the lines
create a VENT that supplies air at a velocity of 1.2 m/s through an area of nominally 0.16 m2, depending on the
realignment of the VENT onto the FDS mesh.
In this example the VENT may not be exactly 0.16 m2 in area because it may not align exactly with the computational
mesh. If this is the case then VOLUME_FLOW can be prescribed instead of VEL. The units are m3/s. If the flow is entering
the computational domain, VOLUME_FLOW should be a negative number, the same convention as for VEL.
Ventilation
2 Writing an FDS Input File
45
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Total Mass Flux To control the total mass flow rate per unit area (kg/(m2 s)) via the
parameter MASS_FLUX_TOTAL
Heaters You can create a simple heating vent by changing the temperature of the
incoming air &SURF ID='BLOWER', VEL=-1.2, TMP_FRONT=50. /
The VENT with SURF_ID=’BLOWER’ would blow 50 C air at 1.2 m/s into the
flow domain.
Louvered Vents
Most real supply vents are covered with some sort of grill or louvers which act to redirect, or diffuse, the incoming air
stream.
is a boundary condition for a louvered vent that pushes air into the space with a normal velocity of 2 m/s and a tangential
velocity of 3 m/s in the first of the two tangential directions.
In these cases, you might consider simply specifying a flat plate obstruction in front of the VENT with an offset of one
mesh cell. The plate will simply redirect the air flow in all lateral directions.
Ventilation
2 Writing an FDS Input File
46
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
There are occasions where simply defining fixed flow and fixed species boundary conditions is not
sufficient to model the behavior of an HVAC (Heating, Ventilation, and Air Conditioning) system.
The HAVC Namelist Group
Ventilation
2 Writing an FDS Input File
47
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Temperature Stratification
Wind
Atmospheric Effects
2 Writing an FDS Input File
48
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
There are several parameters that may vary in time, temperature, or space. The namelist groups,
RAMP and TABL, allow you to control the behavior of these parameters.
RAMP allows you to specify a function with one independent variable
(such as time) and one dependent variable (such as velocity).
TABL allows you to specify a function of multiple independent variables
(such as a solid angle) and multiple dependent variables (such as a
sprinkler flow rate and droplet speed).
User-Specified Functions
2 Writing an FDS Input File
49
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
When the calculation starts temperatures, velocities, burning rates, etc., are ramped-up from their starting values
because nothing can happen instantaneously. By default, everything is ramped-up to their prescribed values in
approximately 1 s.
However, you can control the rate at which things turn on, or turn off, by specifying time histories either with pre-
defined functions or with user-defined functions. The parameters TAU_Q, TAU_T, and TAU_V indicate that the
heat release rate (HRRPUA); surface temperature (TMP_FRONT); and/or normal velocity (VEL, VOLUME_FLOW),
or MASS_FLUX_TOTAL are to ramp up to their prescribed values in TAU seconds and remain there.
User-Specified Functions
https://www.youtube.com/watch?v=PyWBZLdQn38
2 Writing an FDS Input File
50
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Particles and Droplets
The PART Namelist Group
2 Writing an FDS Input File
51
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Particles and Droplets
The PART Namelist Group
2 Writing an FDS Input File
52
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Devices and Control Logic
The DEVC Namelist Group
All devices are designated via the namelist group DEVC. Every device DEVC contains a
QUANTITY that it monitors. Usually this QUANTITY is written out to a commadelimited
spreadsheet file with the suffix _devc.csv. The quantities are listed in Table 17.3. There are
two types of DEVC output.
• The first is a time history of the given QUANTITY over the course of the simulation.
• The second is a time-averaged profile consisting of a linear array of point devices.
In addition, advanced functionality and properties are accommodated via additional namelist
groups called CTRL (Control) and PROP (Properties).
Each device needs to be sited either at a point within the computational domain,
properties of the device are contained on the PROP line designated by PROP_ID,
which tells FDS to record the temperature at the given point as a function of time.
The ID is a label in the output file whose name is CHID_devc.csv.
2 Writing an FDS Input File
53
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Devices and Control Logic
The DEVC Namelist Group
Some devices have a particular orientation. The parameter IOR (Index of Orientation) is required for
any device that is placed on the surface of a solid. The values 1 or 2 or 3 indicate the direction
that the device “points.” For example, IOR=-1 means that the device is mounted on a wall that
faces in the negative x direction. ORIENTATION is used for devices that are not on a surface and
require a directional specification, like a sprinkler. ORIENTATION is specified with a triplet of real
number values that indicatethe components of the direction vector. The default value of
ORIENTATION is (0,0,-1). For example, a default downward-directed sprinkler spray can be
redirected in other direction. If you were to specify
the sprinkler would point in the direction halfway between the positive x and y directions
2 Writing an FDS Input File
54
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Devices and Control Logic
The PROP Namelist Group
For more complicated devices, it is inconvenient to list all of the properties on each and every
DEVC line. For example, a simulation might include hundreds of sprinklers, but it is tedious to list
the properties of the sprinkler each time the sprinkler is sited.
For these devices, use a separate namelist group called PROP to store the relevant parameters. Each
PROP line is identified by a unique ID, and invoked by a DEVC line by the string PROP_ID. The
best way to describe the PROP group is to list the various special devices and their properties.
2 Writing an FDS Input File
55
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Devices and Control Logic
Sprinklers
Here is a very simple example of a sprinkler:
Heat Detector
QUANTITY=’LINK TEMPERATURE’ defines a heat detector, which uses essentially the same activation algorithm as
a sprinkler, without the water spray.
2 Writing an FDS Input File
56
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Devices and Control Logic
Smoke Detectors
A smoke detector is defined in the input file with an entry similar to:
Beam Detection Systems
Aspiration Detection Systems
2 Writing an FDS Input File
57
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Devices can be used to control various actions, like creating and removing obstructions, or activating and
deactivating fans and vents.
Remove or create a solid obstruction by assigning the character string DEVC_ID to indicate the name of a DEVC
ID on the OBST line that is to be created or removed. This will direct FDS to remove or create the obstruction
when the device changes state to .FALSE. or .TRUE., respectively.
Activating and Deactivating Vents. See 16.4.2
Devices and Control Logic
2 Writing an FDS Input File
58
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Output
The SLCF Namelist Group
The SLCF (“slice file”) namelist group parameters (Table 18.24) allows you to record various gas phase quantities
at more than a single point.
Animated vectors can be created in Smokeview if a given SLCF line has the attribute VECTOR=.TRUE.
Normally, FDS averages slice file data at cell corners. For example, gas temperatures are computed at cell centers,
but they are linearly interpolated to cell corners and output to a file that is read by Smokeview. To prevent this
from happening, set CELL_CENTERED=.TRUE. This forces FDS to output the actual cellcentered data with no
averaging. Note that this feature is mainly useful for diagnostics because it enables you to visualize the values
that FDS actually computes.
2 Writing an FDS Input File
59
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Output
The BNF Namelist Group
The BNDF (“boundary file”) namelist group parameters allows you to record surface quantities at all solid
obstructions.
One way to reduce the size of the output file is to turn off the drawing of boundary information on desired
obstructions. On any given OBST line, if the string BNDF_OBST=.FALSE. is included, the obstruction is not colored.
To turn off all boundary drawing, set BNDF_DEFAULT=.FALSE. on the MISC line. Then individual obstructions can
be turned back on with BNDF_OBST=.TRUE. on the appropriate OBST line.
2 Writing an FDS Input File
60
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Output
The ISOF Namelist Group
The ISOF (“ISOsurface File”) namelist group creates three-dimensional animated contours of gas phase scalar
quantities. For example, a 300 C temperature isosurface is a 3-D surface on which the gas temperature is 300 C.
Three different values of the temperature can be saved via the line:
Smoke in Atriums
http://www.canadianconsultingengineer.com
2 Writing an FDS Input File
61
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Output
The DUMP Namelist Group
Control the rate at which output files are written, and various other global parameters associated with output
files.
The PROF Namelist Group
FDS uses a fine one-dimensional mesh at each boundary cell to compute heat transfer within a solid. Use the
PROF output to record the properties of the solid over the entire thickness.
2 Writing an FDS Input File
62
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Output
The DUMP Namelist Group
Summary of frequently used output quantities.
See Table 17.3
Summary of infrequently used output quantities.
See Table 17.4
2 Writing an FDS Input File
63
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Now lets play..
64
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Third Party Tools
https://github.com/firemodels/fds/wiki/Third-Party-Tools
FDS Graphical User Interfaces (GUIs)
• PyroSim - Thunderhead Engineering
ASPIRE Smoke Detection Simulation - Xtralis
BlenderFDS - Emanuele Gissi
• CYPE-Building Services - CYPE
Project Scorch - Autodesk Labs
• CAD File Conversion Tools
• Third-party Calculation Tools
Video and Image Tools
Evacuation Modeling Tools
STEPS - Mott MacDonald
• Pathfinder - Thunderhead Engineering
Fire-Structural Interaction
Miscellaneous
1 The Basics of FDS
65
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
FDS Material Data References
http://www.thunderheadeng.com/pyrosim/fds-material-data-references/
Web Pages:
UMD Burning Item Database (Home Page): http://www.firebid.umd.edu/index.php
UMD Material Thermal Properties Database: http://www.firebid.umd.edu/material-database.php
UMD Burning Item Database (Data Sets Index): http://www.firebid.umd.edu/burning-item-
database.php
NIST Chemistry Webbook: http://webbook.nist.gov/chemistry/
Cone calorimeter data from Worcester Polytechnic
Institute: http://www.wpi.edu/Academics/Depts/Fire/Lab/Cone/Data
MatWeb: http://matweb.com
Engineering Toolbox: http://engineeringtoolbox.com
Chemical Properties and MSDS Sheets – http://www.sciencestuff.com/chemicals/
The 2006 Dalmarnock Fire Test website http://www.see.ed.ac.uk/fire/dalmarnock.html
Fire Safety Science Digital Archive http://www.iafss.org/publications/fss/info/
1 The Basics of FDS
66
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
FDS Material Data References
http://www.thunderheadeng.com/pyrosim/fds-material-data-references/
Print Publications:
SFPE Handbook of Fire Protection Engineering
Fundamentals of Fire Phenomena, Quintiere
Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk
Management and Forensic Science, Babrauskas (See all Science Books)
An Introduction to Fire Dynamics, 2nd Edition – Dougal Drysdale
ISO/TR 12471:2004 Computational structural fire design – Review of calculation models
Cone calorimeter evaluation of wood products – Fifteenth Annual BCC Conference Flame Retardancy
2004 – session 5
Fire performance of hardwood species – Robert N. White USDA, FS, Forest Products Laboratory (PDF)
Fire Safety of Passenger Trains – Phase 1 material evaluation – NISTIR 6132, NIST
Flammability of alternative daily cover materials – Paul A. Kittle, Ph.D. – Rusmer Inc. (PDF)
Flammability of upholstered furniture using the cone calorimeter – Andrew R Coles – University of
Canterbury
SWRi Technical Publications
Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane
Foam in Smoldering Combustion: http://escholarship.org/uc/item/8fv775b6
http://www.vtt.fi/inf/pdf/publications/2004/P521.pdf
Standardized Test Methods and Related Information
ASTM Fire and Flammability Standards
NFPA Codes and Standards
ISO TC 92 – Fire Safety
FM Global – Approval Standards
2010 California Fire Code‚ Title 24‚ Part 9 (First Printing)
1 The Basics of FDS
67
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
http://www.thunderheadeng.com/pyrosim/
Pyrosim
Third Party Tools । FDS Graphical User Interfaces (GUIs) । Thunderhead Engineering
https://www.youtube.com/watch?v=YDfkLl1ziL4
68
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
CYPE FIRE
https://www.youtube.com/watch?v=-rgqF2uTiwM
Third Party Tools । FDS Graphical User Interfaces (GUIs) ।
http://programas.cype.es/
69
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Third Party Tools । 3dsolid2dfds
https://github.com/firemodels/fds/wiki/Third-Party-Tools
70
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Other information
http://www.sabalcore.com/vertical-markets/engineering/fds-
smv/?gclid=COTX4f2E9NMCFQ4TGwodUCoIFA
FDS in the Cloud
http://www.iafss.org/publications/fss/9/1329/view/fss_9-1329.pdf
BIM to FDS
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=1514895&fileOId=1514896
A method of quantifying user uncertainty in FDS by using Monte Carlo analysis
http://www.nfpa.org/news-and-research/publications/nfpa-journal/2008/january-february-
2008/features/fire-dynamics-simulator
NFPA & FDS
71
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Other information
FDS
Current release version: FDS 6.5.3, SMV 6.4.4
Older version: FDS 5.5.3.
fds5_win_64 ejemplo.fds
Drop file into fds5
https://www.youtube.com/watch?v=kfebeKouNTQ
72
Carlos Rallo de la Cruz
M. Arch. UPM
M. Eng. in Fire safety. UC3M
Dipl. Project Management. PUC
PhD Candidate CERTEC. UPC
Contact
carlosrallo@gmail.com
+34 647865702
Madrid, Spain
www.rallodelacruz.com
www.arquitecturayfuego.es
www.linkedin.com/in/carlosrallo
Fire Safety impact in Building Design
01. Prescriptive Design 05/05/2017
02. Performance Based Design 05/05/2017
03. NFPA 101 Live Safety Code 12/05/2017
04. Fire Safety in complex Architecture designs 12/05/2017
05. CFD / Fire Dynamics Simulator 26/05/2017
06. Crowd Dynamics / FDS+Evac, MassMotion 02/06/2017
Máster en Ingeniería de
Seguridad contra Incendios

More Related Content

Similar to Carlos Rallo iii fds

Sustainable Software Architecture - Open Tour DACH '22
Sustainable Software Architecture - Open Tour DACH '22Sustainable Software Architecture - Open Tour DACH '22
Sustainable Software Architecture - Open Tour DACH '22
Markus Eisele
 
27-28 OCT 2016 - Pathfinder & Engineering Applications
27-28 OCT 2016 - Pathfinder & Engineering Applications27-28 OCT 2016 - Pathfinder & Engineering Applications
27-28 OCT 2016 - Pathfinder & Engineering Applications
BSD Singapore
 
Dagrep v006-i009-complete 2
Dagrep v006-i009-complete 2Dagrep v006-i009-complete 2
Dagrep v006-i009-complete 2
sandeep1721
 
Dagrep v006-i009-complete
Dagrep v006-i009-completeDagrep v006-i009-complete
Dagrep v006-i009-complete
sandeep1721
 
Zahir - Technical Safety - 2017
Zahir - Technical Safety - 2017Zahir - Technical Safety - 2017
Zahir - Technical Safety - 2017
Zahir Patel
 
Perfil Corporativo FORENSE Tecnologia & Partners
Perfil Corporativo FORENSE Tecnologia & PartnersPerfil Corporativo FORENSE Tecnologia & Partners
Perfil Corporativo FORENSE Tecnologia & Partners
Deivid Toledo
 
25-26 OCT 2016 - Advanced PyroSim & Engineering Applications
25-26 OCT 2016 - Advanced PyroSim & Engineering Applications25-26 OCT 2016 - Advanced PyroSim & Engineering Applications
25-26 OCT 2016 - Advanced PyroSim & Engineering Applications
BSD Singapore
 
Nogesi whitepaper
Nogesi whitepaperNogesi whitepaper
Nogesi whitepaper
Marketing Simware
 
Danfoss Shields Its Third Party Applications From Security Threats with patch...
Danfoss Shields Its Third Party Applications From Security Threats with patch...Danfoss Shields Its Third Party Applications From Security Threats with patch...
Danfoss Shields Its Third Party Applications From Security Threats with patch...
Flexera
 
MiCADO framework by Project COLA
MiCADO framework by Project COLAMiCADO framework by Project COLA
MiCADO framework by Project COLA
Project COLA
 
MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...
MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...
MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...
Project COLA
 
Optimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics SimulatorOptimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics Simulator
IRJET Journal
 
FireVu- HazardEx
FireVu- HazardExFireVu- HazardEx
FireVu- HazardEx
Rob Baker
 
CMOS digitally programmable analog front-ends for third generation wireless a...
CMOS digitally programmable analog front-ends for third generation wireless a...CMOS digitally programmable analog front-ends for third generation wireless a...
CMOS digitally programmable analog front-ends for third generation wireless a...
Hoopeer Hoopeer
 
The Vital Role of SP3D in Plant Designing!
The Vital Role of SP3D in Plant Designing!The Vital Role of SP3D in Plant Designing!
The Vital Role of SP3D in Plant Designing!
jaymicrosoftva
 
advanced-lightweight-structures
advanced-lightweight-structuresadvanced-lightweight-structures
advanced-lightweight-structures
Ludovic DESHAYES
 
Definition of project profiles to streamline MBSE deployment efforts
Definition of project profiles to streamline MBSE deployment effortsDefinition of project profiles to streamline MBSE deployment efforts
Definition of project profiles to streamline MBSE deployment efforts
Obeo
 
CV_Max_Kleiner_2017
CV_Max_Kleiner_2017CV_Max_Kleiner_2017
CV_Max_Kleiner_2017
Max Kleiner
 
MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...
MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...
MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...
Alessandra Bagnato
 
DriveAssist – A V2X-Based Driver Assistance System for Android
DriveAssist – A V2X-Based Driver Assistance System for Android DriveAssist – A V2X-Based Driver Assistance System for Android
DriveAssist – A V2X-Based Driver Assistance System for Android
Distributed Multimodal Information Processing Group
 

Similar to Carlos Rallo iii fds (20)

Sustainable Software Architecture - Open Tour DACH '22
Sustainable Software Architecture - Open Tour DACH '22Sustainable Software Architecture - Open Tour DACH '22
Sustainable Software Architecture - Open Tour DACH '22
 
27-28 OCT 2016 - Pathfinder & Engineering Applications
27-28 OCT 2016 - Pathfinder & Engineering Applications27-28 OCT 2016 - Pathfinder & Engineering Applications
27-28 OCT 2016 - Pathfinder & Engineering Applications
 
Dagrep v006-i009-complete 2
Dagrep v006-i009-complete 2Dagrep v006-i009-complete 2
Dagrep v006-i009-complete 2
 
Dagrep v006-i009-complete
Dagrep v006-i009-completeDagrep v006-i009-complete
Dagrep v006-i009-complete
 
Zahir - Technical Safety - 2017
Zahir - Technical Safety - 2017Zahir - Technical Safety - 2017
Zahir - Technical Safety - 2017
 
Perfil Corporativo FORENSE Tecnologia & Partners
Perfil Corporativo FORENSE Tecnologia & PartnersPerfil Corporativo FORENSE Tecnologia & Partners
Perfil Corporativo FORENSE Tecnologia & Partners
 
25-26 OCT 2016 - Advanced PyroSim & Engineering Applications
25-26 OCT 2016 - Advanced PyroSim & Engineering Applications25-26 OCT 2016 - Advanced PyroSim & Engineering Applications
25-26 OCT 2016 - Advanced PyroSim & Engineering Applications
 
Nogesi whitepaper
Nogesi whitepaperNogesi whitepaper
Nogesi whitepaper
 
Danfoss Shields Its Third Party Applications From Security Threats with patch...
Danfoss Shields Its Third Party Applications From Security Threats with patch...Danfoss Shields Its Third Party Applications From Security Threats with patch...
Danfoss Shields Its Third Party Applications From Security Threats with patch...
 
MiCADO framework by Project COLA
MiCADO framework by Project COLAMiCADO framework by Project COLA
MiCADO framework by Project COLA
 
MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...
MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...
MiCADO - Auto-scaling Framework for Docker Containers, orchestrated by Kubern...
 
Optimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics SimulatorOptimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics Simulator
 
FireVu- HazardEx
FireVu- HazardExFireVu- HazardEx
FireVu- HazardEx
 
CMOS digitally programmable analog front-ends for third generation wireless a...
CMOS digitally programmable analog front-ends for third generation wireless a...CMOS digitally programmable analog front-ends for third generation wireless a...
CMOS digitally programmable analog front-ends for third generation wireless a...
 
The Vital Role of SP3D in Plant Designing!
The Vital Role of SP3D in Plant Designing!The Vital Role of SP3D in Plant Designing!
The Vital Role of SP3D in Plant Designing!
 
advanced-lightweight-structures
advanced-lightweight-structuresadvanced-lightweight-structures
advanced-lightweight-structures
 
Definition of project profiles to streamline MBSE deployment efforts
Definition of project profiles to streamline MBSE deployment effortsDefinition of project profiles to streamline MBSE deployment efforts
Definition of project profiles to streamline MBSE deployment efforts
 
CV_Max_Kleiner_2017
CV_Max_Kleiner_2017CV_Max_Kleiner_2017
CV_Max_Kleiner_2017
 
MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...
MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...
MONDO Project @ H2020 Info Day- Cloud computing et Technologies logicielles –...
 
DriveAssist – A V2X-Based Driver Assistance System for Android
DriveAssist – A V2X-Based Driver Assistance System for Android DriveAssist – A V2X-Based Driver Assistance System for Android
DriveAssist – A V2X-Based Driver Assistance System for Android
 

Recently uploaded

A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
Madhumitha Jayaram
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
Mukeshwaran Balu
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
ssuser36d3051
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 

Recently uploaded (20)

A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 

Carlos Rallo iii fds

  • 1. 1 Carlos Rallo de la Cruz M. Arch. UPM M. Eng. in Fire safety. UC3M Dipl. Project Management. PUC PhD Candidate CERTEC. UPC Contact carlosrallo@gmail.com +34 647865702 Madrid, Spain www.rallodelacruz.com www.arquitecturayfuego.es www.linkedin.com/in/carlosrallo Fire Safety impact in Building Design 01. Prescriptive Design 05/05/2017 02. Performance Based Design 05/05/2017 03. NFPA 101 Live Safety Code 12/05/2017 04. Fire Safety in complex Architecture designs 12/05/2017 05. CFD / Fire Dynamics Simulator 26/05/2017 06. Crowd Dynamics / FDS+Evac, MassMotion 02/06/2017 Máster en Ingeniería de Seguridad contra Incendios
  • 2. 2 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 04. CFD / Fire Dynamics Simulator
  • 3. 3 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es FDS PyroSim - Thunderhead Engineering Examples Schedule
  • 4. 4 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 1 The Basics of FDS 1. Introduction 2. Getting Started 3. Running FDS 4. User Support 2 Writing an FDS Input File 5 The Basic Structure of an Input file 6 Setting the Bounds of Time and Space 7 Building the Model 8 Fire and Thermal Boundary Conditions 9 Ventilation 10 Atmospheric Effects 11 User-Specified Functions 12 Chemical Species 13 Combustion 14 Radiation 15 Particles and Droplets 16 Devices and Control Logic 17 Output 18 Alphabetical List of Input Parameters 3 FDS and Smokeview Development Tools 19. The FDS/Smokeview Rwpository 20.Compiling FDS 21. Output File Formats
  • 5. 5 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es • The software Fire Dynamics Simulator (FDS), is a computational fluid dynamics (CFD) model of fire-driven fluid flow. • FDS solves numerically a form of the Navier-Stokes equations appropriate for low- speed, thermally-driven flow with an emphasis on smoke and heat transport from fires. • Smokeview is a separate visualization program that is used to display the results of an FDS simulation. • Turbulence is treated by means of Large Eddy Simulation (LES). It is possible to perform a Direct Numerical Simulation (DNS) if the underlying numerical mesh is fine enough. LES is the default mode of operation. 1 The Basics of FDS
  • 6. 6 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and μ is the fluid dynamic viscosity. The different terms correspond to the inertial forces (1), pressure forces (2), viscous forces (3), and the external forces applied to the fluid (4). These equations are always solved together with the continuity equation: The Navier-Stokes equations represent the conservation of momentum, while the continuity equation represents the conservation of mass. 1 The Basics of FDS Navier-Stokes equations These equations are a system of nonlinear partial differential equations for abstract vector fields of any size. SFPE Handbook of Fire Protection Engineering - Introduction to Mechanics of Fluids https://www.youtube.com/watch?v=EsWvCBqx1Xc http://www.librosmaravillosos.com/17ecuacionesquecambiaronelmundo/capit ulo10.html
  • 7. 7 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es • FDS is a computer program that solves equations that describe the evolution of fire. • It is a Fortran program that reads input parameters from a text file, computes a numerical solution to the governing equations, and writes user-specified output data to files. • Smokeview is a companion program that reads FDS output files and produces animations on the computer screen. • Each FDS simulation is controlled by a single text-based input file ending with the file extension .fds. This input file can be written directly with a text editor or with the help of a third-party graphical user interface (GUI). 1 The Basics of FDS
  • 8. 8 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es • The operation of FDS is based on a single ASCII text file containing parameters organized into namelist groups. • ASCII – American Standard Code for Information Interchange. There are 256 characters that make up the standard ASCII text. • A namelist is a Fortran input record. • Parameters are specified within the input file by using namelist formatted records. Each namelist record begins with the ampersand character, &, followed immediately by the name of the namelist group, then a comma-delimited list of the input parameters, and finally a forward slash, /. • Do not add anything to a namelist line other than the parameters and values appropriate for that group. Otherwise, FDS will stop immediately upon execution. 1 The Basics of FDS
  • 9. 9 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es How to Acquire FDS and Smokeview https://pages.nist.gov/fds-smv/ Along with the FDS User’s Guide, there are resources available on the Internet. • “Issue Tracker” For reporting bugs and requesting new features. • “Discussion Group” For clarifying questions and discussing. • “Wiki Pages” That provide supplementary information about FDS-SMV development, third-party tools, and other resources. 1 The Basics of FDS
  • 10. 10 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 1 The Basics of FDS
  • 11. 11 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es MS Windows Click Type “cmd” Change directories to where the input file is located cmd cd.. => folder back dir => directory cd desktop (folder) => open desktop cd example (file) => open example To Run the software => fds example.fds 1 The Basics of FDS
  • 12. 12 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 1 The Basics of FDS
  • 13. 13 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 1 The Basics of FDS
  • 14. 14 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es FDS IMPUT => .FDS Boundary => .BF 3D Smoke => .S3D Particle => .PART Slice / vector => .SF Iso-Surface => .ISO Smoke View (Graphics) .OUT => Resultados .SMW => Smoke view Common Error Statements Input File Errors Numerical Instability Errors Inadequate Computer Resources Run-Time Errors File Writing Errors Poisson Initialization Until STOP: FDS completed successfully 1 The Basics of FDS
  • 15. 15 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Smokeview 1 The Basics of FDS
  • 16. 16 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Smoke view!!! 1 The Basics of FDS
  • 17. 17 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 1 The Basics of FDS
  • 18. 18 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 1 The Basics of FDS See: Smokeview, A Tool for Visualizing Fire Dynamics Simulation Data Volume I: User’s Guide
  • 19. 19 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es There are two ways that FDS can be run in parallel; that is, exploit multiple cores on a single computer or multiple processors/cores distributed over multiple computers on a network or compute cluster. The first way is OpenMP (Open Multi-Processing) which allows a single computer to run a single or multiple mesh FDS simulation on multiple cores. The use of OpenMP does not require the computational domain to be broken up into multiple meshes, and it will still work with cases that have multiple meshes defined. The second way to run FDS in parallel is by way of MPI (Message Passing Interface). Here, the computational domain must be divided into multiple meshes and typically each mesh is assigned its own process. These processes can be limited to a single computer, or they can be distributed over a network. 1 The Basics of FDS
  • 20. 20 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 2 Writing an FDS Input File
  • 21. 21 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es &HEAD CHID=‘couch', TITLE=‘Single Couch Test case' / CHID is a string of 30 characters or less used to tag the output files. TITLE is a string of 60 characters or less that describes the simulation The HEAD Namelist Group 2 Writing an FDS Input File
  • 22. 22 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The TIME Namelist Group &TIME T_END=600. / If T_END is set to zero, only the set-up work is performed, allowing you to quickly check the geometry in Smokeview. If you want the time line to start at a number other than zero, you can use the parameter T_BEGIN to specify the time written to file for the first time step. 2 Writing an FDS Input File
  • 23. 23 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MESH Namelist Group &MESH IJK=24,10,24, XB=1.1,3.5,3.6,4.6,0.0,2.4 / The mesh is subdivided into uniform cells via the parameter IJK. All FDS calculations must be performed within a domain that is made up of rectilinear volumes called meshes. Each mesh is divided into rectangular cells, the number of which depends on the desired resolution of the flow dynamics. MESH is the namelist group that defines the computational domain. 2 Writing an FDS Input File
  • 24. 24 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MESH Namelist Group • Any obstructions or vents that extend beyond the boundary of the mesh are cut off at the boundary. There is no penalty for defining objects outside of the mesh, and these objects will not appear in Smokeview. • If more than one mesh is used, there should be a MESH line for each. • The order in which these lines are entered in the input file matters. In general, the meshes should be entered from finest to coarsest. • FDS assumes that a mesh listed first in the input file has precedence over a mesh listed second if the two meshes overlap. 2 Writing an FDS Input File
  • 25. 25 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MESH Namelist Group • Meshes can overlap, abut, or not touch at all. • To run FDS in parallel using MPI (Message Passing Interface), you must break up the computational domain into multiple meshes so that the workload can be divided among the computers. • Usually in a MPI calculation, each mesh is assigned its own process, and each process its own processor. However, it is possible to assign more than one mesh to a single process, and it is possible to assign more than one process to a single processor. 2 Writing an FDS Input File
  • 26. 26 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MESH Namelist Group https://www.youtube.com/watch?v=duhhbOb2L2Y Mesh Alignment 2 Writing an FDS Input File
  • 27. 27 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MESH Namelist Group Mesh Resolution Mesh Resolution depends considerably on what you are trying to accomplish. In general, you should build an FDS input file using a relatively coarse mesh, and then gradually refine the mesh until you do not see appreciable differences in your results. This is referred to as a mesh sensitivity study. For simulations involving buoyant plumes, a measure of how well the flow field is resolved is given by the non-dimensional expression D=dx, where D is a characteristic fire diameter and dx is the nominal size of a mesh cell1. The quantity, ˙Q, is the total heat release rate of the fire. If it changes over time, you should consider the corresponding change in resolution. The quantity D=dx can be thought of as the number of computational cells spanning the characteristic (not necessarily the physical)diameter of the fire. The more cells spanning the fire, the better the resolution of the calculation. Third Party Tools http://www.koverholt.com/fds-mesh-size-calc/ 2 Writing an FDS Input File
  • 28. 28 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MISC Namelist Group MISC is the namelist group of global miscellaneous input parameters. It contains parameters that do not logically fit into any other category. Only one MISC line should be entered in the data file. For example, the input line &MISC TMPA=25. / Sets the ambient temperature at 25 C. DNS A logical parameter that, if .TRUE., directs FDS to perform a Direct Numerical Simulation, as opposed to the default Large Eddy Simulation (LES). This feature is appropriate only for simulations that use mesh cells that are on the order of a millimeter or less in size, or for diagnostic purposes. GVEC The 3 components of gravity, in m/s2. The default is GVEC=0,0,-9.81. NOISE FDS initializes the flow field with a very small amount of “noise” to prevent the development of a perfectly symmetric flow when the boundary and initial conditions are perfectly symmetric. To turn this off, set NOISE=.FALSE. To control the amount of noise, set NOISE_VELOCITY. Its default value is 0.005 m/s. OVERWRITE If .FALSE. FDS checks for the existence of CHID.out and stops execution if it exists. P_INF Background pressure (at the ground) in Pa. The default is 101325 Pa. TMPA Ambient temperature, the temperature of everything at the start of the simulation. The default is 20 C. 2 Writing an FDS Input File
  • 29. 29 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MISC Namelist Group By default, gravity points in the negative z direction, or more simply, downward. However, to change the direction of gravity to model a sloping roof or tunnel, for example, specify the gravity vector on the MISC line with a triplet of numbers of the form GVEC=0.,0.,-9.81, with units of m/s2. This is the default, but it can be changed to be any direction. The slope of the tunnel might change as you travel through it; thus, you can tell FDS where to redirect gravity. See FDS_User_Guide_6.4.6 Special Topic: Defying Gravity 2 Writing an FDS Input File
  • 30. 30 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The INIT Namelist Group Usually, an FDS simulation begins at time t = 0 with ambient conditions. The air temperature is assumed constant with height, and the density and pressure decrease with height (the z direction). This decrease is not noticed in most building scale calculations, but it is important in large outdoor simulations. Species Here, within the region whose bounds are given by the sextuplet XB, the initial mass fractions of oxygen and propane will be initialized to 0.21 and 0.06, respectively. You must specify the gas species using the SPEC namelist group. Temperature To modify the local initial temperature: 2 Writing an FDS Input File
  • 31. 31 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The PRES Namelist Group Pressure Considerations in Long Tunnels or Vents The CLIP Namelist Group Temperature and density bounds are input under the namelist group called CLIP. You only need to set these values if you notice that one of them appears to be “cut off” when examining the results in Smokeview. 2 Writing an FDS Input File
  • 32. 32 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The SURF Namelist Group Built the model. Geometry of the space to be modeled and applying boundary conditions to the solid surfaces. Defines the structure of all solid surfaces or openings within or bounding the flow domain. 2 Writing an FDS Input File
  • 33. 33 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The OBST Namelist Group Used to define obstructions. The entire geometry of the model is made up entirely of rectangular solids, each one introduced on a single line in the input file. Obstructions may be created or removed during a simulation. See Section 16.4.1 for details. Use SURF_IDS, an array of three character strings specifying the boundary condition IDs for the top, sides and bottom of the obstruction, respectively Put a fire on top of the obstruction. This is a simple way of prescribing a burner. 2 Writing an FDS Input File
  • 34. 34 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The OBST Namelist Group Thin Obstructions Overlapping Obstructions If the faces of two obstructions overlap each other, FDS will choose the surface properties of the obstruction that is specified second in the input file. 2 Writing an FDS Input File
  • 35. 35 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The OBST Namelist Group Transparent or Outlined Obstructions Obstructions can be made semi-transparent by assigning a TRANSPARENCY on the OBST line. This real parameter ranges from 0 to 1, with 0 being fully transparent. The parameter should always be set along with either COLOR or an RGB triplet. It can also be specified on the appropriate SURF line, along with a color indicator. If you want the obstruction to be invisible, set COLOR=’INVISIBLE’. Obstructions are typically drawn as solids in Smokeview. To draw an outline representation, set OUTLINE equal to .TRUE. 2 Writing an FDS Input File
  • 36. 36 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The HOLE Namelist Group Carve a hole out of an existing obstruction To allow a hole to be controlled with either the CTRL or DEVC namelist groups, you will need to add the CTRL_ID or DEVC_ID parameter respectively, to the HOLE line. 2 Writing an FDS Input File
  • 37. 37 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The VENT Namelist Group Used to prescribe planes adjacent to obstructions or external walls. A VENT must always be attached to a solid obstruction. Two of the six coordinates must be the same, denoting a plane as opposed to a solid. A fire, for example, is usually created by first generating a solid obstruction via an OBST line, and then specifying a VENT somewhere on one of the faces of the solid with a SURF_ID with the characteristics of the thermal and combustion properties of the fuel. See Section 9.1 for instructions on specifying different types of fans that allow gases to flow through. x = XMAX, x = XMIN, y = YMAX, y = YMIN, z = ZMAX or z = ZMIN Circular Vents 2 Writing an FDS Input File
  • 38. 38 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The VENT Namelist Group Open Vents SURF_ID=’OPEN’ This is used only if the VENT is applied to the exterior boundary of the computational domain, where it denotes a passive opening to the outside. By default, FDS assumes that the exterior boundary of the computational domain (the XBs on the MESH line) is a solid wall. If you assume a temperature other than ambient, specify TMP_EXTERIOR along with SURF_ID=’OPEN’. VENT functionality can be controlled in some cases using “devices” and “controls,” specified via a DEVC_ID or a CTRL_ID. See Section 16.4.2 for details. 2 Writing an FDS Input File
  • 39. 39 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Coloring Obstructions, Vents, Surfaces and Meshes The three RGB integers range from 0 to 255, indicating the amount of Red, Green and Blue that make up the color. If you define the COLOR by name, it is important that you type the name exactly as it is listed in the color tables. Color parameters can be specified on a SURF line, in which case all surfaces of that type will have that color, or color parameters can be applied directly to obstructions or vents. 2 Writing an FDS Input File
  • 40. 40 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Coloring Obstructions, Vents, Surfaces and Meshes Texture Maps Pasting images onto the obstructions for the purpose of making the Smokeview images more realistic. Assuming that a JPEG file called paneling.jpg exists in the working directory. 2 Writing an FDS Input File
  • 41. 41 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The MULT Namelist Group Sometimes obstructions, holes and vents are repeated over and over in the input file. if a particular set of objects repeats itself in a regular pattern, you can use a utility known as a multiplier. 2 Writing an FDS Input File
  • 42. 42 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Fire and Thermal Boundary Conditions The properties of each material required are designated via the MATL namelist group. These properties indicate how rapidly the materials heat up, and how they burn. Each MATL entry in the input file must have an ID, or name, so that they may be associated with a particular SURF via the parameter MATL_ID. define a brick wall that is 4.9 m long, 1 m high, and 20 cm thick. Note that the thickness of the wall indicated by the OBST line is independent of the THICKNESS specified by the SURF line. This allows an obstruction to snap to the local grid but still have the heat transfer solution reflect the actual thickness. The MALT Namelist Group 2 Writing an FDS Input File
  • 43. 43 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Fire and Thermal Boundary Conditions, Heat Conduction in Solids The MALT Namelist Group 2 Writing an FDS Input File
  • 44. 44 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The easiest way to describe a supply or exhaust fan is to specify a VENT on a solid surface, and designate a SURF_ID with some form of specified velocity or volume flow rate. The normal component of velocity is usually specified directly via the parameter VEL. If VEL is negative, the flow is directed into the computational domain, i.e., a supply vent. If VEL is positive, the flow is drawn out of the domain, i.e., an exhaust vent. For example, the lines create a VENT that supplies air at a velocity of 1.2 m/s through an area of nominally 0.16 m2, depending on the realignment of the VENT onto the FDS mesh. In this example the VENT may not be exactly 0.16 m2 in area because it may not align exactly with the computational mesh. If this is the case then VOLUME_FLOW can be prescribed instead of VEL. The units are m3/s. If the flow is entering the computational domain, VOLUME_FLOW should be a negative number, the same convention as for VEL. Ventilation 2 Writing an FDS Input File
  • 45. 45 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Total Mass Flux To control the total mass flow rate per unit area (kg/(m2 s)) via the parameter MASS_FLUX_TOTAL Heaters You can create a simple heating vent by changing the temperature of the incoming air &SURF ID='BLOWER', VEL=-1.2, TMP_FRONT=50. / The VENT with SURF_ID=’BLOWER’ would blow 50 C air at 1.2 m/s into the flow domain. Louvered Vents Most real supply vents are covered with some sort of grill or louvers which act to redirect, or diffuse, the incoming air stream. is a boundary condition for a louvered vent that pushes air into the space with a normal velocity of 2 m/s and a tangential velocity of 3 m/s in the first of the two tangential directions. In these cases, you might consider simply specifying a flat plate obstruction in front of the VENT with an offset of one mesh cell. The plate will simply redirect the air flow in all lateral directions. Ventilation 2 Writing an FDS Input File
  • 46. 46 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es There are occasions where simply defining fixed flow and fixed species boundary conditions is not sufficient to model the behavior of an HVAC (Heating, Ventilation, and Air Conditioning) system. The HAVC Namelist Group Ventilation 2 Writing an FDS Input File
  • 47. 47 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Temperature Stratification Wind Atmospheric Effects 2 Writing an FDS Input File
  • 48. 48 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es There are several parameters that may vary in time, temperature, or space. The namelist groups, RAMP and TABL, allow you to control the behavior of these parameters. RAMP allows you to specify a function with one independent variable (such as time) and one dependent variable (such as velocity). TABL allows you to specify a function of multiple independent variables (such as a solid angle) and multiple dependent variables (such as a sprinkler flow rate and droplet speed). User-Specified Functions 2 Writing an FDS Input File
  • 49. 49 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es When the calculation starts temperatures, velocities, burning rates, etc., are ramped-up from their starting values because nothing can happen instantaneously. By default, everything is ramped-up to their prescribed values in approximately 1 s. However, you can control the rate at which things turn on, or turn off, by specifying time histories either with pre- defined functions or with user-defined functions. The parameters TAU_Q, TAU_T, and TAU_V indicate that the heat release rate (HRRPUA); surface temperature (TMP_FRONT); and/or normal velocity (VEL, VOLUME_FLOW), or MASS_FLUX_TOTAL are to ramp up to their prescribed values in TAU seconds and remain there. User-Specified Functions https://www.youtube.com/watch?v=PyWBZLdQn38 2 Writing an FDS Input File
  • 50. 50 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Particles and Droplets The PART Namelist Group 2 Writing an FDS Input File
  • 51. 51 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Particles and Droplets The PART Namelist Group 2 Writing an FDS Input File
  • 52. 52 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Devices and Control Logic The DEVC Namelist Group All devices are designated via the namelist group DEVC. Every device DEVC contains a QUANTITY that it monitors. Usually this QUANTITY is written out to a commadelimited spreadsheet file with the suffix _devc.csv. The quantities are listed in Table 17.3. There are two types of DEVC output. • The first is a time history of the given QUANTITY over the course of the simulation. • The second is a time-averaged profile consisting of a linear array of point devices. In addition, advanced functionality and properties are accommodated via additional namelist groups called CTRL (Control) and PROP (Properties). Each device needs to be sited either at a point within the computational domain, properties of the device are contained on the PROP line designated by PROP_ID, which tells FDS to record the temperature at the given point as a function of time. The ID is a label in the output file whose name is CHID_devc.csv. 2 Writing an FDS Input File
  • 53. 53 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Devices and Control Logic The DEVC Namelist Group Some devices have a particular orientation. The parameter IOR (Index of Orientation) is required for any device that is placed on the surface of a solid. The values 1 or 2 or 3 indicate the direction that the device “points.” For example, IOR=-1 means that the device is mounted on a wall that faces in the negative x direction. ORIENTATION is used for devices that are not on a surface and require a directional specification, like a sprinkler. ORIENTATION is specified with a triplet of real number values that indicatethe components of the direction vector. The default value of ORIENTATION is (0,0,-1). For example, a default downward-directed sprinkler spray can be redirected in other direction. If you were to specify the sprinkler would point in the direction halfway between the positive x and y directions 2 Writing an FDS Input File
  • 54. 54 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Devices and Control Logic The PROP Namelist Group For more complicated devices, it is inconvenient to list all of the properties on each and every DEVC line. For example, a simulation might include hundreds of sprinklers, but it is tedious to list the properties of the sprinkler each time the sprinkler is sited. For these devices, use a separate namelist group called PROP to store the relevant parameters. Each PROP line is identified by a unique ID, and invoked by a DEVC line by the string PROP_ID. The best way to describe the PROP group is to list the various special devices and their properties. 2 Writing an FDS Input File
  • 55. 55 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Devices and Control Logic Sprinklers Here is a very simple example of a sprinkler: Heat Detector QUANTITY=’LINK TEMPERATURE’ defines a heat detector, which uses essentially the same activation algorithm as a sprinkler, without the water spray. 2 Writing an FDS Input File
  • 56. 56 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Devices and Control Logic Smoke Detectors A smoke detector is defined in the input file with an entry similar to: Beam Detection Systems Aspiration Detection Systems 2 Writing an FDS Input File
  • 57. 57 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Devices can be used to control various actions, like creating and removing obstructions, or activating and deactivating fans and vents. Remove or create a solid obstruction by assigning the character string DEVC_ID to indicate the name of a DEVC ID on the OBST line that is to be created or removed. This will direct FDS to remove or create the obstruction when the device changes state to .FALSE. or .TRUE., respectively. Activating and Deactivating Vents. See 16.4.2 Devices and Control Logic 2 Writing an FDS Input File
  • 58. 58 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Output The SLCF Namelist Group The SLCF (“slice file”) namelist group parameters (Table 18.24) allows you to record various gas phase quantities at more than a single point. Animated vectors can be created in Smokeview if a given SLCF line has the attribute VECTOR=.TRUE. Normally, FDS averages slice file data at cell corners. For example, gas temperatures are computed at cell centers, but they are linearly interpolated to cell corners and output to a file that is read by Smokeview. To prevent this from happening, set CELL_CENTERED=.TRUE. This forces FDS to output the actual cellcentered data with no averaging. Note that this feature is mainly useful for diagnostics because it enables you to visualize the values that FDS actually computes. 2 Writing an FDS Input File
  • 59. 59 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Output The BNF Namelist Group The BNDF (“boundary file”) namelist group parameters allows you to record surface quantities at all solid obstructions. One way to reduce the size of the output file is to turn off the drawing of boundary information on desired obstructions. On any given OBST line, if the string BNDF_OBST=.FALSE. is included, the obstruction is not colored. To turn off all boundary drawing, set BNDF_DEFAULT=.FALSE. on the MISC line. Then individual obstructions can be turned back on with BNDF_OBST=.TRUE. on the appropriate OBST line. 2 Writing an FDS Input File
  • 60. 60 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Output The ISOF Namelist Group The ISOF (“ISOsurface File”) namelist group creates three-dimensional animated contours of gas phase scalar quantities. For example, a 300 C temperature isosurface is a 3-D surface on which the gas temperature is 300 C. Three different values of the temperature can be saved via the line: Smoke in Atriums http://www.canadianconsultingengineer.com 2 Writing an FDS Input File
  • 61. 61 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Output The DUMP Namelist Group Control the rate at which output files are written, and various other global parameters associated with output files. The PROF Namelist Group FDS uses a fine one-dimensional mesh at each boundary cell to compute heat transfer within a solid. Use the PROF output to record the properties of the solid over the entire thickness. 2 Writing an FDS Input File
  • 62. 62 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Output The DUMP Namelist Group Summary of frequently used output quantities. See Table 17.3 Summary of infrequently used output quantities. See Table 17.4 2 Writing an FDS Input File
  • 63. 63 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Now lets play..
  • 64. 64 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Third Party Tools https://github.com/firemodels/fds/wiki/Third-Party-Tools FDS Graphical User Interfaces (GUIs) • PyroSim - Thunderhead Engineering ASPIRE Smoke Detection Simulation - Xtralis BlenderFDS - Emanuele Gissi • CYPE-Building Services - CYPE Project Scorch - Autodesk Labs • CAD File Conversion Tools • Third-party Calculation Tools Video and Image Tools Evacuation Modeling Tools STEPS - Mott MacDonald • Pathfinder - Thunderhead Engineering Fire-Structural Interaction Miscellaneous 1 The Basics of FDS
  • 65. 65 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es FDS Material Data References http://www.thunderheadeng.com/pyrosim/fds-material-data-references/ Web Pages: UMD Burning Item Database (Home Page): http://www.firebid.umd.edu/index.php UMD Material Thermal Properties Database: http://www.firebid.umd.edu/material-database.php UMD Burning Item Database (Data Sets Index): http://www.firebid.umd.edu/burning-item- database.php NIST Chemistry Webbook: http://webbook.nist.gov/chemistry/ Cone calorimeter data from Worcester Polytechnic Institute: http://www.wpi.edu/Academics/Depts/Fire/Lab/Cone/Data MatWeb: http://matweb.com Engineering Toolbox: http://engineeringtoolbox.com Chemical Properties and MSDS Sheets – http://www.sciencestuff.com/chemicals/ The 2006 Dalmarnock Fire Test website http://www.see.ed.ac.uk/fire/dalmarnock.html Fire Safety Science Digital Archive http://www.iafss.org/publications/fss/info/ 1 The Basics of FDS
  • 66. 66 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es FDS Material Data References http://www.thunderheadeng.com/pyrosim/fds-material-data-references/ Print Publications: SFPE Handbook of Fire Protection Engineering Fundamentals of Fire Phenomena, Quintiere Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science, Babrauskas (See all Science Books) An Introduction to Fire Dynamics, 2nd Edition – Dougal Drysdale ISO/TR 12471:2004 Computational structural fire design – Review of calculation models Cone calorimeter evaluation of wood products – Fifteenth Annual BCC Conference Flame Retardancy 2004 – session 5 Fire performance of hardwood species – Robert N. White USDA, FS, Forest Products Laboratory (PDF) Fire Safety of Passenger Trains – Phase 1 material evaluation – NISTIR 6132, NIST Flammability of alternative daily cover materials – Paul A. Kittle, Ph.D. – Rusmer Inc. (PDF) Flammability of upholstered furniture using the cone calorimeter – Andrew R Coles – University of Canterbury SWRi Technical Publications Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion: http://escholarship.org/uc/item/8fv775b6 http://www.vtt.fi/inf/pdf/publications/2004/P521.pdf Standardized Test Methods and Related Information ASTM Fire and Flammability Standards NFPA Codes and Standards ISO TC 92 – Fire Safety FM Global – Approval Standards 2010 California Fire Code‚ Title 24‚ Part 9 (First Printing) 1 The Basics of FDS
  • 67. 67 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es http://www.thunderheadeng.com/pyrosim/ Pyrosim Third Party Tools । FDS Graphical User Interfaces (GUIs) । Thunderhead Engineering https://www.youtube.com/watch?v=YDfkLl1ziL4
  • 68. 68 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es CYPE FIRE https://www.youtube.com/watch?v=-rgqF2uTiwM Third Party Tools । FDS Graphical User Interfaces (GUIs) । http://programas.cype.es/
  • 69. 69 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Third Party Tools । 3dsolid2dfds https://github.com/firemodels/fds/wiki/Third-Party-Tools
  • 70. 70 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Other information http://www.sabalcore.com/vertical-markets/engineering/fds- smv/?gclid=COTX4f2E9NMCFQ4TGwodUCoIFA FDS in the Cloud http://www.iafss.org/publications/fss/9/1329/view/fss_9-1329.pdf BIM to FDS https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=1514895&fileOId=1514896 A method of quantifying user uncertainty in FDS by using Monte Carlo analysis http://www.nfpa.org/news-and-research/publications/nfpa-journal/2008/january-february- 2008/features/fire-dynamics-simulator NFPA & FDS
  • 71. 71 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Other information FDS Current release version: FDS 6.5.3, SMV 6.4.4 Older version: FDS 5.5.3. fds5_win_64 ejemplo.fds Drop file into fds5 https://www.youtube.com/watch?v=kfebeKouNTQ
  • 72. 72 Carlos Rallo de la Cruz M. Arch. UPM M. Eng. in Fire safety. UC3M Dipl. Project Management. PUC PhD Candidate CERTEC. UPC Contact carlosrallo@gmail.com +34 647865702 Madrid, Spain www.rallodelacruz.com www.arquitecturayfuego.es www.linkedin.com/in/carlosrallo Fire Safety impact in Building Design 01. Prescriptive Design 05/05/2017 02. Performance Based Design 05/05/2017 03. NFPA 101 Live Safety Code 12/05/2017 04. Fire Safety in complex Architecture designs 12/05/2017 05. CFD / Fire Dynamics Simulator 26/05/2017 06. Crowd Dynamics / FDS+Evac, MassMotion 02/06/2017 Máster en Ingeniería de Seguridad contra Incendios