How to Do xtabond2
How to Do xtabond2
David Roodman
David Roodman
Research Fellow
Research Fellow
Center for Global Development
Center for Global Development
xtabond2 in a nutshell
xtabond2 in a nutshell
First ado version in 11/03, Mata version in 11/05.
Extends built-in xtabond, to do system GMM,
Windmeijer correction, revamped syntax
Estimators designed for
– Small-T, large-N panels
– One dependent variable
– Dynamic
– Linear
– Regressors endogenous and predetermined
– Fixed individual effects
– Arbitrary autocorrelation and het. within panels
– General application
Outline of paper
Outline of paper
Introduction to linear GMM
Motivation and design of
difference and system GMM
xtabond2 syntax
Black box problem
Black box problem
Canned & sophisticated procedure
Dangers in hidden sophistication
– finite sample ≠ asymptotic
Users should understand motivation and
limits of estimator
Linear GMM in one slide
Linear GMM in one slide
 Instrument vector z such that 0
z 
]
E[ 
 # instruments > # parameters so can’t have 0
E
Z
z 
 ˆ
]
[
E '
1
N
N 
 Want to “minimize” E
Z ˆ
'
1
N in some sense
 In what sense? By a pos-semi-def. quad. form given by A:
  E
ZAZ
E
E
Z
A
E
Z
E
Z
z
A
A
ˆ
ˆ
1
ˆ
1
ˆ
1
ˆ
1
E '
'
'
'
'
'
N
N
N
N
N
N 















 Given A, minimizing leads to   Y
ZAZ
X
X
ZAZ
X
A
'
'
1
'
'
ˆ 

β
 Always unbiased, but which A is efficient? Answer: A should weight
moments E
z'
i inversely with their variances and
covariances:
   
   1
'
1
'
1
'
,
Var
,
Var





 Z
Ω
Z
Z
Z
X
E
Z
Z
X
E
Z
AEGMM
 To make feasible, choose arbitrary proxy for ,
Ω call it H. Do GMM
(one-step). Use residuals to make robust sandwich estimator of
 1
' 
Z
Ω
Z . Rerun. Two-step is feasible, theoretically efficient.
Linear GMM and 2SLS
Linear GMM and 2SLS
 
    Y
Z
Z
Ω
Z
Z
X
X
Z
Z
Ω
Z
Z
X '
1
'
'
1
'
1
'
'
ˆ 



EGMM
β
 If ,
2
I
Ω 
 reduces to
 
    Y
Z
Z
Z
Z
X
X
Z
Z
Z
Z
X '
1
'
'
1
'
1
'
'
2
ˆ 



SLS
β
 If errors i.i.d., efficient GMM is 2SLS
 If not, 2SLS inefficient
Linear GMM in another slide
Linear GMM in another slide
(Holtz-Eakin, Newey, and Rosen 1988)
(Holtz-Eakin, Newey, and Rosen 1988)
(1) E
X
Y 
 β
OLS inconsistent:   0
E '

E
X
(2) Take Z-moments: E
Z
X
Z
Y
Z '
'
'

 β
OLS consistent  
 
0
'
E '

E
ZZ
X
but inefficient  
 
scalar
not
'
'
Var ΩZ
Z
E
Z 
Left-multiply by  2
1
' 
ΩZ
Z :
      E
Z
ΩZ
Z
X
Z
ΩZ
Z
Y
Z
ΩZ
Z '
2
1
'
'
2
1
'
'
2
1
' 



 β
Let   ,
'
2
1
'
*
X
Z
ΩZ
Z
X

   ,
'
2
1
'
*
Y
Z
ΩZ
Z
Y

   E
Z
ΩZ
Z
E '
2
1
'
* 

(3)
*
*
*
E
X
Y 
 β
OLS efficient  
 
I
E 
Var *
OLS on (3) = GLS on (2) = GMM on (1)
GMM = GLS on Z-moments
Difference and system GMM
Difference and system GMM
Basic model:
      0
E
E
E
'
1
,







 
it
i
it
i
it
i
it
it
it
t
i
it y
y








 β
x
Conceptual starting point: OLS
Fixed effects in disturbance term make 1
, 
t
i
y endogenous
o Example: Indonesia
A problem of short panels
Individual dummies (=Within Groups) don’t help
o Transformed 1
, 
t
i
y endogenous, as are deeper lags
Problem: Dynamic Panel Bias (Nickell 1981)
Problem: Dynamic Panel Bias (Nickell 1981)
it
it
t
i
it y
y 
 





  β
'
1
, x
Purges fixed effects, doesn’t spread endogeneity much
Transformed 1
, 
t
i
y still becomes endogenous since the
1
, 
t
i
y in 2
,
1
,
1
, 

 

 t
i
t
i
t
i y
y
y correlates with the 1
, 
t
i
 in
1
, 


 t
i
it
it 


But deeper lags exogenous if no AR(), offering
instruments
Partial solution: OLS in differences
Partial solution: OLS in differences
Differencing eliminates endogeneity to fixed
effects error component. But
o 1
, 
 t
i
y now endogenous to it


o Other predetermined variables become
endogenous in same way
o Still other variables may be endogenous
from the start
For general application, assume no perfect
instruments waiting in the wings
Problem: Other endogeneity
Problem: Other endogeneity
 Assuming no AR() in ,
it
 natural
instruments for 1
, 
 t
i
y are 2
, 
 t
i
y and 2
, 
t
i
y
 Both mathematically related to 1
, 
 t
i
y
 2
, 
t
i
y seems preferable: available at t = 3
 Again, small T influences
 Do same for other endogenous variables
Solution: Instrument with lags (2SLS)
Solution: Instrument with lags (2SLS)
(Anderson and Hsiao 1981)
(Anderson and Hsiao 1981)
Deeper lags available as instruments
o But reduce sample in 2SLS
o Problem for short panels
In differences, errors not i.i.d.
o it

 and 1
, 
 t
i
 mathematically correlated
o 2SLS not efficient
Problem: Inefficiency
Problem: Inefficiency
Use many lags, replacing missing with zero
Generate separate instrument for each lag and time
period instrumented
IV-style:
















 2
,
1
.
.
T
i
i
y
y
 GMM-style:
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
1
2
1
































i
i
i
i
i
i
y
y
y
y
y
y
Result: Arellano-Bond (1991) difference GMM
Solution: GMM & GMM-style instruments
Solution: GMM & GMM-style instruments
(Holtz-Eakin, Newey, and Rosen 1988)
(Holtz-Eakin, Newey, and Rosen 1988)
 E.g., if it
 are AR(1), then it
t
i
t
i
t
i
y 

 


 ~
~
~ 1
,
2
,
2
,
 Must assume 2
, 
t
i
y is invalid instrument in i,t
Problem: Autocorrelation
Problem: Autocorrelation
 If we find AR(l) in it
 , use lags l + 1 and deeper
Solution: Restrict to deeper lags
Solution: Restrict to deeper lags
 Expect AR() in it
i
it 

 

 To check for AR(1) in it
 , test for AR(2) in it
e

 E.g., compare 1
, 
 t
i
it e
e and 3
,
2
, 
  t
i
t
i e
e to detect 2
,
1
, ~ 
 t
i
t
i e
e
 Test statistic for AR(l) in differences:
 


t
i
l
t
i
it e
e
,
,
 Normal under null of no AR(l)
 Arellano and Bond calculate its standard deviation
 z test for AR()
 More general than other AR() tests in Stata.
 abar: post-estimation command for regress, ivreg, ivreg2
Arellano-Bond AR() test
Arellano-Bond AR() test
If y is nearly a random walk, 1
, 
t
i
y is a poor
instrument for it
y
 , mathematical
relationship notwithstanding
Problem: Weak instruments
Problem: Weak instruments
 If  
i
it
y 
E stationary, then   0
E 
 i
it
y 
 1
, 
 t
i
y uncorrelated with fixed effects, thus with i
it 
 

good instrument in levels (if no AR)
 Make system of difference and levels equations
 Concretely, make a stacked data set, with difference
up top, levels below. Treat as single estimation prob
 Instrument differences with levels and v.v.
 “System GMM” (Blundell and Bond 1998)
Solution: Instead of purging fixed effects,
Solution: Instead of purging fixed effects,
find instruments orthogonal to them
find instruments orthogonal to them
(Arellano and Bover 1995)
(Arellano and Bover 1995)
       
       
       
       
4
4
3
4
2
4
1
4
4
3
3
3
2
3
1
3
4
2
3
2
2
2
1
2
4
1
3
1
2
1
1
1
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
w
w
w
w
L
w
D
w
w
w
L
w
D
w
D
w
w
L
w
D
w
D
w
D
w
















Relationship among moments
Relationship among moments
(Tue Gorgens)
(Tue Gorgens)
L
L
L
Problem: Two-step errors too small
Problem: Two-step errors too small
Regression for Arellano-Bond (1991) column (a1), Table 4
Arellano-Bond dynamic panel-data estimation, one-step difference GMM results
------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
n |
L1. | .6862261 .1445943 4.75 0.000 .4003376 .9721147
L2. | -.0853582 .0560155 -1.52 0.130 -.1961109 .0253944
w |
--. | -.6078208 .1782055 -3.41 0.001 -.9601647 -.2554769
L1. | .3926237 .1679931 2.34 0.021 .0604714 .7247759
k |
--. | .3568456 .0590203 6.05 0.000 .240152 .4735392
Arellano-Bond dynamic panel-data estimation, two-step difference GMM results
------------------------------------------------------------------------------
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
n |
L1. | .6287089 .0904543 6.95 0.000 .4498646 .8075531
L2. | -.0651882 .0265009 -2.46 0.015 -.1175852 -.0127912
w |
--. | -.5257597 .0537692 -9.78 0.000 -.6320709 -.4194485
L1. | .3112899 .0940116 3.31 0.001 .1254122 .4971675
k |
--. | .2783619 .0449083 6.20 0.000 .1895702 .3671537
 Problem appears to be one of overfitting
o Efficient GMM deemphasizes moments
with high variance (high second moments)
o Feasible efficient GMM in small samples
may deemphasize outliers (high first
moments)
o Spurious precision
Problem, cont’d
Problem, cont’d
oOne-step estimate:  
Y
f

1
β̂ (conditioning on X, Z)
oOne-step residuals used to constructΩ̂ :
    ))
(
,
(
)
ˆ
,
(
ˆ
ˆ
ˆ '
1
'
'
1
'
1
'
'
2 Y
Y
Ω
Y
Y
Z
Z
Ω
Z
Z
X
X
Z
Z
Ω
Z
Z
X f
g
g 











β
oStandard estimate of  
2
ˆ
Var β treats Ω̂ as constant,
observed, precise—despite dependence on random Y
oTaylor expansion of g around true β :
       
β
β
β
β
β
β







1
ˆ
ˆ
ˆ
2
ˆ
ˆ
,
ˆ
ˆ
,
ˆ
,
ˆ
1 


Ω
Y
Ω
Y
Ω
Y g
g
g
o“Correction” comes from second term
   0
ˆ
E 1 
 β
β so no effect on  
2
ˆ
E β —no coefficient bias
Affects variance
Solution: finite-sample correction
Solution: finite-sample correction
(Windmeijer 2005)
(Windmeijer 2005)
Arellano-Bond dynamic panel-data estimation, one-step difference GMM results
------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
n |
L1. | .6862261 .1445943 4.75 0.000 .4003376 .9721147
L2. | -.0853582 .0560155 -1.52 0.130 -.1961109 .0253944
w |
--. | -.6078208 .1782055 -3.41 0.001 -.9601647 -.2554769
L1. | .3926237 .1679931 2.34 0.021 .0604714 .7247759
k |
--. | .3568456 .0590203 6.05 0.000 .240152 .4735392
Arellano-Bond dynamic panel-data estimation, two-step difference GMM results
------------------------------------------------------------------------------
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
n |
L1. | .6287089 .0904543 6.95 0.000 .4498646 .8075531
L2. | -.0651882 .0265009 -2.46 0.015 -.1175852 -.0127912
w |
--. | -.5257597 .0537692 -9.78 0.000 -.6320709 -.4194485
L1. | .3112899 .0940116 3.31 0.001 .1254122 .4971675
k |
--. | .2783619 .0449083 6.20 0.000 .1895702 .3671537
Arellano-Bond dynamic panel-data estimation, two-step difference GMM results
------------------------------------------------------------------------------
| Corrected
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
n |
L1. | .6287089 .1934138 3.25 0.001 .2462954 1.011122
L2. | -.0651882 .0450501 -1.45 0.150 -.1542602 .0238838
w |
--. | -.5257597 .1546107 -3.40 0.001 -.8314524 -.2200669
L1. | .3112899 .2030006 1.53 0.127 -.0900784 .7126582
k |
--. | .2783619 .0728019 3.82 0.000 .1344196 .4223043
Problem: too many instruments
Problem: too many instruments
In difference and system GMM, # instruments (j) quadratic in T
Analogy:
– In 2SLS, if j = # of regressors, first-stage R2’s=1.0 and
2SLS=OLS (biased)
– Too many instruments overfit endogenous variables
And # of cross-moments in  1
'
,
Var

Z
X
E
Z to be estimated for
efficient GMM quadratic in j—quartic in T!
Estimate of  1
'
,
Var

Z
X
E
Z degrades
Hansen test very weak—p values of 1.000 not uncommon
Little guidance on how many is too many
xtabond2 warns if j > N
Limit number of lags of variables used as instruments
Or “collapse” instruments:
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
1
2
1
































i
i
i
i
i
i
y
y
y
y
y
y
 ,
.
0
0
0
0
0
0
0
0
0
1
2
3
1
2
1





























i
i
i
i
i
i
y
y
y
y
y
y
0
ˆ
2
, 

  it
i
t
i e
y for each t 3
 .
0
,
2
, 

  it
t
i
t
i e
y
Solution: consider limiting instruments
Solution: consider limiting instruments
xtabond2
xtabond2 syntax
syntax
xtabond2 depvar varlist [if exp] [in range]
[, level(#) twostep robust noconstant small noleveleq
artests(#) arlevels h(#) nomata]
ivopt [ivopt ...] gmmopt [gmmopt ...]]
where gmmopt is
gmmstyle(varlist [, laglimits(# #) collapse
equation({diff | level | both}) passthru])
and ivopt is
ivstyle(varlist [, equation({diff | level | both})
passthru mz])
Y X Z
Classic
“GMM-style”
Examples
Examples
Classic one-step difference GMM with no controls except
time dummies
xi: xtabond2 y L.y i.t, gmm(y, laglim(2 .))
iv(i.t) robust noleveleq
Equivalents:
xi: xtabond2 y L.y i.t, gmm(L.y, laglim(1 .))
iv(i.t) robust noleveleq
xi: xtabond2 y L.y i.t, gmm(L.y)
iv(i.t) robust noleveleq
System GMM, two-step, Windmeijer correction,
w1 exogenous, w2 predetermined, w3 exogenous:
xi: xtabond2 y L.y w1 w2 w3 i.t,
gmm(L.y w2 L.w3) iv(i.t w1) two robust
Examples, cont’d
Examples, cont’d
If conditions imposed only on levels,
difference equation effectively discarded.
Equivalent pairs:
regress n w k
xtabond2 n w k, iv(w k, eq(level)) small
ivreg2 n cap (w = k ys)
xtabond2 n w cap, iv(cap k ys, eq(level))
ivreg2 n cap (w = k ys), cluster(id) gmm
xtabond2 n w cap, iv(cap k ys, eq(level)) two
Or even:
regress n w k
abar, lags(2)
xtabond2 n w k, iv(w k, eq(level)) small arlevel
Run times for bbest (seconds)
Run times for bbest (seconds)
700 MHz PC
700 MHz PC
xtabond2 ado 57
xtabond2 Mata, favoring space 14
xtabond2 Mata, favoring speed 11
DPD for Ox 3

Cách sử dụng XTABOND2 trong STATA với GMM

  • 1.
    How to Doxtabond2 How to Do xtabond2 David Roodman David Roodman Research Fellow Research Fellow Center for Global Development Center for Global Development
  • 2.
    xtabond2 in anutshell xtabond2 in a nutshell First ado version in 11/03, Mata version in 11/05. Extends built-in xtabond, to do system GMM, Windmeijer correction, revamped syntax Estimators designed for – Small-T, large-N panels – One dependent variable – Dynamic – Linear – Regressors endogenous and predetermined – Fixed individual effects – Arbitrary autocorrelation and het. within panels – General application
  • 3.
    Outline of paper Outlineof paper Introduction to linear GMM Motivation and design of difference and system GMM xtabond2 syntax
  • 4.
    Black box problem Blackbox problem Canned & sophisticated procedure Dangers in hidden sophistication – finite sample ≠ asymptotic Users should understand motivation and limits of estimator
  • 5.
    Linear GMM inone slide Linear GMM in one slide  Instrument vector z such that 0 z  ] E[   # instruments > # parameters so can’t have 0 E Z z   ˆ ] [ E ' 1 N N   Want to “minimize” E Z ˆ ' 1 N in some sense  In what sense? By a pos-semi-def. quad. form given by A:   E ZAZ E E Z A E Z E Z z A A ˆ ˆ 1 ˆ 1 ˆ 1 ˆ 1 E ' ' ' ' ' ' N N N N N N                  Given A, minimizing leads to   Y ZAZ X X ZAZ X A ' ' 1 ' ' ˆ   β  Always unbiased, but which A is efficient? Answer: A should weight moments E z' i inversely with their variances and covariances:        1 ' 1 ' 1 ' , Var , Var       Z Ω Z Z Z X E Z Z X E Z AEGMM  To make feasible, choose arbitrary proxy for , Ω call it H. Do GMM (one-step). Use residuals to make robust sandwich estimator of  1 '  Z Ω Z . Rerun. Two-step is feasible, theoretically efficient.
  • 6.
    Linear GMM and2SLS Linear GMM and 2SLS       Y Z Z Ω Z Z X X Z Z Ω Z Z X ' 1 ' ' 1 ' 1 ' ' ˆ     EGMM β  If , 2 I Ω   reduces to       Y Z Z Z Z X X Z Z Z Z X ' 1 ' ' 1 ' 1 ' ' 2 ˆ     SLS β  If errors i.i.d., efficient GMM is 2SLS  If not, 2SLS inefficient
  • 7.
    Linear GMM inanother slide Linear GMM in another slide (Holtz-Eakin, Newey, and Rosen 1988) (Holtz-Eakin, Newey, and Rosen 1988) (1) E X Y   β OLS inconsistent:   0 E '  E X (2) Take Z-moments: E Z X Z Y Z ' ' '   β OLS consistent     0 ' E '  E ZZ X but inefficient     scalar not ' ' Var ΩZ Z E Z  Left-multiply by  2 1 '  ΩZ Z :       E Z ΩZ Z X Z ΩZ Z Y Z ΩZ Z ' 2 1 ' ' 2 1 ' ' 2 1 '      β Let   , ' 2 1 ' * X Z ΩZ Z X     , ' 2 1 ' * Y Z ΩZ Z Y     E Z ΩZ Z E ' 2 1 ' *   (3) * * * E X Y   β OLS efficient     I E  Var * OLS on (3) = GLS on (2) = GMM on (1) GMM = GLS on Z-moments
  • 8.
    Difference and systemGMM Difference and system GMM Basic model:       0 E E E ' 1 ,          it i it i it i it it it t i it y y          β x Conceptual starting point: OLS
  • 9.
    Fixed effects indisturbance term make 1 ,  t i y endogenous o Example: Indonesia A problem of short panels Individual dummies (=Within Groups) don’t help o Transformed 1 ,  t i y endogenous, as are deeper lags Problem: Dynamic Panel Bias (Nickell 1981) Problem: Dynamic Panel Bias (Nickell 1981)
  • 10.
    it it t i it y y          β ' 1 , x Purges fixed effects, doesn’t spread endogeneity much Transformed 1 ,  t i y still becomes endogenous since the 1 ,  t i y in 2 , 1 , 1 ,       t i t i t i y y y correlates with the 1 ,  t i  in 1 ,     t i it it    But deeper lags exogenous if no AR(), offering instruments Partial solution: OLS in differences Partial solution: OLS in differences
  • 11.
    Differencing eliminates endogeneityto fixed effects error component. But o 1 ,   t i y now endogenous to it   o Other predetermined variables become endogenous in same way o Still other variables may be endogenous from the start For general application, assume no perfect instruments waiting in the wings Problem: Other endogeneity Problem: Other endogeneity
  • 12.
     Assuming noAR() in , it  natural instruments for 1 ,   t i y are 2 ,   t i y and 2 ,  t i y  Both mathematically related to 1 ,   t i y  2 ,  t i y seems preferable: available at t = 3  Again, small T influences  Do same for other endogenous variables Solution: Instrument with lags (2SLS) Solution: Instrument with lags (2SLS) (Anderson and Hsiao 1981) (Anderson and Hsiao 1981)
  • 13.
    Deeper lags availableas instruments o But reduce sample in 2SLS o Problem for short panels In differences, errors not i.i.d. o it   and 1 ,   t i  mathematically correlated o 2SLS not efficient Problem: Inefficiency Problem: Inefficiency
  • 14.
    Use many lags,replacing missing with zero Generate separate instrument for each lag and time period instrumented IV-style:                  2 , 1 . . T i i y y  GMM-style: . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1 2 1                                 i i i i i i y y y y y y Result: Arellano-Bond (1991) difference GMM Solution: GMM & GMM-style instruments Solution: GMM & GMM-style instruments (Holtz-Eakin, Newey, and Rosen 1988) (Holtz-Eakin, Newey, and Rosen 1988)
  • 15.
     E.g., ifit  are AR(1), then it t i t i t i y        ~ ~ ~ 1 , 2 , 2 ,  Must assume 2 ,  t i y is invalid instrument in i,t Problem: Autocorrelation Problem: Autocorrelation
  • 16.
     If wefind AR(l) in it  , use lags l + 1 and deeper Solution: Restrict to deeper lags Solution: Restrict to deeper lags
  • 17.
     Expect AR()in it i it       To check for AR(1) in it  , test for AR(2) in it e   E.g., compare 1 ,   t i it e e and 3 , 2 ,    t i t i e e to detect 2 , 1 , ~   t i t i e e  Test statistic for AR(l) in differences:     t i l t i it e e , ,  Normal under null of no AR(l)  Arellano and Bond calculate its standard deviation  z test for AR()  More general than other AR() tests in Stata.  abar: post-estimation command for regress, ivreg, ivreg2 Arellano-Bond AR() test Arellano-Bond AR() test
  • 18.
    If y isnearly a random walk, 1 ,  t i y is a poor instrument for it y  , mathematical relationship notwithstanding Problem: Weak instruments Problem: Weak instruments
  • 19.
     If  i it y  E stationary, then   0 E   i it y   1 ,   t i y uncorrelated with fixed effects, thus with i it     good instrument in levels (if no AR)  Make system of difference and levels equations  Concretely, make a stacked data set, with difference up top, levels below. Treat as single estimation prob  Instrument differences with levels and v.v.  “System GMM” (Blundell and Bond 1998) Solution: Instead of purging fixed effects, Solution: Instead of purging fixed effects, find instruments orthogonal to them find instruments orthogonal to them (Arellano and Bover 1995) (Arellano and Bover 1995)
  • 20.
                                   4 4 3 4 2 4 1 4 4 3 3 3 2 3 1 3 4 2 3 2 2 2 1 2 4 1 3 1 2 1 1 1 E E E E E E E E E E E E E E E E i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i w w w w L w D w w w L w D w D w w L w D w D w D w                 Relationship among moments Relationship among moments (Tue Gorgens) (Tue Gorgens) L L L
  • 21.
    Problem: Two-step errorstoo small Problem: Two-step errors too small Regression for Arellano-Bond (1991) column (a1), Table 4 Arellano-Bond dynamic panel-data estimation, one-step difference GMM results ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | .6862261 .1445943 4.75 0.000 .4003376 .9721147 L2. | -.0853582 .0560155 -1.52 0.130 -.1961109 .0253944 w | --. | -.6078208 .1782055 -3.41 0.001 -.9601647 -.2554769 L1. | .3926237 .1679931 2.34 0.021 .0604714 .7247759 k | --. | .3568456 .0590203 6.05 0.000 .240152 .4735392 Arellano-Bond dynamic panel-data estimation, two-step difference GMM results ------------------------------------------------------------------------------ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | .6287089 .0904543 6.95 0.000 .4498646 .8075531 L2. | -.0651882 .0265009 -2.46 0.015 -.1175852 -.0127912 w | --. | -.5257597 .0537692 -9.78 0.000 -.6320709 -.4194485 L1. | .3112899 .0940116 3.31 0.001 .1254122 .4971675 k | --. | .2783619 .0449083 6.20 0.000 .1895702 .3671537
  • 22.
     Problem appearsto be one of overfitting o Efficient GMM deemphasizes moments with high variance (high second moments) o Feasible efficient GMM in small samples may deemphasize outliers (high first moments) o Spurious precision Problem, cont’d Problem, cont’d
  • 23.
    oOne-step estimate:  Y f  1 β̂ (conditioning on X, Z) oOne-step residuals used to constructΩ̂ :     )) ( , ( ) ˆ , ( ˆ ˆ ˆ ' 1 ' ' 1 ' 1 ' ' 2 Y Y Ω Y Y Z Z Ω Z Z X X Z Z Ω Z Z X f g g             β oStandard estimate of   2 ˆ Var β treats Ω̂ as constant, observed, precise—despite dependence on random Y oTaylor expansion of g around true β :         β β β β β β        1 ˆ ˆ ˆ 2 ˆ ˆ , ˆ ˆ , ˆ , ˆ 1    Ω Y Ω Y Ω Y g g g o“Correction” comes from second term    0 ˆ E 1   β β so no effect on   2 ˆ E β —no coefficient bias Affects variance Solution: finite-sample correction Solution: finite-sample correction (Windmeijer 2005) (Windmeijer 2005)
  • 24.
    Arellano-Bond dynamic panel-dataestimation, one-step difference GMM results ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | .6862261 .1445943 4.75 0.000 .4003376 .9721147 L2. | -.0853582 .0560155 -1.52 0.130 -.1961109 .0253944 w | --. | -.6078208 .1782055 -3.41 0.001 -.9601647 -.2554769 L1. | .3926237 .1679931 2.34 0.021 .0604714 .7247759 k | --. | .3568456 .0590203 6.05 0.000 .240152 .4735392 Arellano-Bond dynamic panel-data estimation, two-step difference GMM results ------------------------------------------------------------------------------ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | .6287089 .0904543 6.95 0.000 .4498646 .8075531 L2. | -.0651882 .0265009 -2.46 0.015 -.1175852 -.0127912 w | --. | -.5257597 .0537692 -9.78 0.000 -.6320709 -.4194485 L1. | .3112899 .0940116 3.31 0.001 .1254122 .4971675 k | --. | .2783619 .0449083 6.20 0.000 .1895702 .3671537 Arellano-Bond dynamic panel-data estimation, two-step difference GMM results ------------------------------------------------------------------------------ | Corrected | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- n | L1. | .6287089 .1934138 3.25 0.001 .2462954 1.011122 L2. | -.0651882 .0450501 -1.45 0.150 -.1542602 .0238838 w | --. | -.5257597 .1546107 -3.40 0.001 -.8314524 -.2200669 L1. | .3112899 .2030006 1.53 0.127 -.0900784 .7126582 k | --. | .2783619 .0728019 3.82 0.000 .1344196 .4223043
  • 25.
    Problem: too manyinstruments Problem: too many instruments In difference and system GMM, # instruments (j) quadratic in T Analogy: – In 2SLS, if j = # of regressors, first-stage R2’s=1.0 and 2SLS=OLS (biased) – Too many instruments overfit endogenous variables And # of cross-moments in  1 ' , Var  Z X E Z to be estimated for efficient GMM quadratic in j—quartic in T! Estimate of  1 ' , Var  Z X E Z degrades Hansen test very weak—p values of 1.000 not uncommon Little guidance on how many is too many xtabond2 warns if j > N
  • 26.
    Limit number oflags of variables used as instruments Or “collapse” instruments: . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1 2 1                                 i i i i i i y y y y y y  , . 0 0 0 0 0 0 0 0 0 1 2 3 1 2 1                              i i i i i i y y y y y y 0 ˆ 2 ,     it i t i e y for each t 3  . 0 , 2 ,     it t i t i e y Solution: consider limiting instruments Solution: consider limiting instruments
  • 27.
    xtabond2 xtabond2 syntax syntax xtabond2 depvarvarlist [if exp] [in range] [, level(#) twostep robust noconstant small noleveleq artests(#) arlevels h(#) nomata] ivopt [ivopt ...] gmmopt [gmmopt ...]] where gmmopt is gmmstyle(varlist [, laglimits(# #) collapse equation({diff | level | both}) passthru]) and ivopt is ivstyle(varlist [, equation({diff | level | both}) passthru mz]) Y X Z Classic “GMM-style”
  • 28.
    Examples Examples Classic one-step differenceGMM with no controls except time dummies xi: xtabond2 y L.y i.t, gmm(y, laglim(2 .)) iv(i.t) robust noleveleq Equivalents: xi: xtabond2 y L.y i.t, gmm(L.y, laglim(1 .)) iv(i.t) robust noleveleq xi: xtabond2 y L.y i.t, gmm(L.y) iv(i.t) robust noleveleq System GMM, two-step, Windmeijer correction, w1 exogenous, w2 predetermined, w3 exogenous: xi: xtabond2 y L.y w1 w2 w3 i.t, gmm(L.y w2 L.w3) iv(i.t w1) two robust
  • 29.
    Examples, cont’d Examples, cont’d Ifconditions imposed only on levels, difference equation effectively discarded. Equivalent pairs: regress n w k xtabond2 n w k, iv(w k, eq(level)) small ivreg2 n cap (w = k ys) xtabond2 n w cap, iv(cap k ys, eq(level)) ivreg2 n cap (w = k ys), cluster(id) gmm xtabond2 n w cap, iv(cap k ys, eq(level)) two Or even: regress n w k abar, lags(2) xtabond2 n w k, iv(w k, eq(level)) small arlevel
  • 30.
    Run times forbbest (seconds) Run times for bbest (seconds) 700 MHz PC 700 MHz PC xtabond2 ado 57 xtabond2 Mata, favoring space 14 xtabond2 Mata, favoring speed 11 DPD for Ox 3