SlideShare a Scribd company logo
1 of 14
Download to read offline
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
1/14
 
10.1 INTRODUCTION 
 
 
Block Diagram: Pictorial representation of functions performed by each component of a 
system and that of flow of signals. 
 
( )C s( )R s
( ) ( ) ( )C s G s R s=
( )G s
 
 
Figure 10‐1. Single block diagram representation. 
 
 
 
Components for Linear Time Invariant System(LTIS):  
 
 
 
Figure 10‐2. Components for Linear Time Invariant Systems (LTIS). 
Chapter 10: 
Time‐Domain Analysis and Design of 
Control Systems: Block Diagram Reduction
A. Bazoune 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
2/14
Terminology:  
 
( )C s( )R s ( )G s1 ( )G s2
( )H s
( )Disturbance U s
( )b s
± ( ) ( ) ( )E s R s b s= ± ( )m s
 
Figure 10‐3.   Block Diagram Components. 
 
 
1. Plant: A physical object to be controlled. The Plant  ( )G s2 , is the controlled system, of which a 
particular quantity or condition is to be controlled. 
 
2. Feedback Control System (Closed‐loop Control System): A system which compares output to some 
reference input and keeps output as close as possible to this reference. 
3. Open‐loop Control System: Output of the system is not feedback to the system. 
 
4. Control Element  ( )G s1
, also called the controller, are the components required to generate the 
appropriate control signal  ( )M s  applied to the plant. 
 
5. Feedback Element  ( )H s  is the component required to establish the functional relationship between 
the primary feedback signal  ( )B s  and the controlled output  ( )C s . 
 
6. Reference  Input  ( )R s   is  an  external  signal  applied  to  a  feedback  control  system  in  order  to 
command a specified action of the plant. It often represents ideal plant output behavior. 
 
7. The Controlled Output  ( )C s  is that quantity or condition of the plant which is controlled. 
 
8. Actuating Signal  ( )E s , also called the error or control action, is the algebraic sum consisting of the 
reference input  ( )R s  plus or minus (usually minus) the primary feedback  ( )B s . 
 
9. Manipulated  Variable  ( )M s   (control  signal)  is  that  quantity  or  condition  which  the  control 
elements  ( )G s1
 apply to the plant  ( )G s2
. 
 
10. Disturbance  ( )U s   is  an  undesired  input  signal  which  affects  the  value  of  the  controlled  output 
( )C s . It may enter the plant by summation with  ( )M s , or via an intermediate point, as shown in 
the block diagram of the figure above. 
 
11. Forward Path is the transmission path from the actuating signal  ( )E s  to the output  ( )C s . 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
3/14
12. Feedback Path is the transmission path from the output  ( )C s  to the feedback signal  ( )B s . 
 
13. Summing Point: A circle with a cross is the symbol that indicates a summing point. The  ( )+  or  ( )−  
sign at each arrowhead indicates whether that signal is to be added or subtracted. 
 
14. Branch Point: A branch point is a point from which the signal from a block goes concurrently to other 
blocks or summing points. 
 
 
Definitions 
 
• ( )G s ≡Direct transfer function = Forward transfer function. 
• ( )H s ≡Feedback transfer function. 
• ( ) ( )G s H s ≡ Open‐loop transfer function. 
• ( ) ( )C s R s ≡ Closed‐loop transfer function = Control ratio 
• ( ) ( )C s E s ≡ Feed‐forward transfer function. 
 
( )C s( )R s ( )G s
( )H s
( )B s
OutputInput
( )E s
 
 
Figure 10‐4  Block diagram of a closed‐loop system with a feedback element. 
 
 
10.2 BLOCK DIAGRAMS AND THEIR SIMPLIFICATION 
 
Cascade (Series) Connections 
 
 
 
Figure 10‐5  Cascade (Series) Connection. 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
4/14
Parallel Connections 
 
 
 
Figure 10‐5  Parallel Connection. 
 
 
Closed Loop Transfer Function (Feedback Connections) 
 
( )C s( )R s ( )G s
( )H s
( )B s
( )E s
 
Figure 10.4 (Repeated)    Feedback connection 
 
For the system shown in Figure 10‐4, the output  ( )C s  and input  ( )R s  are related as follows: 
 
( ) ( ) ( )=C s G s E s  
where 
( ) ( ) ( ) ( ) ( ) ( )= − = −E s R s B s R s H s C s  
Eliminating  ( )E s  from these equations gives 
( ) ( ) ( ) ( ) ( )[ ]= −C s G s R s H s C s  
This can be written in the form 
( ) ( )[ ] ( ) ( ) ( )+ =G s H s C s G s R s1  
or 
( )
( )
( )
( ) ( )
C s G s
sR s G H s+
=
1
 
The  Characteristic  equation  of  the  system  is  defined  as  an  equation  obtained  by  setting  the 
denominator polynomial of the transfer function to zero. The Characteristic equation for the above 
system is  
( ) ( )1+G s H s = 0. 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
5/14
Block Diagram Algebra for Summing Junctions 
 
 
 
( )
= +
C = G +R±X
GR±GX
 
 
 
( )= +
C = GR ±X
G R ±X G
 
Figure 10‐6  Summing junctions. 
 
Block Diagram Algebra for Branch Point 
 
 
 
Figure 10‐7  Summing junctions.  
 
 
Block Diagram Reduction Rules 
 
In  many  practical  situations,  the  block  diagram  of  a  Single  Input‐Single  Output  (SISO),  feedback 
control  system  may  involve  several  feedback  loops  and  summing  points.  In  principle,  the  block 
diagram  of  (SISO)  closed  loop  system,  no  matter  how  complicated  it  is,  it  can  be  reduced  to  the 
standard single loop form shown in Figure 10‐4. The basic approach to simplify a block diagram can be 
summarized in Table 1: 
 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
6/14
TABLE 10‐1  Block Diagram Reduction Rules 
 
1.  Combine all cascade blocks 
2.  Combine all parallel blocks 
3.  Eliminate all minor (interior) feedback loops 
4.  Shift summing points to left 
5.  Shift takeoff points to the right 
6.  Repeat Steps 1 to 5 until the canonical form is obtained 
 
TABLE 10‐2.  Some Basic Rules with Block Diagram Transformation 
 
G1u
2u
y
1/G
1u
1
y G u
u y
G
=
=
y Gu=
Gu
u
y
( )2 1 2e G u u= −
Gu
y
y
G
G1u
2u
y
G1u
2u
y
G
u
y
y
G
u
y
1/G
Gu
G
2u
y 1 2y Gu u= −
u ( )1 2y G G u= −1G y21/G2G
( )Y GG X= 1 21G Y2GX
( )Y G G X= ±1 2
1G
2G
X
Y±
1 2G GX Y
1 2±G GX Y
 
 
█  Example 1: A feedback system is transformed into a unity feedback system 
 
( )R s
( ) ( )G s H s
( )C s
( )1 H s
( )R s
( )G s
( )C s
( )H s
 
=
±
⋅=
±
=
GH
GH
HGH
G
R
C
1
1
1
Closed‐loop Transfer function 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
7/14
█  Example 2:  
 
Reduce the following block diagrams 
 
 
 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
8/14
█  Example 3:  
 
█  Example 4  
 
 
 
G1 and G2 are in series 
 
 
H1 and H2 and H3 are in 
parallel 
 
 
G1 is in series with the 
feedback configuration.  
 
 
 
 
 
█  Example  5:  The  main  problem  here  is  the  feed‐forward  of  V3(s).  Solution  is  to  move  this 
pickoff point forward. 
 
( )
⎡ ⎤
⎢ ⎥
⎣ ⎦
3 2
1
3 2 1 2 3
G GC(s)
= G
R(s) 1+G G H - H + H
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
9/14
 
 
 
 
 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
10/14
█  Example 6:  
 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
11/14
█  Example 7  
 
Use block diagram reduction to simplify the block diagram below into a single block relating 
( )Y s  to  ( )R s . 
 
█  Solution 
 
 
 
 
 
█  Example 8  
 
Use block diagram algebra to solve the previous example. 
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
12/14
█  Solution  
 
 
Multiple‐Inputs cases 
 
In feedback control system, we often encounter multiple inputs (or even multiple output cases). For a 
linear system, we can apply the superposition principle to solve this type of problems, i.e. to treat 
each input one at a time while setting all other inputs to zeros, and then algebraically add all the 
outputs as follows: 
 
TABLE 10‐3: Procedure For reducing Multiple Input Blocks 
 
1  Set all inputs except one equal to zero
2  Transform the block diagram to solvable form. 
3  Find the output response due to the chosen input action alone 
4  Repeat Steps 1 to 3 for each of the remaining inputs. 
5  Algebraically sum all the output responses found in Steps 1 to 5 
 
█  Example 9 :  We shall determine the output C of the following system: 
 
( )R s
( )D s
( )1G s ( )2G s ( )C s
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
13/14
█  Solution  
 
Using the superposition principle, the procedure is illustrated in the following steps: 
 
Step1:  
Put  ( ) 0D s ≡  as shown in Figure (a). 
 
Step2:  
The  block  diagrams  reduce  to  the  block 
shown in Figure. b 
 
Step 3:  
The  output  RC   due  to  input  ( )R s   is 
shown  in  Figure  (c)  and  is  given  by  the 
relationship 
R
GG
GG
CR ⋅
+
=
21
21
1
 
Step 4:  
Put  ( ) 0R s ≡  as shown in Figure (d). 
 
Step 5: Put ‐1  into a block, representing 
the negative feedback effect. (Figure d) 
Step 6: Rearrange the block diagrams as 
shown in Figure (e). 
 
Step 7: Let the ‐1 block be absorbed into 
the, summing point as shown in Figure (f). 
 
Step 8: By Equation (7.3), the output  UC  
due to input U is : 
U
GG
G
CU ⋅
+
=
21
2
1
 
 
Step 9: The total output is C: 
[ ]
1 2 2
1 2 1 2
2
1
1 2
1 1
1
R U
G G G
C C C R U
G G G G
G
G R U
G G
= + = ⋅ + ⋅
+ +
= ⋅ +
+
 
 
( )R s
( )1G s ( )2G s
( )C s
 
Figure (a) 
 
( )R s
( ) ( )1 2G s G s ( )C s
 
Figure (b) 
 
( )R s ( ) ( )
( ) ( )
1 2
1 21+
G s G s
G s G s
( )C s
 
Figure (c) 
( )1G s ( )2G s
( )DC s
1−
( )D s
 
Figure (d) 
 
( )2G s
( )D s ( )DC s
1− ( )1G s
Figure (e) 
 
( )2G s
( )D s ( )DC s
( )1G s
Figure (f) 
█  Example 10:  
 
ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems
14/14
 

More Related Content

What's hot

Simulation example with matlab
Simulation example with matlabSimulation example with matlab
Simulation example with matlabRoma Larumbia
 
Seismic Analysis of Structures - II
Seismic Analysis of Structures - IISeismic Analysis of Structures - II
Seismic Analysis of Structures - IItushardatta
 
block diagram representation of control systems
block diagram representation of  control systemsblock diagram representation of  control systems
block diagram representation of control systemsAhmed Elmorsy
 
Week 10 part 1 pe 6282 Block Diagrams
Week  10 part 1 pe 6282   Block DiagramsWeek  10 part 1 pe 6282   Block Diagrams
Week 10 part 1 pe 6282 Block DiagramsCharlton Inao
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
Design of sampled data control systems part 2. 6th lecture
Design of sampled data control systems part 2.  6th lectureDesign of sampled data control systems part 2.  6th lecture
Design of sampled data control systems part 2. 6th lectureKhalaf Gaeid Alshammery
 
Design of sampled data control systems 5th lecture
Design of sampled data control systems  5th  lectureDesign of sampled data control systems  5th  lecture
Design of sampled data control systems 5th lectureKhalaf Gaeid Alshammery
 
3 recursive bayesian estimation
3  recursive bayesian estimation3  recursive bayesian estimation
3 recursive bayesian estimationSolo Hermelin
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...Belinda Marchand
 
Scalable Online Betweenness Centrality in Evolving Graphs
Scalable Online Betweenness Centrality in Evolving GraphsScalable Online Betweenness Centrality in Evolving Graphs
Scalable Online Betweenness Centrality in Evolving GraphsNicolas Kourtellis
 
Response spectrum method
Response spectrum methodResponse spectrum method
Response spectrum method321nilesh
 

What's hot (20)

Kalman filter demonstration
Kalman filter demonstrationKalman filter demonstration
Kalman filter demonstration
 
Simulation example with matlab
Simulation example with matlabSimulation example with matlab
Simulation example with matlab
 
Seismic Analysis of Structures - II
Seismic Analysis of Structures - IISeismic Analysis of Structures - II
Seismic Analysis of Structures - II
 
Control chap7
Control chap7Control chap7
Control chap7
 
Block diagram
Block diagramBlock diagram
Block diagram
 
block diagram representation of control systems
block diagram representation of  control systemsblock diagram representation of  control systems
block diagram representation of control systems
 
Week 10 part 1 pe 6282 Block Diagrams
Week  10 part 1 pe 6282   Block DiagramsWeek  10 part 1 pe 6282   Block Diagrams
Week 10 part 1 pe 6282 Block Diagrams
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Note 11
Note 11Note 11
Note 11
 
Design of sampled data control systems part 2. 6th lecture
Design of sampled data control systems part 2.  6th lectureDesign of sampled data control systems part 2.  6th lecture
Design of sampled data control systems part 2. 6th lecture
 
Control chap10
Control chap10Control chap10
Control chap10
 
Relatório
RelatórioRelatório
Relatório
 
Design of sampled data control systems 5th lecture
Design of sampled data control systems  5th  lectureDesign of sampled data control systems  5th  lecture
Design of sampled data control systems 5th lecture
 
3 recursive bayesian estimation
3  recursive bayesian estimation3  recursive bayesian estimation
3 recursive bayesian estimation
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
DSP 06 _ Sheet Six
DSP 06 _ Sheet SixDSP 06 _ Sheet Six
DSP 06 _ Sheet Six
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 
Scalable Online Betweenness Centrality in Evolving Graphs
Scalable Online Betweenness Centrality in Evolving GraphsScalable Online Betweenness Centrality in Evolving Graphs
Scalable Online Betweenness Centrality in Evolving Graphs
 
Laplace problems
Laplace problemsLaplace problems
Laplace problems
 
Response spectrum method
Response spectrum methodResponse spectrum method
Response spectrum method
 

Similar to Block diagrams

5_2019_01_12!09_25_57_AM.ppt
5_2019_01_12!09_25_57_AM.ppt5_2019_01_12!09_25_57_AM.ppt
5_2019_01_12!09_25_57_AM.pptaboma2hawi
 
New controllers efficient model based design method
New controllers efficient model based design methodNew controllers efficient model based design method
New controllers efficient model based design methodAlexander Decker
 
Ies electronics engineering - control system
Ies   electronics engineering - control systemIes   electronics engineering - control system
Ies electronics engineering - control systemPhaneendra Pgr
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systemskarina G
 
Basic Control System unit6
Basic Control System unit6Basic Control System unit6
Basic Control System unit6Asraf Malik
 
Block diagram representation 3
Block diagram representation 3Block diagram representation 3
Block diagram representation 3Syed Saeed
 
Design of multiloop controller for
Design of multiloop controller forDesign of multiloop controller for
Design of multiloop controller forijsc
 
A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...eSAT Journals
 
A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...eSAT Journals
 
Design of Multiloop Controller for Three Tank Process Using CDM Techniques
Design of Multiloop Controller for Three Tank Process Using CDM Techniques  Design of Multiloop Controller for Three Tank Process Using CDM Techniques
Design of Multiloop Controller for Three Tank Process Using CDM Techniques ijsc
 
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...Waqas Afzal
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachYang Hong
 
Linear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentLinear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentIsham Rashik
 
36336583 control-systems-lecture-notes
36336583 control-systems-lecture-notes36336583 control-systems-lecture-notes
36336583 control-systems-lecture-notesMustafaNasser15
 
Control systems
Control systemsControl systems
Control systemsRajat Garg
 
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...IOSR Journals
 

Similar to Block diagrams (20)

Chapter10
Chapter10Chapter10
Chapter10
 
Ae11 sol
Ae11 solAe11 sol
Ae11 sol
 
5_2019_01_12!09_25_57_AM.ppt
5_2019_01_12!09_25_57_AM.ppt5_2019_01_12!09_25_57_AM.ppt
5_2019_01_12!09_25_57_AM.ppt
 
New controllers efficient model based design method
New controllers efficient model based design methodNew controllers efficient model based design method
New controllers efficient model based design method
 
Ies electronics engineering - control system
Ies   electronics engineering - control systemIes   electronics engineering - control system
Ies electronics engineering - control system
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systems
 
Control assignment#2
Control assignment#2Control assignment#2
Control assignment#2
 
Basic Control System unit6
Basic Control System unit6Basic Control System unit6
Basic Control System unit6
 
Block diagram representation 3
Block diagram representation 3Block diagram representation 3
Block diagram representation 3
 
Design of multiloop controller for
Design of multiloop controller forDesign of multiloop controller for
Design of multiloop controller for
 
A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...
 
A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...A simplified method of designing a phase lead compensator to improve the m-s-...
A simplified method of designing a phase lead compensator to improve the m-s-...
 
Digitalcontrolsystems
DigitalcontrolsystemsDigitalcontrolsystems
Digitalcontrolsystems
 
Design of Multiloop Controller for Three Tank Process Using CDM Techniques
Design of Multiloop Controller for Three Tank Process Using CDM Techniques  Design of Multiloop Controller for Three Tank Process Using CDM Techniques
Design of Multiloop Controller for Three Tank Process Using CDM Techniques
 
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
Linear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller AssignmentLinear Control Hard-Disk Read/Write Controller Assignment
Linear Control Hard-Disk Read/Write Controller Assignment
 
36336583 control-systems-lecture-notes
36336583 control-systems-lecture-notes36336583 control-systems-lecture-notes
36336583 control-systems-lecture-notes
 
Control systems
Control systemsControl systems
Control systems
 
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
 

Recently uploaded

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

Block diagrams

  • 1. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 1/14   10.1 INTRODUCTION      Block Diagram: Pictorial representation of functions performed by each component of a  system and that of flow of signals.    ( )C s( )R s ( ) ( ) ( )C s G s R s= ( )G s     Figure 10‐1. Single block diagram representation.        Components for Linear Time Invariant System(LTIS):         Figure 10‐2. Components for Linear Time Invariant Systems (LTIS).  Chapter 10:  Time‐Domain Analysis and Design of  Control Systems: Block Diagram Reduction A. Bazoune 
  • 2. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 2/14 Terminology:     ( )C s( )R s ( )G s1 ( )G s2 ( )H s ( )Disturbance U s ( )b s ± ( ) ( ) ( )E s R s b s= ± ( )m s   Figure 10‐3.   Block Diagram Components.      1. Plant: A physical object to be controlled. The Plant  ( )G s2 , is the controlled system, of which a  particular quantity or condition is to be controlled.    2. Feedback Control System (Closed‐loop Control System): A system which compares output to some  reference input and keeps output as close as possible to this reference.  3. Open‐loop Control System: Output of the system is not feedback to the system.    4. Control Element  ( )G s1 , also called the controller, are the components required to generate the  appropriate control signal  ( )M s  applied to the plant.    5. Feedback Element  ( )H s  is the component required to establish the functional relationship between  the primary feedback signal  ( )B s  and the controlled output  ( )C s .    6. Reference  Input  ( )R s   is  an  external  signal  applied  to  a  feedback  control  system  in  order  to  command a specified action of the plant. It often represents ideal plant output behavior.    7. The Controlled Output  ( )C s  is that quantity or condition of the plant which is controlled.    8. Actuating Signal  ( )E s , also called the error or control action, is the algebraic sum consisting of the  reference input  ( )R s  plus or minus (usually minus) the primary feedback  ( )B s .    9. Manipulated  Variable  ( )M s   (control  signal)  is  that  quantity  or  condition  which  the  control  elements  ( )G s1  apply to the plant  ( )G s2 .    10. Disturbance  ( )U s   is  an  undesired  input  signal  which  affects  the  value  of  the  controlled  output  ( )C s . It may enter the plant by summation with  ( )M s , or via an intermediate point, as shown in  the block diagram of the figure above.    11. Forward Path is the transmission path from the actuating signal  ( )E s  to the output  ( )C s .   
  • 3. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 3/14 12. Feedback Path is the transmission path from the output  ( )C s  to the feedback signal  ( )B s .    13. Summing Point: A circle with a cross is the symbol that indicates a summing point. The  ( )+  or  ( )−   sign at each arrowhead indicates whether that signal is to be added or subtracted.    14. Branch Point: A branch point is a point from which the signal from a block goes concurrently to other  blocks or summing points.      Definitions    • ( )G s ≡Direct transfer function = Forward transfer function.  • ( )H s ≡Feedback transfer function.  • ( ) ( )G s H s ≡ Open‐loop transfer function.  • ( ) ( )C s R s ≡ Closed‐loop transfer function = Control ratio  • ( ) ( )C s E s ≡ Feed‐forward transfer function.    ( )C s( )R s ( )G s ( )H s ( )B s OutputInput ( )E s     Figure 10‐4  Block diagram of a closed‐loop system with a feedback element.      10.2 BLOCK DIAGRAMS AND THEIR SIMPLIFICATION    Cascade (Series) Connections        Figure 10‐5  Cascade (Series) Connection.   
  • 4. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 4/14 Parallel Connections        Figure 10‐5  Parallel Connection.      Closed Loop Transfer Function (Feedback Connections)    ( )C s( )R s ( )G s ( )H s ( )B s ( )E s   Figure 10.4 (Repeated)    Feedback connection    For the system shown in Figure 10‐4, the output  ( )C s  and input  ( )R s  are related as follows:    ( ) ( ) ( )=C s G s E s   where  ( ) ( ) ( ) ( ) ( ) ( )= − = −E s R s B s R s H s C s   Eliminating  ( )E s  from these equations gives  ( ) ( ) ( ) ( ) ( )[ ]= −C s G s R s H s C s   This can be written in the form  ( ) ( )[ ] ( ) ( ) ( )+ =G s H s C s G s R s1   or  ( ) ( ) ( ) ( ) ( ) C s G s sR s G H s+ = 1   The  Characteristic  equation  of  the  system  is  defined  as  an  equation  obtained  by  setting  the  denominator polynomial of the transfer function to zero. The Characteristic equation for the above  system is   ( ) ( )1+G s H s = 0. 
  • 5. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 5/14 Block Diagram Algebra for Summing Junctions        ( ) = + C = G +R±X GR±GX       ( )= + C = GR ±X G R ±X G   Figure 10‐6  Summing junctions.    Block Diagram Algebra for Branch Point        Figure 10‐7  Summing junctions.       Block Diagram Reduction Rules    In  many  practical  situations,  the  block  diagram  of  a  Single  Input‐Single  Output  (SISO),  feedback  control  system  may  involve  several  feedback  loops  and  summing  points.  In  principle,  the  block  diagram  of  (SISO)  closed  loop  system,  no  matter  how  complicated  it  is,  it  can  be  reduced  to  the  standard single loop form shown in Figure 10‐4. The basic approach to simplify a block diagram can be  summarized in Table 1:     
  • 6. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 6/14 TABLE 10‐1  Block Diagram Reduction Rules    1.  Combine all cascade blocks  2.  Combine all parallel blocks  3.  Eliminate all minor (interior) feedback loops  4.  Shift summing points to left  5.  Shift takeoff points to the right  6.  Repeat Steps 1 to 5 until the canonical form is obtained    TABLE 10‐2.  Some Basic Rules with Block Diagram Transformation    G1u 2u y 1/G 1u 1 y G u u y G = = y Gu= Gu u y ( )2 1 2e G u u= − Gu y y G G1u 2u y G1u 2u y G u y y G u y 1/G Gu G 2u y 1 2y Gu u= − u ( )1 2y G G u= −1G y21/G2G ( )Y GG X= 1 21G Y2GX ( )Y G G X= ±1 2 1G 2G X Y± 1 2G GX Y 1 2±G GX Y     █  Example 1: A feedback system is transformed into a unity feedback system    ( )R s ( ) ( )G s H s ( )C s ( )1 H s ( )R s ( )G s ( )C s ( )H s   = ± ⋅= ± = GH GH HGH G R C 1 1 1 Closed‐loop Transfer function 
  • 8. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 8/14 █  Example 3:     █  Example 4         G1 and G2 are in series      H1 and H2 and H3 are in  parallel      G1 is in series with the  feedback configuration.             █  Example  5:  The  main  problem  here  is  the  feed‐forward  of  V3(s).  Solution  is  to  move  this  pickoff point forward.    ( ) ⎡ ⎤ ⎢ ⎥ ⎣ ⎦ 3 2 1 3 2 1 2 3 G GC(s) = G R(s) 1+G G H - H + H
  • 11. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 11/14 █  Example 7     Use block diagram reduction to simplify the block diagram below into a single block relating  ( )Y s  to  ( )R s .    █  Solution            █  Example 8     Use block diagram algebra to solve the previous example.   
  • 12. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 12/14 █  Solution       Multiple‐Inputs cases    In feedback control system, we often encounter multiple inputs (or even multiple output cases). For a  linear system, we can apply the superposition principle to solve this type of problems, i.e. to treat  each input one at a time while setting all other inputs to zeros, and then algebraically add all the  outputs as follows:    TABLE 10‐3: Procedure For reducing Multiple Input Blocks    1  Set all inputs except one equal to zero 2  Transform the block diagram to solvable form.  3  Find the output response due to the chosen input action alone  4  Repeat Steps 1 to 3 for each of the remaining inputs.  5  Algebraically sum all the output responses found in Steps 1 to 5    █  Example 9 :  We shall determine the output C of the following system:    ( )R s ( )D s ( )1G s ( )2G s ( )C s  
  • 13. ME 413 Systems Dynamics & Control    Chapter 10: Time‐Domain Analysis and Design of Control Systems 13/14 █  Solution     Using the superposition principle, the procedure is illustrated in the following steps:    Step1:   Put  ( ) 0D s ≡  as shown in Figure (a).    Step2:   The  block  diagrams  reduce  to  the  block  shown in Figure. b    Step 3:   The  output  RC   due  to  input  ( )R s   is  shown  in  Figure  (c)  and  is  given  by  the  relationship  R GG GG CR ⋅ + = 21 21 1   Step 4:   Put  ( ) 0R s ≡  as shown in Figure (d).    Step 5: Put ‐1  into a block, representing  the negative feedback effect. (Figure d)  Step 6: Rearrange the block diagrams as  shown in Figure (e).    Step 7: Let the ‐1 block be absorbed into  the, summing point as shown in Figure (f).    Step 8: By Equation (7.3), the output  UC   due to input U is :  U GG G CU ⋅ + = 21 2 1     Step 9: The total output is C:  [ ] 1 2 2 1 2 1 2 2 1 1 2 1 1 1 R U G G G C C C R U G G G G G G R U G G = + = ⋅ + ⋅ + + = ⋅ + +     ( )R s ( )1G s ( )2G s ( )C s   Figure (a)    ( )R s ( ) ( )1 2G s G s ( )C s   Figure (b)    ( )R s ( ) ( ) ( ) ( ) 1 2 1 21+ G s G s G s G s ( )C s   Figure (c)  ( )1G s ( )2G s ( )DC s 1− ( )D s   Figure (d)    ( )2G s ( )D s ( )DC s 1− ( )1G s Figure (e)    ( )2G s ( )D s ( )DC s ( )1G s Figure (f)  █  Example 10: