This document provides an overview of how workflows can help make big data insights more accessible. It discusses how workflows allow customers to benefit from cost reductions and faster deployment times. Examples are given of customers in healthcare and banking that have reduced surgical infection rates and cut model development time in half using workflows. The document also covers how to pull insights together and deploy predictive models to external systems using tools like Tibco Statistica. It provides a technical overview of building predictive analytics workflows for big data, including examples of workflow templates for Spark, H2O, and deep learning with CNTK.