서울시 챗봇팀이 개발한 ‘청년정책봇’은 시나리오 기반이 아닌 딥러닝 기반의 챗봇 서비스다. ETRI에서 개발한 KorBERT를 통해 언어 처리 모델을 대신하고, 형태소 분석 API를 통해 질문 문장에 대한 의도를 분석하였다. 카카오에서 배포한 khaii 형태소 분석기 적용을 통해 구문분석 정확도를 향상을 확인할 수 있었다. 또한, 위키 QA API를 통해 일반적인 질의응답을 위한 기능을 추가했다. 현재 상용화된 챗봇서비스의 대부분은 미리 구성된 시나리오(Flowchart)를 따라가는 방식을 활용하며, 자연어 처리 기술은 신뢰도가 낮아 사용되지 않고 있다. 그에 반해, ‘청년정책봇’은 cdQA 파이프라인을 접목해 유사도 높은 문서를 언어 처리 모델에 적용하는 방식으로 접근해 신뢰도를 높일 수 있었다. 기존 빌더를 통해, 상용화된 서비스 대비 두 가지 장점이 있다. 첫 번째 장점은 딥러닝 모델에 따른 발전 가능성으로써 ETRI KorBERT의 지속적인 개선에 따라 청년정책봇의 기계 독해 성능도 같이 개선된다는 것이다. 두 번째 장점은 서비스 지속 가능성으로써 cdQA 파이프라인에 기반해 주기적인 웹 크롤링을 통해 데이터 추가가 가능하기 때문에 소프트웨어 유지 보수에 필요한 자원을 최소화할 수 있다는 것이다. 청년정책 챗봇을 통해 cdQA 파이프라인과 ETRI BERT 모델을 활용해 기존의 데이터 인풋 제한을 극복하고 기계 독해에 대한 솔루션을 제시할 수 있었다.