Arithmetic
Sequences
and Series
Sequences Series
List with commas “Indicated sum”
3, 8, 13, 18 3 + 8 + 13 + 18
An Arithmetic Sequence is
defined as a sequence in
which there is a common
difference between
consecutive terms.
Which of the following sequences are
arithmetic? Identify the common
difference.
3, 1, 1, 3, 5, 7, 9, . . .
 
15.5, 14, 12.5, 11, 9.5, 8, . . .
84, 80, 74, 66, 56, 44, . . .
8, 6, 4, 2, 0, . . .
 
50, 44, 38, 32, 26, . . .
    
YES 2
d 
YES
YES
NO
NO
1.5
d  
6
d 
26, 21, 16, 11, 6, . . .
    
The general form of an ARITHMETIC sequence.
1
a
First Term:
Second Term: 2 1
a a d
 
Third Term:
Fourth Term:
Fifth Term:
3 1 2
a a d
 
4 1 3
a a d
 
5 1 4
a a d
 
nth Term:  
1 1
n
a a n d
  
Formula for the nth term of an ARITHMETIC
sequence.
 
1 1
n
a a n d
  
The nth term
n
a 
The term number
n 
The common difference
d 
1 The 1st term
a 
Given: 79, 75, 71, 67, 63, . . .
Find: 32
a
1 79
4
32
a
d
n

 

 
  
1
32
32
1
79 32 1 4
45
n
a a n d
a
a
  
   
 
IDENTIFY SOLVE
Given: 79, 75, 71, 67, 63, . . .
Find: What term number is -169?
1 79
4
169
n
a
d
a

 
 
 
  
1 1
169 79 1 4
63
n
a a n d
n
n
  
    

IDENTIFY SOLVE
Given:
10
12
3.25
4.25
a
a


1
3
3.25
4.25
3
a
a
n



 
 
1 1
4.25 3.25 3 1
0.5
n
a a n d
d
d
  
  

IDENTIFY SOLVE
Find: 1
a
What’s the real question? The Difference
Given:
10
12
3.25
4.25
a
a


10 3.25
0.5
10
a
d
n



 
 
1
1
1
1
3.25 10 1 0.5
1.25
n
a a n d
a
a
  
  
 
IDENTIFY SOLVE
Find: 1
a
 
50
1
73 2
p
p


    
71 69 67 . . . 25 27
       
   
71 69 67 . . . 25 27
      
   
27 25 . . . 67 69 71
      
44 44 44 . . . 44 44 44
     
 
 
50 71 27
2
 

1100

71 + (-27) Each sum
is the same.
50 Terms
     
 
1 1 1 1
2 . . . 1
a a d a d a n d
       
 
     
1 1 1 1
1 . . . 2
a n d a d a d a
       
 
1
2
n
n a a
s 

1
Sum
Number of Terms
First Term
Last Term
n
S
n
a
a


 




 

 
   
   
 
1 1 1 1 1 1
1 1 . . . 1
a a n d a a n d a a n d
           
     
     
Find the sum of the terms of this
arithmetic series.
 
35
1
29 3
k
k

 

 
1
2
n
n a a
S


1
35
35
26
76
n
a
a

 

 
35 26 76
2
875
S
S
 


Find the sum of the terms of this arithmetic
series.  
151 147 143 139 . . . 5
     
 
1
2
n
n a a
S


1
40
40
151
5
n
a
a


 
 
40 151 5
2
2920
S
S
 


 
  
1 1
5 151 1 4
40
n
a a n d
n
n
  
    

What term is -5?
 
1
2
n
n a
S
a


 
1 1
Substitute n
a a n d
  
 
 
 
 
1 1
1
1
2
2 1
2
n a a n d
S
n a n d
S
  

 

1
# of Terms
1st Term
Difference
n
a
d





 

Find the sum of this series  
36
0
2.25 0.75
j
j



2.25 3 3.73 4.5 . . .
    
 
 
1
2 1
2
n a n d
S
 

1
37
2.25
0.75
n
a
d



    
 
37 2 2.25 37 1 0.75
2
582.75
S
S
 


 
35
1
45 5
i
i

 

 
1
2
n
n a a
S


 
 
1
2 1
2
n a n d
S
 

1
35 40 130
n
n a a
    1
35 40 5
n a d
   
 
35 40 130
2
1575
S
S
 


   
 
35 2 40 35 1 3
2
1575
S
S
  


An introduction…………
1, 4, 7,10,13
9,1, 7, 15
6.2, 6.6, 7, 7.4
, 3, 6
 
    
Arithmetic Sequences
ADD
To get next term
2, 4, 8,16, 32
9, 3,1, 1/3
1,1/ 4,1/16,1/ 64
, 2.5 , 6.25
 
  
Geometric Sequences
MULTIPLY
To get next term
Arithmetic Series
Sum of Terms
35
12
27.2
3 9

 
Geometric Series
Sum of Terms
62
20/3
85/ 64
9.75
Find the next four terms of –9, -2, 5, …
Arithmetic Sequence
2 9 5 2 7
      
7 is referred to as the common difference (d)
Common Difference (d) – what we ADD to get next term
Next four terms……12, 19, 26, 33
Find the next four terms of 0, 7, 14, …
Arithmetic Sequence, d = 7
21, 28, 35, 42
Find the next four terms of x, 2x, 3x, …
Arithmetic Sequence, d = x
4x, 5x, 6x, 7x
Find the next four terms of 5k, -k, -7k, …
Arithmetic Sequence, d = -6k
-13k, -19k, -25k, -32k
Vocabulary of Sequences (Universal)
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

 
 
n 1
n 1 n
nth term of arithmetic sequence
sum of n terms of arithmetic sequen
a a n 1 d
n
S a a
2
ce
  
 


Given an arithmetic sequence with 15 1
a 38 and d 3, find a .
  
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

x
15
38
NA
-3
 
n 1
a a n 1 d
  
  
38 x 1 1
5 3
   
X = 80
63
Find S of 19, 13, 7,...
  
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

-19
63
??
x
6
 
n 1
a a n 1 d
  
  
?? 19 6 1
?? 353
3 6
  


353
 
n 1 n
n
S a a
2
 
 
63
63
3 3
S
2
19 5

 
63 1 1
S 052

16 1
Find a if a 1.5 and d 0.5
 
Try this one:
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

1.5
16
x
NA
0.5
 
n 1
a a n 1 d
  
 
16 1.5 0.
a 16 5
1
  
16
a 9

n 1
Findnif a 633, a 9, and d 24
  
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

9
x
633
NA
24
 
n 1
a a n 1 d
  
 
633 9 2
1
x 4
  
633 9 2 24
4x
  
X = 27
1 29
Find dif a 6 and a 20
  
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

-6
29
20
NA
x
 
n 1
a a n 1 d
  
 
1
20 6 29 x
  

26 28x

13
x
14

Find two arithmetic means between –4 and 5
-4, ____, ____, 5
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

-4
4
5
NA
x
 
n 1
a a n 1 d
  
  
1
5 4 4 x
  

x 3

The two arithmetic means are –1 and 2, since –4, -1, 2, 5
forms an arithmetic sequence
Find three arithmetic means between 1 and 4
1, ____, ____, ____, 4
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

1
5
4
NA
x
 
n 1
a a n 1 d
  
  
4 1 x
1
5
  
3
x
4

The three arithmetic means are 7/4, 10/4, and 13/4
since 1, 7/4, 10/4, 13/4, 4 forms an arithmetic sequence
Find n for the series in which 1 n
a 5, d 3,S 440
  
1
a First term

n
a nth term

n
S sum of n terms

n number of terms

d common difference

5
x
y
440
3
 
n 1
a a n 1 d
  
 
n 1 n
n
S a a
2
 
 
y 5 3
1
x
  
 
x
40 y
4
2
5
 
 
 
1
2
x
440 5 5 x 3
   
 
x 7 x
440
2
3


 
880 x 7 3x
 
2
0 3x 7x 880
  
X = 16
Graph on positive window
The sum of the first n terms of an infinite sequence
is called the nth partial sum.
1
( )
2
n n
n
S a a
 
Example 6. Find the 150th partial sum of the arithmetic sequence, 5,
16, 27, 38, 49, …
1 5 11 5 11 6
a d c
      
11 6
n
a n
   
150 11 150 6 1644
a
   
   
150
150
5 1644 75 1649 123,675
2
S    
Example 7. An auditorium has 20 rows of seats. There are 20 seats in
the first row, 21 seats in the second row, 22 seats in the third row, and
so on. How many seats are there in all 20 rows?
1 20 1 19
d c
   
   
1 20
1 20 19 1 39
n
a a n d a
      
   
20
20
20 39 10 59 590
2
S    
Example 8. A small business sells $10,000 worth of sports memorabilia
during its first year. The owner of the business has set a goal of
increasing annual sales by $7500 each year for 19 years. Assuming that
the goal is met, find the total sales during the first 20 years this business
is in operation.
1 10,000 7500 10,000 7500 2500
a d c
    
   
1 20
1 10,000 19 7500 152,500
n
a a n d a
      
   
20
20
10,000 152,500 10 162,500 1,625,000
2
S    
So the total sales for the first 2o years is $1,625,000

Arithmetic Sequences and Series.ppt

  • 1.
  • 2.
    Sequences Series List withcommas “Indicated sum” 3, 8, 13, 18 3 + 8 + 13 + 18
  • 4.
    An Arithmetic Sequenceis defined as a sequence in which there is a common difference between consecutive terms.
  • 5.
    Which of thefollowing sequences are arithmetic? Identify the common difference. 3, 1, 1, 3, 5, 7, 9, . . .   15.5, 14, 12.5, 11, 9.5, 8, . . . 84, 80, 74, 66, 56, 44, . . . 8, 6, 4, 2, 0, . . .   50, 44, 38, 32, 26, . . .      YES 2 d  YES YES NO NO 1.5 d   6 d 
  • 6.
    26, 21, 16,11, 6, . . .     
  • 7.
    The general formof an ARITHMETIC sequence. 1 a First Term: Second Term: 2 1 a a d   Third Term: Fourth Term: Fifth Term: 3 1 2 a a d   4 1 3 a a d   5 1 4 a a d   nth Term:   1 1 n a a n d   
  • 8.
    Formula for thenth term of an ARITHMETIC sequence.   1 1 n a a n d    The nth term n a  The term number n  The common difference d  1 The 1st term a 
  • 9.
    Given: 79, 75,71, 67, 63, . . . Find: 32 a 1 79 4 32 a d n          1 32 32 1 79 32 1 4 45 n a a n d a a          IDENTIFY SOLVE
  • 10.
    Given: 79, 75,71, 67, 63, . . . Find: What term number is -169? 1 79 4 169 n a d a           1 1 169 79 1 4 63 n a a n d n n          IDENTIFY SOLVE
  • 11.
    Given: 10 12 3.25 4.25 a a   1 3 3.25 4.25 3 a a n        11 4.25 3.25 3 1 0.5 n a a n d d d        IDENTIFY SOLVE Find: 1 a What’s the real question? The Difference
  • 12.
    Given: 10 12 3.25 4.25 a a   10 3.25 0.5 10 a d n       1 1 1 1 3.25 10 1 0.5 1.25 n a a n d a a         IDENTIFY SOLVE Find: 1 a
  • 14.
      50 1 73 2 p p       71 69 67 . . . 25 27        
  • 15.
       71 69 67 . . . 25 27            27 25 . . . 67 69 71        44 44 44 . . . 44 44 44           50 71 27 2    1100  71 + (-27) Each sum is the same. 50 Terms
  • 16.
           1 1 1 1 2 . . . 1 a a d a d a n d                 1 1 1 1 1 . . . 2 a n d a d a d a           1 2 n n a a s   1 Sum Number of Terms First Term Last Term n S n a a                        1 1 1 1 1 1 1 1 . . . 1 a a n d a a n d a a n d                        
  • 17.
    Find the sumof the terms of this arithmetic series.   35 1 29 3 k k       1 2 n n a a S   1 35 35 26 76 n a a       35 26 76 2 875 S S    
  • 18.
    Find the sumof the terms of this arithmetic series.   151 147 143 139 . . . 5         1 2 n n a a S   1 40 40 151 5 n a a       40 151 5 2 2920 S S          1 1 5 151 1 4 40 n a a n d n n          What term is -5?
  • 19.
      1 2 n n a S a    1 1 Substitute n a a n d            1 1 1 1 2 2 1 2 n a a n d S n a n d S        1 # of Terms 1st Term Difference n a d        
  • 20.
    Find the sumof this series   36 0 2.25 0.75 j j    2.25 3 3.73 4.5 . . .          1 2 1 2 n a n d S    1 37 2.25 0.75 n a d           37 2 2.25 37 1 0.75 2 582.75 S S    
  • 21.
      35 1 45 5 i i      1 2 n n a a S       1 2 1 2 n a n d S    1 35 40 130 n n a a     1 35 40 5 n a d       35 40 130 2 1575 S S           35 2 40 35 1 3 2 1575 S S     
  • 22.
    An introduction………… 1, 4,7,10,13 9,1, 7, 15 6.2, 6.6, 7, 7.4 , 3, 6        Arithmetic Sequences ADD To get next term 2, 4, 8,16, 32 9, 3,1, 1/3 1,1/ 4,1/16,1/ 64 , 2.5 , 6.25      Geometric Sequences MULTIPLY To get next term Arithmetic Series Sum of Terms 35 12 27.2 3 9    Geometric Series Sum of Terms 62 20/3 85/ 64 9.75
  • 23.
    Find the nextfour terms of –9, -2, 5, … Arithmetic Sequence 2 9 5 2 7        7 is referred to as the common difference (d) Common Difference (d) – what we ADD to get next term Next four terms……12, 19, 26, 33
  • 24.
    Find the nextfour terms of 0, 7, 14, … Arithmetic Sequence, d = 7 21, 28, 35, 42 Find the next four terms of x, 2x, 3x, … Arithmetic Sequence, d = x 4x, 5x, 6x, 7x Find the next four terms of 5k, -k, -7k, … Arithmetic Sequence, d = -6k -13k, -19k, -25k, -32k
  • 25.
    Vocabulary of Sequences(Universal) 1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference      n 1 n 1 n nth term of arithmetic sequence sum of n terms of arithmetic sequen a a n 1 d n S a a 2 ce       
  • 26.
    Given an arithmeticsequence with 15 1 a 38 and d 3, find a .    1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  x 15 38 NA -3   n 1 a a n 1 d       38 x 1 1 5 3     X = 80
  • 27.
    63 Find S of19, 13, 7,...    1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  -19 63 ?? x 6   n 1 a a n 1 d       ?? 19 6 1 ?? 353 3 6      353   n 1 n n S a a 2     63 63 3 3 S 2 19 5    63 1 1 S 052 
  • 28.
    16 1 Find aif a 1.5 and d 0.5   Try this one: 1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  1.5 16 x NA 0.5   n 1 a a n 1 d      16 1.5 0. a 16 5 1    16 a 9 
  • 29.
    n 1 Findnif a633, a 9, and d 24    1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  9 x 633 NA 24   n 1 a a n 1 d      633 9 2 1 x 4    633 9 2 24 4x    X = 27
  • 30.
    1 29 Find difa 6 and a 20    1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  -6 29 20 NA x   n 1 a a n 1 d      1 20 6 29 x     26 28x  13 x 14 
  • 31.
    Find two arithmeticmeans between –4 and 5 -4, ____, ____, 5 1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  -4 4 5 NA x   n 1 a a n 1 d       1 5 4 4 x     x 3  The two arithmetic means are –1 and 2, since –4, -1, 2, 5 forms an arithmetic sequence
  • 32.
    Find three arithmeticmeans between 1 and 4 1, ____, ____, ____, 4 1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  1 5 4 NA x   n 1 a a n 1 d       4 1 x 1 5    3 x 4  The three arithmetic means are 7/4, 10/4, and 13/4 since 1, 7/4, 10/4, 13/4, 4 forms an arithmetic sequence
  • 33.
    Find n forthe series in which 1 n a 5, d 3,S 440    1 a First term  n a nth term  n S sum of n terms  n number of terms  d common difference  5 x y 440 3   n 1 a a n 1 d      n 1 n n S a a 2     y 5 3 1 x      x 40 y 4 2 5       1 2 x 440 5 5 x 3       x 7 x 440 2 3     880 x 7 3x   2 0 3x 7x 880    X = 16 Graph on positive window
  • 34.
    The sum ofthe first n terms of an infinite sequence is called the nth partial sum. 1 ( ) 2 n n n S a a  
  • 35.
    Example 6. Findthe 150th partial sum of the arithmetic sequence, 5, 16, 27, 38, 49, … 1 5 11 5 11 6 a d c        11 6 n a n     150 11 150 6 1644 a         150 150 5 1644 75 1649 123,675 2 S    
  • 36.
    Example 7. Anauditorium has 20 rows of seats. There are 20 seats in the first row, 21 seats in the second row, 22 seats in the third row, and so on. How many seats are there in all 20 rows? 1 20 1 19 d c         1 20 1 20 19 1 39 n a a n d a            20 20 20 39 10 59 590 2 S    
  • 37.
    Example 8. Asmall business sells $10,000 worth of sports memorabilia during its first year. The owner of the business has set a goal of increasing annual sales by $7500 each year for 19 years. Assuming that the goal is met, find the total sales during the first 20 years this business is in operation. 1 10,000 7500 10,000 7500 2500 a d c          1 20 1 10,000 19 7500 152,500 n a a n d a            20 20 10,000 152,500 10 162,500 1,625,000 2 S     So the total sales for the first 2o years is $1,625,000