SlideShare a Scribd company logo
1 of 125
Download to read offline
An integrated framework for analysis of stochastic
         models of biochemical reactions

                           Michał Komorowski

                           Imperial College London
                       Theoretical Systems Biology Group


                                  21/03/11




   Michał Komorowski          Stochastic biochemical reactions   21/03/11   1 / 31
Outline



 1   Motivation: models and data

 2   Modeling framework

 3   Inference: examples

 4   Sensitivity, Fisher Information, statistical model analysis




        Michał Komorowski    Stochastic biochemical reactions      21/03/11   2 / 31
Fluorescent reporter genes




     Michał Komorowski   Stochastic biochemical reactions   Motivation   21/03/11   3 / 31
Fluorescent reporter genes




     Michał Komorowski   Stochastic biochemical reactions   Motivation   21/03/11   3 / 31
Fluorescent microscopy and flow cytometry




     Michał Komorowski   Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Fluorescent microscopy and flow cytometry




                             A                                        B
                   300
                                                            300
                   275

                   250
                                                            200
                   225

                   200                                      100
 fluorescence (a.u.)




                         0       5    10   15   20     25         0       5   10    15   20   25
                             C                                        D
                                                            300
                   300
                                                            250
                   250
                                                            200
                   200
                                                            150
                   150
                                                            100
                   100

                         0       5    10   15   20     25         0       5   10    15   20   25
                                                     time (hours)



                                     Michał Komorowski                             Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Fluorescent microscopy and flow cytometry




                             A                                        B
                   300
                                                            300
                   275

                   250
                                                            200
                   225

                   200                                      100
 fluorescence (a.u.)




                         0       5    10   15   20     25         0       5   10    15   20   25
                             C                                        D
                                                            300
                   300
                                                            250
                   250
                                                            200
                   200
                                                            150
                   150
                                                            100
                   100

                         0       5    10   15   20     25         0       5   10    15   20   25
                                                     time (hours)



                                     Michał Komorowski                             Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Fluorescent microscopy and flow cytometry




                             A                                        B
                   300
                                                            300
                   275

                   250
                                                            200
                   225

                   200                                      100
 fluorescence (a.u.)




                         0       5    10   15   20     25         0       5   10    15   20   25
                             C                                        D
                                                            300
                   300
                                                            250
                   250
                                                            200
                   200
                                                            150
                   150
                                                            100
                   100

                         0       5    10   15   20     25         0       5   10    15   20   25
                                                     time (hours)



                                     Michał Komorowski                             Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
How about inference ?




     Michał Komorowski   Stochastic biochemical reactions   Modelling   21/03/11   8 / 31
How about inference ?
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation (least squares)
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                  l
                    dPt (x)
                            =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                      dt
                                 j=1

   Macroscopic rate equation (least squares)
                dϕ
                    = S F(ϕ)    F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation (data augmentation)

                          dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                 x(t) = ϕ(t) + ξ(t)
                   dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


      Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                  l
                    dPt (x)
                            =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                      dt
                                 j=1

   Macroscopic rate equation (least squares)
                dϕ
                    = S F(ϕ)    F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation (data augmentation)

                          dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation (explicite likelihood)
                 x(t) = ϕ(t) + ξ(t)
                   dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


      Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40
                     30
fluorescence level

                     20
                     10
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples   21/03/11   12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10




                                                                              Rates differ between cells
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10




                                                                              Rates differ between cells
                                                                                                                 2
                     0




                          0   2      4              6   8   10
                                                                                               γP ∼ Gamma(µγp , σγp )
                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                                        Model:
                     30
fluorescence level




                                                                                               dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10




                                                                                        Rates differ between cells
                                                                                                                           2
                     0




                          0     2        4                6     8     10
                                                                                                         γP ∼ Gamma(µγp , σγp )
                                              time (h)
                     8
                     6
density

                     4
                     2
                     0




                          0.0   0.2     0.4              0.6   0.8   1.0

                                         degradation rate



                                      Michał Komorowski                    Stochastic biochemical reactions   Examples         21/03/11     12 / 31
DRB experiment



                   450


                   400


                   350


                   300
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples   21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350


                   300
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples   21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350                                                            dr     =     (kr − γr r)dt+      kr + γr φr (t)dWr
                   300
                                                                                 dp      =     (kp r − γp p)dt +     kp φr (t) + γp φr (t)dWp
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples          21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350                                                            dr     =     (kr − γr r)dt+      kr + γr φr (t)dWr
                   300
                                                                                 dp      =     (kp r − γp p)dt +     kp φr (t) + γp φr (t)dWp
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples          21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350                                                            dr     =     (kr − γr r)dt+      kr + γr φr (t)dWr
                   300
                                                                                 dp      =     (kp r − γp p)dt +     kp φr (t) + γp φr (t)dWp
GFP Fluorescence




                   250


                   200


                   150


                   100
                                                                             We can estimate
                    50

                                                                                                                     2
                     0
                         0   2   4    6        8
                                          Time (hours)
                                                       10   12   14   16                           γr ∼ Gamma(µγr , σγr )




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples          21/03/11   13 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:




         Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:




         Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:




         Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt
                      dp     =   (kp r − γp p)dt




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt+ kr (t) + γr r dWr
                      dp     =   (kp r − γp p)dt +            kp r + γp pdWp




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt+ kr (t) + γr r dWr
                      dp     =   (kp r − γp p)dt +            kp r + γp pdWp




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt+ kr (t) + γr r dWr
                      dp     =   (kp r − γp p)dt +            kp r + γp pdWp
                  p(obs)     =   λp




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Inference results




              We estimated scaling factor λ = 2.11 (1.24 - 3.56)
              Translation in absolute units kp =0.46 (0.14 - 1.51)
              Transcription profile in absolute units

              ¨
      Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008




      Michał Komorowski             Stochastic biochemical reactions         Examples               21/03/11      16 / 31
Inference results




              We estimated scaling factor λ = 2.11 (1.24 - 3.56)
              Translation in absolute units kp =0.46 (0.14 - 1.51)
              Transcription profile in absolute units

              ¨
      Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008




      Michał Komorowski             Stochastic biochemical reactions         Examples               21/03/11      16 / 31
Inference results




              We estimated scaling factor λ = 2.11 (1.24 - 3.56)
              Translation in absolute units kp =0.46 (0.14 - 1.51)
              Transcription profile in absolute units

              ¨
      Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008




      Michał Komorowski             Stochastic biochemical reactions         Examples               21/03/11      16 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder


   Fisher information
                          ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                 I(θ) =        Σ(θ)    + trace(Σ−1    Σ     )
                          ∂θ        ∂θ  2          ∂θ    ∂θ
   Covariance matrix
                      
                      
                                  V(ti )              for i = j Q ∈ {TS, TP}
                                    σ2I                  for i = j Q ∈ {DT}
                      
              (i,j)
        ΣQ (Θ)      =
                      
                                    0                for i < j Q ∈ {TP, DT}
                              V(ti )Φ(ti , tj )T          for i < j Q ∈ {TS}
                      




     Michał Komorowski    Stochastic biochemical reactions   Fisher Information   21/03/11   21 / 31
Example: expression of a gene




     Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   22 / 31
Response to parameter perturbations:
stochastic vs deterministic case




     Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                           Influence of correlation between RNA and protein
  Stochastic
  Deterministic                                                          correlation=0.24218
                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
            kr




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
            kp




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
             r




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
             p




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                  k                                  k                                r                                p
                                  r                                  p




                  Michał Komorowski                         Stochastic biochemical reactions                 Examples                      21/03/11       23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                               Influence of correlation between RNA and protein

                                                                             correlation=0.53838
  Stochastic           0.1                              0.1                                0.1                              0.1
  Deterministic
                      0.05                             0.05                               0.05                             0.05

                        0                                0                                  0                                0
              kr




                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                              0.1                                0.1                              0.1

                      0.05                             0.05                               0.05                             0.05
              kp




                        0                                0                                  0                                0

                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                              0.1                                0.1                              0.1

                      0.05                             0.05                               0.05                             0.05

                        0                                0                                  0                                0
                  r




                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                              0.1                                0.1                              0.1

                      0.05                             0.05                               0.05                             0.05
                  p




                        0                                0                                  0                                0

                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                      k                                  k                                r                                p
                                      r                                  p




                      Michał Komorowski                         Stochastic biochemical reactions                 Examples                      21/03/11       23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                           Influence of correlation between RNA and protein

                                                                         correlation=0.92828
  Stochastic       0.1                              0.1                                0.1                              0.1
  Deterministic
                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
            kr




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
            kp




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
              r




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
              p




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                  k                                  k                                r                                p
                                  r                                  p




                  Michał Komorowski                         Stochastic biochemical reactions                 Examples                      21/03/11       23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                         Influence of temporal correlations




     Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   24 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                                                  Influence of temporal correlations

                                                                                       =30
                        0.1                               0.1                                 0.1                              0.1
  Stochastic           0.05                              0.05                                0.05                             0.05
  Deterministic
                         0                                 0                                   0                                0
                  kr




                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                        0.1                               0.1                                 0.1                              0.1

                       0.05                              0.05                                0.05                             0.05
                  kp




                         0                                 0                                   0                                0

                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                        0.1                               0.1                                 0.1                              0.1

                       0.05                              0.05                                0.05                             0.05

                         0                                 0                                   0                                0
                  r




                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                        0.1                               0.1                                 0.1                              0.1

                       0.05                              0.05                                0.05                             0.05
                  p




                         0                                 0                                   0                                0

                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                       k                                   k                                 r                                p
                                       r                                   p




                       Michał Komorowski                          Stochastic biochemical reactions                  Examples                      21/03/11       24 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                                             Influence of temporal correlations

                                                                                   =3
                   0.1                               0.1                                 0.1                              0.1
  Stochastic
  Deterministic   0.05                              0.05                                0.05                             0.05

                    0                                 0                                   0                                0
             kr




                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                               0.1                                 0.1                              0.1

                  0.05                              0.05                                0.05                             0.05
             kp




                    0                                 0                                   0                                0

                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                               0.1                                 0.1                              0.1

                  0.05                              0.05                                0.05                             0.05

                    0                                 0                                   0                                0
              r




                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                               0.1                                 0.1                              0.1

                  0.05                              0.05                                0.05                             0.05
              p




                    0                                 0                                   0                                0

                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                  k                                   k                                 r                                p
                                  r                                   p




                  Michał Komorowski                          Stochastic biochemical reactions                  Examples                      21/03/11       24 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                                                 Influance of temporal correlations

                                                                                      =0.3
  Stochastic           0.1                               0.1                                  0.1                              0.1
  Deterministic
                      0.05                              0.05                                 0.05                             0.05

                        0                                 0                                    0                                0
             kr




                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                               0.1                                  0.1                              0.1

                      0.05                              0.05                                 0.05                             0.05
             kp




                        0                                 0                                    0                                0

                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                               0.1                                  0.1                              0.1

                      0.05                              0.05                                 0.05                             0.05

                        0                                 0                                    0                                0
                  r




                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                               0.1                                  0.1                              0.1

                      0.05                              0.05                                 0.05                             0.05
                  p




                        0                                 0                                    0                                0

                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                      k                                   k                                  r                                p
                                      r                                   p




                      Michał Komorowski                          Stochastic biochemical reactions                   Examples                      21/03/11       24 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions
An integrated framework for analysis of stochastic models of biochemical reactions

More Related Content

Recently uploaded

Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 

Recently uploaded (20)

Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

An integrated framework for analysis of stochastic models of biochemical reactions

  • 1. An integrated framework for analysis of stochastic models of biochemical reactions Michał Komorowski Imperial College London Theoretical Systems Biology Group 21/03/11 Michał Komorowski Stochastic biochemical reactions 21/03/11 1 / 31
  • 2. Outline 1 Motivation: models and data 2 Modeling framework 3 Inference: examples 4 Sensitivity, Fisher Information, statistical model analysis Michał Komorowski Stochastic biochemical reactions 21/03/11 2 / 31
  • 3. Fluorescent reporter genes Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31
  • 4. Fluorescent reporter genes Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31
  • 5. Fluorescent microscopy and flow cytometry Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 6. Fluorescent microscopy and flow cytometry A B 300 300 275 250 200 225 200 100 fluorescence (a.u.) 0 5 10 15 20 25 0 5 10 15 20 25 C D 300 300 250 250 200 200 150 150 100 100 0 5 10 15 20 25 0 5 10 15 20 25 time (hours) Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 7. Fluorescent microscopy and flow cytometry A B 300 300 275 250 200 225 200 100 fluorescence (a.u.) 0 5 10 15 20 25 0 5 10 15 20 25 C D 300 300 250 250 200 200 150 150 100 100 0 5 10 15 20 25 0 5 10 15 20 25 time (hours) Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 8. Fluorescent microscopy and flow cytometry A B 300 300 275 250 200 225 200 100 fluorescence (a.u.) 0 5 10 15 20 25 0 5 10 15 20 25 C D 300 300 250 250 200 200 150 150 100 100 0 5 10 15 20 25 0 5 10 15 20 25 time (hours) Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 9. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 10. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 11. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 12. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 13. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 14. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 15. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 16. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 17. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 18. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 19. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 20. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 21. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 22. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 23. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 24. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 25. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 26. How about inference ? Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 27. How about inference ? Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 28. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 29. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation (least squares) dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 30. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation (least squares) dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation (data augmentation) dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 31. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation (least squares) dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation (data augmentation) dx = S F(x)dt + S diag F(x) dW Linear noise approximation (explicite likelihood) x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 32. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 33. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 34. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 35. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 36. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 37. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 38. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 39. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 40. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 41. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 42. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 43. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 44. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 45. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 46. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 47. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 48. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 49. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 50. Hierarchical model for degradation rates: CHX experiment 40 30 fluorescence level 20 10 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 51. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 52. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 53. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 Rates differ between cells 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 54. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 Rates differ between cells 2 0 0 2 4 6 8 10 γP ∼ Gamma(µγp , σγp ) time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 55. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 Rates differ between cells 2 0 0 2 4 6 8 10 γP ∼ Gamma(µγp , σγp ) time (h) 8 6 density 4 2 0 0.0 0.2 0.4 0.6 0.8 1.0 degradation rate Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 56. DRB experiment 450 400 350 300 GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 57. DRB experiment 450 Model: 400 350 300 GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 58. DRB experiment 450 Model: 400 350 dr = (kr − γr r)dt+ kr + γr φr (t)dWr 300 dp = (kp r − γp p)dt + kp φr (t) + γp φr (t)dWp GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 59. DRB experiment 450 Model: 400 350 dr = (kr − γr r)dt+ kr + γr φr (t)dWr 300 dp = (kp r − γp p)dt + kp φr (t) + γp φr (t)dWp GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 60. DRB experiment 450 Model: 400 350 dr = (kr − γr r)dt+ kr + γr φr (t)dWr 300 dp = (kp r − γp p)dt + kp φr (t) + γp φr (t)dWp GFP Fluorescence 250 200 150 100 We can estimate 50 2 0 0 2 4 6 8 Time (hours) 10 12 14 16 γr ∼ Gamma(µγr , σγr ) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 61. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 62. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 63. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 64. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 65. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 66. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 67. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 68. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 69. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt dp = (kp r − γp p)dt Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 70. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt+ kr (t) + γr r dWr dp = (kp r − γp p)dt + kp r + γp pdWp Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 71. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt+ kr (t) + γr r dWr dp = (kp r − γp p)dt + kp r + γp pdWp Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 72. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt+ kr (t) + γr r dWr dp = (kp r − γp p)dt + kp r + γp pdWp p(obs) = λp Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 73. Inference results We estimated scaling factor λ = 2.11 (1.24 - 3.56) Translation in absolute units kp =0.46 (0.14 - 1.51) Transcription profile in absolute units ¨ Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31
  • 74. Inference results We estimated scaling factor λ = 2.11 (1.24 - 3.56) Translation in absolute units kp =0.46 (0.14 - 1.51) Transcription profile in absolute units ¨ Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31
  • 75. Inference results We estimated scaling factor λ = 2.11 (1.24 - 3.56) Translation in absolute units kp =0.46 (0.14 - 1.51) Transcription profile in absolute units ¨ Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31
  • 76. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 77. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 78. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 79. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 80. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 81. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 82. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 83. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 84. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 85. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 86. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 87. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 88. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 89. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 90. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 91. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 92. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 93. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 94. Model equations - reminder Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Covariance matrix    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  (i,j) ΣQ (Θ) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 21 / 31
  • 95. Example: expression of a gene Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 22 / 31
  • 96. Response to parameter perturbations: stochastic vs deterministic case Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 97. Response to parameter perturbations: stochastic vs deterministic case Influence of correlation between RNA and protein Stochastic Deterministic correlation=0.24218 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 98. Response to parameter perturbations: stochastic vs deterministic case Influence of correlation between RNA and protein correlation=0.53838 Stochastic 0.1 0.1 0.1 0.1 Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 99. Response to parameter perturbations: stochastic vs deterministic case Influence of correlation between RNA and protein correlation=0.92828 Stochastic 0.1 0.1 0.1 0.1 Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 100. Response to parameter perturbations: stochastic vs deterministic case Influence of temporal correlations Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 101. Response to parameter perturbations: stochastic vs deterministic case Influence of temporal correlations =30 0.1 0.1 0.1 0.1 Stochastic 0.05 0.05 0.05 0.05 Deterministic 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 102. Response to parameter perturbations: stochastic vs deterministic case Influence of temporal correlations =3 0.1 0.1 0.1 0.1 Stochastic Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 103. Response to parameter perturbations: stochastic vs deterministic case Influance of temporal correlations =0.3 Stochastic 0.1 0.1 0.1 0.1 Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 104. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 105. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 106. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 107. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 108. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 109. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31