SlideShare a Scribd company logo
1 of 21
Download to read offline
An Improved Simulated Annealing Algorithm (SAA)
EEPE40- MODERN OPTIMIZATION TECHNIQUES FOR
ELECTRICAL POWER SYSTEMS
DEPARTMENT OF
ELECTRICAL AND ELECTRONICS ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
TIRUCHIRAPPALLI – 620015
Submitted By,
Anmol Dwivedi (107115009)
ACKNOWLEDGEMENTS
My sincere thanks to Mr. Mukesh Muthu, Department of Electrical and Electronics
Engineering, National Institute of Technology, Tiruchirappalli, for his consent and support.
ABSTRACT
The simulated annealing is a general-purpose stochastic optimization technique that
has proven to be an effective tool for approximating globally optimal solutions to
many types of hard combinatorial optimization problems. Simulated annealing is
based on an analogy with the physical annealing process - a technique in the field of
condensed matter physics for obtaining the minimum-energy state of a solid. There
are many optimization algorithms, including hill climbing, genetic algorithms, gradient
descent, and more but the simulated annealing's strength is that it avoids getting
caught at local maxima / minima - solutions that are better than any others nearby.
The paradigm has also been proven to be effective in the field of power systems.
However, the major drawback of the paradigm is its typically high and sometimes
prohibitive computational cost. The optimal power flow problem has been widely
studied in order to improve power systems operation and planning. For real power
systems, the problem is formulated as a non-linear and as a large combinatorial
problem. The first approaches used to solve this problem were based on
mathematical methods which required huge computational efforts. Lately, artificial
intelligence techniques, such as metaheuristics based on biological processes, were
adopted. Metaheuristics require lower computational resources, which is a clear
advantage for addressing the problem in large power systems.
In this report, the algorithm is tested on standard functions like the Himmelblau’s
function, Easom function and Ackley function. Further the algorithm is used to solve
an Optimal Power Flow (OPF) with an objective to minimize the transmission line
losses for an IEEE 14 bus and 30 bus systems. The proposed methodology has
been tested with IEEE 14 bus and 30 bus networks and finally the results section
includes the conclusions of the work.
TABLE OF CONTENTS
Title Page No.
ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
REFERENCES iv
1. Introduction
2. Algorithm & Flowchart
3. Performance for standard functions
4. Optimal power flow (Objective to minimize loss) using SAA
5. Formulation of OPF
6. Algorithm for OPF
7. Performance of Algorithm& Results
 IEEE 30 bus system
 IEEE 14 bus system
8. Conclusion
1 | P a g e
Introduction:
Meta-heuristic optimization algorithms have received significant attention and remarkable
growth over the past few decades. The most common way to classify meta-heuristic
algorithms is based on solo-searchers (simulated annealing (SA), tabu search (TS), hill
climbing (HC)) versus the population-based searchers, such as genetic algorithm (GA),
particle swarm optimization (PSO), ant colony optimization (ACO) and other. The first
methods are those that employ a single solution during the search process while in the
latter a population of solutions is used and evolved during a given number of iterations.
Population-based algorithms have been found to perform well on many real world
problems. This has led to an effort by researchers to understand and explain this
behaviour. Simulated annealing (SA) is a popular generic probabilistic solo-algorithm used
for global optimization problems. The name and inspiration stem from annealing in
metallurgy, a process involving heating and controlled cooling of a material to increase the
size of its crystals and reduce its defects. The atoms become unstuck from their initial
positions by heating and wander randomly through states of higher energy. More chance
to find configurations with lower internal energy than initial one is provided by slow cooling.
In a similar way with this physical process, in SA, each feasible solution is analogous to a
state of a physical system, and the fitness function which needs to be minimized is similar
to the internal energy of the system in that state. The ultimate goal is to bring the system,
from an arbitrary (random) initial state, to a state in which the energy of the system is
minimal.
In each stage, SA replaces the current solution by a random nearby solution with a
probability depending both on the difference between the corresponding fitness values and
also on a parameter, named temperature. The ease of implementation makes SA as an
extremely popular method for solving large and practical problems such as travelling
salesman, communication systems continuous optimization among others. However, SA
suffers from two main drawbacks, being trapped in local minima and taking long
computational time to find a reasonable solution. Due to the fact that SA is a solo-
searcher, its success depends strongly on the selection of the starting point and the
decisions it makes. Hence, any bad luck affects the nature of the results and instead of a
global minimum a local one may be achieved, especially when the problem dimension is
high and there are many local minima. Moreover, seeking search space with a single
solution takes long computational time to discover a reasonable solution. In order to
improve the SA performance, various researchers have developed different strategies like
faster annealing schedules [1], simulated annealing with an adaptive non-uniform mutation
[2], adaptive simulated annealing (ASA) [3], and hybridization of SA with other heuristics,
such as genetic algorithm [4].
Formulation:
The law of thermodynamics state that at temperature T, the probability of an increase in
energy of magnitude E , is given by
2 | P a g e
( )
E
kT
P E e

  (1)
Where k is a constant known as Boltzmann’s constant. The simulation in the Metropolis
algorithm calculates the new energy of the system. If the energy has decreased then the
system moves to this state. If the energy has increased then the new state is accepted
using the probability returned by the above formula. A certain number of iterations are
carried out at each temperature and then the temperature is decreased. This is repeated
until the system freezes into a steady state.
This equation is directly used in simulated annealing, although it is usual to drop the
Boltzmann constant as this was only introduced into the equation to cope with different
materials. Therefore, the probability of accepting a worse state is given by the equation
c
T
P e r

  (2)
Where
c = the change in the evaluation function
T = the current temperature
r = a random number between 0 and 1
The probability of accepting a worse move is a function of both the temperature of the
system and of the change in the cost function. It can be appreciated that as the
temperature of the system decreases the probability of accepting a worse move is
decreased. This is the same as gradually moving to a frozen state in physical annealing.
Also note, for small temperature, only better moves will be accepted which effectively
makes simulated annealing act like hill climbing.
Algorithm & Flow Chart:
Function SIMULATED-ANNEALING (Problem, Schedule) returns a solution state:
Inputs: Problem, a problem (Objective)
Schedule, a mapping from time to temperature (Cooling process)
Local Variables: Present node
Next node (Neighbour)
T, a “temperature” controlling the probability of downward steps
Present = MAKE-NODE (INITIAL STATE [Objective])
For t = 1 to  do
1. T = Schedule [t]
2. If T = 0 then return Present
3. Next = a randomly selected successor of Present
4. E = VALUE [Next] – VALUE [Present]
If E > 0 then Present = Next
Else if Present = Next only with probability
E
T
e

if greater than U (0, 1)
3 | P a g e
Else go to Step (2)
5. If the stopping criterion is satisfied then stop; else decrease the temperature T and
go to Step (3).
End
Fig.1
4 | P a g e
Performance for Standard functions:
1. Easom Function:
z = -cos( x(1) ) * cos( x(2) ) * exp( -( (x(1)-pi).^2 + (x(2)-pi).^2) ) ;
-100 < x(1) & x(2)< 100
Iteration 100: Best Cost = -0.99995
Position Vector of particle: [3.147189828330370,3.141363964704188]
Best Cost: -0.999952930030512
Fig.2
Fig.3
5 | P a g e
2. Ackley Function:
z= ( -20*exp( -0.2*sqrt(0.5*( x(1).^2 + x(2).^2) )) -
exp(0.5*(cos(2*pi*x(1))+cos(2*pi*x(2)))) + exp(1) + 20 );
-5 < x(1) & x(2)< 5
Iteration 100: Best Cost = 0.013159
Position Vector of particle: [0.00393793979981002, -0.00210400838651485]
Best Cost: 0.013159033438857
Fig.4
Fig.5
6 | P a g e
3. Himmelblau Function:
z= ( x(1).^2 + x(2) - 11).^2 + ( x(1) + x(2).^2 - 7 ).^2;
-5 < x(1) & x(2)< 5
Iteration 100: Best Cost = 0.0082141
Fig.6
Fig.7
7 | P a g e
Optimal power flow (Objective to minimize loss) using SAA:
Optimal Power Flow (OPF) has the goal of determining the active and reactive power
generation in order to obtain the optimal operation of the power system. It requires running
several times a power flow algorithm with different power generation values and choosing
the best scenario for a certain objective. Typical OPF objectives can be: to minimize
generation costs, to minimize active power losses. This fact implies different state variables.
This objective function in the report minimizes the transmission line losses by varying the
bus voltage magnitude and power generated by all the generator buses except the slack
bus. Thus these variables are the control also known as the control variables. This implies
that it is necessary to have distinct mathematical formulation for the OPF problem according
to the aimed goals.
The OPF is studied since the 1960’s when electricity companies needed to reduce their
cost but maintaining the security and power quality in the system. It is run offline well in
advance and is mainly used for power system planning. Several methods were used on
OPF, such as Linear Programming (LP); Non-Linear Programming (NLP); Mixed-Integer
Programming (MIP); Newton method; interior point method; and Artificial Intelligence (AI)
techniques. The most modern techniques to solve OPF come from the artificial intelligence
field, being mainly metaheuristics based on local search and population evolution. These
techniques have advantages against classical optimization techniques (as LP, NLP, and
MIP) in required computational resources, such as execution time and memory allocation.
So, AI techniques could be applied in large combinatorial problems due to the
characteristics above. Genetic Algorithm (GA), Particle Swarm Optimization (PSO).
Formulation of OPF:
Objective Function (losses):
  
max min
2 2
2 2
max min
max min
2 2
( - ) ( - )
( , , ) 1 1
+ p2 ( - ) ( - )
( -Q ) ( -Q )
3
gslack gslack gslack gslack
gi di
base base
i i i i
gslack gslack gslack gslack
base base
P P P P
F x u c P P p p
S S
V V V V
Q Q
p
S S
   
       
   

   
    
   
 
(3)
1
iN
gi di ij
i
j i
P P P


   (4)
8 | P a g e
1
iN
gi di ij
i
j i
Q Q Q


   (5)
min max
,gi gi gi GP P P i N    (6)
min max
,gi gi gi GQ Q Q i N    (7)
min max
,i i i BV V V i N    (8)
min max
,i i i Bi N      (9)
Penalty functions p1, p2 and p3 are penalty functions which ensure the voltage at all
the buses and power at generator buses are within limits.
Algorithm for OPF:
Initialize SA Parameters (T0, M0, α)
Set Initial Solution Randomly (s0)
Previous Solution (s1) ← Initial Solution (s0)
While stopping criteria are not satisfied do
For 1 until M0 Temperature Iteration do
s2 ← generate Neighbourhood Solution (s1)
Run a Newton-Raphson PF
If F (s2) < F (s1) (eq. 10)
s1 ← s2
If F (s2) < F (best) (eq. 1)
Best ← s2
End
Else
If randomly probability < Boltzmann’s probability
s1 ← s2
End
End
End for
Reduce Temperature by α
Iteration ← Iteration +1
Evaluate Best Solution Evolution
9 | P a g e
End while
Results: 1. IEEE 30 Bus System:)
MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton)
Newton's method power flow converged in 3 iterations.
Converged in 0.00 seconds
================================================================================
| System Summary |
================================================================================
How many? How much? P (MW) Q (MVAr)
--------------------- ------------------- ------------- -----------------
Buses 30 Total Gen Capacity 335.0 -95.0 to 405.9
Generators 6 On-line Capacity 335.0 -95.0 to 405.9
Committed Gens 6 Generation (actual) 191.0 99.8
Loads 20 Load 189.2 107.2
Fixed 20 Fixed 189.2 107.2
Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 2 Shunt (inj) -0.0 0.2
Branches 41 Losses (I^2 * Z) 1.75 8.69
Transformers 0 Branch Charging (inj) - 15.9
Inter-ties 7 Total Inter-tie Flow 43.8 39.2
Areas 3
Minimum Maximum
------------------------- --------------------------------
Voltage Magnitude 0.979 p.u. @ bus 8 1.060 p.u. @ bus 13
Voltage Angle -1.47 deg @ bus 7 3.10 deg @ bus 13
P Losses (I^2*R) - 0.16 MW @ line 27-30
Q Losses (I^2*X) - 2.74 MVAr @ line 12-13
================================================================================
| Bus Data |
================================================================================
Bus Voltage Generation Load
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ------- -------- -------- -------- -------- --------
1 1.000 0.000* 0.57 -4.23 - -
2 1.002 0.160 57.96 16.70 21.70 12.70
3 0.996 -0.640 - - 2.40 1.20
4 0.996 -0.721 - - 7.60 1.60
5 0.992 -0.899 - - - -
6 0.991 -0.957 - - - -
7 0.982 -1.468 - - 22.80 10.90
8 0.979 -1.382 - - 30.00 30.00
9 1.001 -0.364 - - - -
10 1.007 -0.058 - - 5.80 2.00
11 1.001 -0.364 - - - -
12 1.022 0.382 - - 11.20 7.50
13 1.060 3.098 36.66 29.15 - -
14 1.012 -0.194 - - 6.20 1.60
15 1.014 -0.017 - - 8.20 2.50
16 1.009 -0.101 - - 3.50 1.80
17 1.002 -0.285 - - 9.00 5.80
18 0.999 -0.769 - - 3.20 0.90
10 | P a g e
19 0.994 -1.022 - - 9.50 3.40
20 0.996 -0.836 - - 2.20 0.70
21 1.018 0.397 - - 17.50 11.20
22 1.026 0.647 47.09 30.74 - -
23 1.031 0.951 17.32 7.90 3.20 1.60
24 1.019 0.628 - - 8.70 6.70
25 1.028 1.082 - - - -
26 1.011 0.666 - - 3.50 2.30
27 1.043 1.630 31.35 19.55 - -
28 0.995 -0.862 - - - -
29 1.023 0.437 - - 2.40 0.90
30 1.012 -0.399 - - 10.60 1.90
-------- -------- -------- --------
Total: 190.95 99.81 189.20 107.20
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 2 -5.39 -3.67 5.40 0.68 0.007 0.02
2 1 3 5.97 -0.57 -5.95 -1.36 0.018 0.07
3 2 4 9.26 -0.34 -9.21 -1.51 0.051 0.15
4 3 4 3.55 0.16 -3.55 -0.15 0.001 0.01
5 2 5 9.90 1.85 -9.85 -3.63 0.053 0.21
6 2 6 11.69 1.82 -11.61 -3.54 0.086 0.26
7 4 6 12.69 10.11 -12.67 -10.00 0.027 0.11
8 5 7 9.85 3.81 -9.79 -4.65 0.059 0.14
9 6 7 13.07 5.45 -13.01 -6.25 0.063 0.17
10 6 8 23.81 23.22 -23.69 -22.77 0.113 0.45
11 6 9 -4.89 -5.14 4.89 5.25 0.000 0.11
12 6 10 -2.80 -2.94 2.80 3.03 0.000 0.09
13 9 11 0.00 0.00 0.00 0.00 0.000 0.00
14 9 10 -4.89 -5.25 4.89 5.31 0.000 0.06
15 4 12 -7.53 -10.05 7.53 10.46 0.000 0.41
16 12 13 -36.66 -26.41 36.66 29.15 0.000 2.74
17 12 14 4.86 1.87 -4.83 -1.80 0.031 0.07
18 12 15 6.87 2.46 -6.83 -2.39 0.036 0.07
19 12 16 6.20 4.13 -6.15 -4.02 0.048 0.11
20 14 15 -1.37 0.20 1.38 -0.19 0.004 0.00
21 16 17 2.65 2.22 -2.64 -2.20 0.009 0.02
22 15 18 7.65 3.20 -7.58 -3.06 0.074 0.15
23 18 19 4.38 2.16 -4.36 -2.13 0.014 0.03
24 19 20 -5.14 -1.27 5.15 1.29 0.009 0.02
25 10 20 7.40 2.12 -7.35 -1.99 0.053 0.12
26 10 17 6.37 3.64 -6.36 -3.60 0.016 0.04
27 10 21 -15.58 -9.24 15.68 9.46 0.097 0.23
28 10 22 -11.68 -6.86 11.81 7.14 0.127 0.27
29 21 22 -33.18 -20.66 33.32 20.96 0.147 0.29
30 15 23 -10.39 -3.12 10.51 3.35 0.114 0.23
31 22 24 1.96 2.65 -1.94 -2.63 0.012 0.02
32 23 24 3.61 2.95 -3.59 -2.89 0.027 0.06
33 24 25 -3.17 -1.13 3.19 1.17 0.021 0.04
34 25 26 3.54 2.37 -3.50 -2.30 0.043 0.07
35 25 27 -6.73 -3.54 6.79 3.65 0.060 0.11
36 28 27 -11.28 -11.54 11.28 12.59 -0.000 1.05
37 27 29 6.16 1.66 -6.08 -1.51 0.082 0.16
38 27 30 7.11 1.65 -6.95 -1.35 0.157 0.29
39 29 30 3.68 0.61 -3.65 -0.55 0.032 0.06
40 8 28 -6.31 -7.23 6.36 5.44 0.050 0.17
41 6 28 -4.91 -7.04 4.93 6.10 0.014 0.04
11 | P a g e
-------- --------
Total: 1.753 8.69
****************************************************************
Minimum loss = 1.75
Iteration 500: Best Cost = 1.7514
Optimized Values of Power Generated and Voltage Magnitudes at buses:
57.8669783832663 MW
47.0437161375111 MW
31.5441607694867 MW
17.4098016695630 MW
36.7817327215485 MW
1.00263461153200 PU
1.02564085717530 PU
1.04167046811973 PU
1.03029604471814 PU
1.05941127920561 PU
Fig.8
12 | P a g e
Comparison with power flows:
1. Normal Power Flow for IEEE 30 BUS SYSTEM:
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 2 12.40 -36.60 -12.09 34.84 0.316 0.95
2 1 3 15.91 -3.77 -15.76 2.57 0.148 0.56
3 2 4 16.35 5.82 -16.14 -7.04 0.204 0.58
4 3 4 13.36 -3.77 -13.34 3.85 0.022 0.09
5 2 5 14.08 4.02 -13.96 -5.35 0.121 0.48
6 2 6 20.93 6.01 -20.61 -6.86 0.317 0.95
7 4 6 24.70 2.40 -24.63 -2.12 0.070 0.28
8 5 7 13.96 5.52 -13.83 -6.08 0.130 0.31
9 6 7 9.01 4.04 -8.97 -4.82 0.035 0.09
10 6 8 24.62 25.10 -24.48 -24.53 0.141 0.57
11 6 9 8.40 -12.56 -8.40 13.11 0.000 0.55
12 6 10 4.80 -7.18 -4.80 7.66 0.000 0.48
13 9 11 0.00 0.00 0.00 0.00 0.000 0.00
14 9 10 8.40 -13.11 -8.40 13.40 0.000 0.29
15 4 12 -2.82 -0.82 2.82 0.84 0.000 0.03
16 12 13 -37.00 -1.96 37.00 4.14 0.000 2.17
17 12 14 5.27 1.19 -5.23 -1.10 0.040 0.09
18 12 15 8.84 0.04 -8.77 0.08 0.062 0.11
19 12 16 8.88 -7.60 -8.74 7.91 0.139 0.31
20 14 15 -0.97 -0.50 0.97 0.50 0.003 0.00
21 16 17 5.24 -9.71 -5.13 9.97 0.108 0.26
22 15 18 8.71 -4.90 -8.58 5.16 0.126 0.25
23 18 19 5.38 -6.06 -5.34 6.15 0.045 0.10
24 19 20 -4.16 -9.55 4.20 9.64 0.037 0.09
25 10 20 6.55 10.68 -6.40 -10.34 0.148 0.34
26 10 17 3.95 16.00 -3.87 -15.77 0.085 0.23
27 10 21 -0.32 -30.21 0.61 30.88 0.286 0.67
28 10 22 -2.78 -19.53 3.06 20.14 0.285 0.61
29 21 22 -18.11 -42.08 18.32 42.50 0.210 0.42
30 15 23 -9.11 1.83 9.20 -1.63 0.099 0.20
31 22 24 0.21 25.76 0.57 -24.59 0.781 1.17
32 23 24 6.80 -11.51 -6.53 12.06 0.263 0.55
33 24 25 -2.74 5.87 2.82 -5.72 0.086 0.15
34 25 26 3.55 2.38 -3.50 -2.30 0.051 0.08
35 25 27 -6.37 3.35 6.44 -3.22 0.063 0.12
36 28 27 -7.14 -3.41 7.14 3.70 0.000 0.29
37 27 29 6.19 1.71 -6.09 -1.52 0.101 0.19
13 | P a g e
38 27 30 7.14 1.71 -6.95 -1.35 0.191 0.36
39 29 30 3.69 0.62 -3.65 -0.55 0.039 0.07
40 8 28 -5.52 -5.47 5.56 3.87 0.037 0.12
41 6 28 -1.58 -0.42 1.58 -0.45 0.001 0.00
-------- --------
Total: 4.786 15.14
2. Optimal Power Flow for IEEE 30 BUS SYSTEM using cost as objective
function:
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 2 21.04 -2.34 -20.95 -0.27 0.092 0.28
2 1 3 20.50 -3.10 -20.28 2.02 0.220 0.84
3 2 4 18.63 -5.85 -18.40 4.60 0.232 0.66
4 3 4 17.88 -3.22 -17.84 3.36 0.035 0.14
5 2 5 14.36 -0.69 -14.25 -0.78 0.108 0.43
6 2 6 21.66 -4.21 -21.36 3.21 0.300 0.90
7 4 6 17.58 5.68 -17.54 -5.54 0.036 0.14
8 5 7 14.25 0.96 -14.15 -1.64 0.109 0.26
9 6 7 8.70 8.46 -8.65 -9.26 0.049 0.13
10 6 8 23.82 21.37 -23.71 -20.93 0.108 0.43
11 6 9 7.27 -8.27 -7.27 8.54 0.000 0.27
12 6 10 4.15 -4.73 -4.15 4.96 0.000 0.23
13 9 11 0.00 0.00 0.00 0.00 0.000 0.00
14 9 10 7.27 -8.54 -7.27 8.68 -0.000 0.14
15 4 12 11.06 -15.24 -11.06 16.21 0.000 0.97
16 12 13 -16.20 -34.01 16.20 35.93 0.000 1.92
17 12 14 4.68 2.08 -4.65 -2.01 0.030 0.07
18 12 15 6.07 3.18 -6.04 -3.12 0.032 0.06
19 12 16 5.31 5.04 -5.26 -4.94 0.047 0.10
20 14 15 -1.55 0.41 1.55 -0.41 0.006 0.01
21 16 17 1.76 3.14 -1.75 -3.12 0.010 0.02
22 15 18 7.20 3.75 -7.13 -3.60 0.071 0.14
23 18 19 3.93 2.70 -3.92 -2.67 0.014 0.03
24 19 20 -5.58 -0.73 5.59 0.75 0.010 0.02
25 10 20 7.85 1.58 -7.79 -1.45 0.058 0.13
26 10 17 7.27 2.73 -7.25 -2.68 0.018 0.05
27 10 21 -4.43 -11.56 4.47 11.67 0.046 0.11
28 10 22 -5.06 -8.39 5.13 8.54 0.067 0.14
29 21 22 -21.97 -22.87 22.07 23.07 0.099 0.20
30 15 23 -10.92 -2.72 11.04 2.97 0.124 0.25
31 22 24 -4.46 2.59 4.49 -2.54 0.031 0.05
32 23 24 2.03 2.39 -2.01 -2.37 0.012 0.03
33 24 25 -11.18 -1.75 11.41 2.16 0.235 0.41
34 25 26 3.54 2.36 -3.50 -2.30 0.042 0.06
35 25 27 -14.96 -4.52 15.20 4.99 0.246 0.47
36 28 27 -11.45 -21.09 11.45 23.48 0.000 2.39
37 27 29 6.16 1.65 -6.08 -1.50 0.078 0.15
14 | P a g e
38 27 30 7.10 1.63 -6.95 -1.36 0.149 0.28
39 29 30 3.68 0.60 -3.65 -0.54 0.030 0.06
40 8 28 -6.29 -9.07 6.36 7.41 0.069 0.23
41 6 28 -5.05 -14.50 5.09 13.68 0.047 0.14
-------- --------
Total: 2.860 13.33
Thus the results for loss minimization is less than the losses occurred during a normal
power flow and OPF for cost an objective function.
2. IEEE 14 Bus System:
MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton)
Newton's method power flow converged in 4 iterations.
Converged in 0.00 seconds
| System Summary
|
===============================================================================
=
How many? How much? P (MW) Q (MVAr)
--------------------- ------------------- ------------- -----------------
Buses 14 Total Gen Capacity 772.4 -52.0 to 148.0
Generators 5 On-line Capacity 772.4 -52.0 to 148.0
Committed Gens 5 Generation (actual) 259.6 49.1
Loads 11 Load 259.0 73.5
Fixed 11 Fixed 259.0 73.5
Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 1 Shunt (inj) -0.0 21.1
Branches 20 Losses (I^2 * Z) 0.64 21.87
Transformers 3 Branch Charging (inj) - 25.2
Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Areas 1
Minimum Maximum
------------------------- --------------------------------
Voltage Magnitude 1.031 p.u. @ bus 14 1.060 p.u. @ bus 8
Voltage Angle -0.84 deg @ bus 14 12.13 deg @ bus 8
P Losses (I^2*R) - 0.19 MW @ line 9-14
Q Losses (I^2*X) - 13.35 MVAr @ line 7-8
===============================================================================
=
| Bus Data
|
===============================================================================
=
Bus Voltage Generation Load
# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ------- -------- -------- -------- -------- --------
1 1.060 0.000* 4.70 8.83 - -
2 1.056 -0.005 25.47 13.41 21.70 12.70
3 1.054 0.087 99.01 19.65 94.20 19.00
4 1.043 -0.110 - - 47.80 -3.90
5 1.041 -0.056 - - 7.60 1.60
6 1.060 0.248 38.74 -2.85 11.20 7.50
7 1.054 3.820 - - - -
15 | P a g e
8 1.060 12.132 91.72 10.04 - -
9 1.054 0.707 - - 29.50 16.60
10 1.048 0.337 - - 9.00 5.80
11 1.051 0.164 - - 3.50 1.80
12 1.045 -0.534 - - 6.10 1.60
13 1.042 -0.537 - - 13.50 5.80
14 1.031 -0.842 - - 14.90 5.00
-------- -------- -------- --------
Total: 259.64 49.08 259.00 73.50
===============================================================================
=
| Branch Data
|
===============================================================================
=
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 2 2.18 3.16 -2.17 -9.05 0.007 0.02
2 1 5 2.52 5.67 -2.49 -10.94 0.037 0.15
3 2 3 -0.62 -1.21 0.62 -3.67 0.001 0.00
4 2 4 3.32 4.72 -3.30 -8.38 0.029 0.09
5 2 5 3.23 6.25 -3.20 -9.93 0.039 0.12
6 3 4 4.19 4.32 -4.16 -5.66 0.026 0.07
7 4 5 -0.56 5.98 0.57 -5.96 0.004 0.01
8 4 7 -36.86 7.59 36.86 -4.98 0.000 2.60
9 4 9 -2.91 4.38 2.91 -4.24 0.000 0.13
10 5 6 -2.49 25.24 2.49 -23.94 0.000 1.30
11 6 11 2.59 3.72 -2.57 -3.68 0.017 0.04
12 6 12 7.17 2.62 -7.11 -2.49 0.064 0.13
13 6 13 15.29 7.25 -15.12 -6.92 0.169 0.33
14 7 8 -91.72 3.31 91.72 10.04 0.000 13.35
15 7 9 54.86 1.68 -54.86 1.30 0.000 2.98
16 9 10 9.96 4.01 -9.93 -3.93 0.033 0.09
17 9 14 12.49 3.44 -12.29 -3.04 0.192 0.41
18 10 11 0.93 -1.87 -0.93 1.88 0.003 0.01
19 12 13 1.01 0.89 -1.00 -0.88 0.004 0.00
20 13 14 2.62 2.00 -2.61 -1.96 0.017 0.03
-------- --------
Total: 0.642 21.87
****************************************************************
Minimum loss = 0.64
Iteration 500: Best Cost = 0.6416
Optimized Values of Power Generated and Voltage Magnitudes at buses:
25.4550379798578 MW
98.9612209204273 MW
38.7988155088688 MW
91.8537809557945 MW
16 | P a g e
1.05643879178643 PU
1.05424490663812 PU
1.06000000000000 PU
1.060000000000 PU
Comparison with power flows:
1. Normal Power Flow for IEEE 14 BUS SYSTEM:
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 2 156.88 -20.40 -152.59 27.68 4.298 13.12
2 1 5 75.51 3.85 -72.75 2.23 2.763 11.41
3 2 3 73.24 3.56 -70.91 1.60 2.323 9.79
4 2 4 56.13 -1.55 -54.45 3.02 1.677 5.09
5 2 5 41.52 1.17 -40.61 -2.10 0.904 2.76
6 3 4 -23.29 4.47 23.66 -4.84 0.373 0.95
7 4 5 -61.16 15.82 61.67 -14.20 0.514 1.62
8 4 7 28.07 -9.68 -28.07 11.38 0.000 1.70
9 4 9 16.08 -0.43 -16.08 1.73 0.000 1.30
Fig.9
17 | P a g e
10 5 6 44.09 12.47 -44.09 -8.05 0.000 4.42
11 6 11 7.35 3.56 -7.30 -3.44 0.055 0.12
12 6 12 7.79 2.50 -7.71 -2.35 0.072 0.15
13 6 13 17.75 7.22 -17.54 -6.80 0.212 0.42
14 7 8 -0.00 -17.16 0.00 17.62 0.000 0.46
15 7 9 28.07 5.78 -28.07 -4.98 0.000 0.80
16 9 10 5.23 4.22 -5.21 -4.18 0.013 0.03
17 9 14 9.43 3.61 -9.31 -3.36 0.116 0.25
18 10 11 -3.79 -1.62 3.80 1.64 0.013 0.03
19 12 13 1.61 0.75 -1.61 -0.75 0.006 0.01
20 13 14 5.64 1.75 -5.59 -1.64 0.054 0.11
-------- --------
Total: 13.393 54.54
2. Optimal Power Flow for IEEE 30 BUS SYSTEM using cost as objective
function:
================================================================================
| Branch Data |
================================================================================
Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
----- ----- ----- -------- -------- -------- -------- -------- --------
1 1 2 129.67 -6.36 -126.77 9.40 2.902 8.86
2 1 5 64.66 6.37 -62.61 -3.21 2.051 8.47
3 2 3 55.59 0.47 -54.25 0.56 1.344 5.66
4 2 4 48.92 -0.48 -47.63 0.79 1.285 3.90
5 2 5 37.28 1.59 -36.54 -3.00 0.737 2.25
6 3 4 -11.21 4.57 11.31 -5.63 0.099 0.25
7 4 5 -49.17 11.58 49.50 -10.53 0.331 1.04
8 4 7 22.85 -3.99 -22.85 5.04 0.000 1.05
9 4 9 14.84 1.17 -14.84 -0.04 0.000 1.12
10 5 6 42.06 15.14 -42.06 -10.90 0.000 4.23
11 6 11 6.09 4.56 -6.04 -4.46 0.049 0.10
12 6 12 7.65 2.66 -7.58 -2.51 0.072 0.15
13 6 13 17.12 7.73 -16.91 -7.32 0.208 0.41
14 7 8 -8.49 -8.05 8.49 8.27 0.000 0.22
15 7 9 31.34 3.01 -31.34 -2.02 0.000 1.00
16 9 10 6.49 3.20 -6.47 -3.16 0.015 0.04
17 9 14 10.20 2.95 -10.06 -2.67 0.131 0.28
18 10 11 -2.53 -2.64 2.54 2.66 0.010 0.02
19 12 13 1.48 0.91 -1.47 -0.91 0.006 0.01
20 13 14 4.88 2.42 -4.84 -2.33 0.047 0.10
-------- --------
Total: 9.287 39.16
Thus, the results for loss minimization is less than the losses occurred during a normal
power flow and OPF for cost an objective function.
18 | P a g e
References:
1. X. Yao, “A new simulated annealing algorithm,” International Journal of Computer Mathematics,
vol. 56, pp. 161-168, 1995MH Rashid - IEEE, ACADEMIC PRESS. ISBN 0-8493-7336-0, 2007
2. Z. Xinchao, “Simulated annealing algorithm with adaptive neighborhood,” Applied Soft Computing,
vol. 11, pp. 1827-1836, 2010.
3. L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,” 1996
4. O. Cordon, F. Moya, and C. Zarco, “A new evolutionary algorithm combining simulated annealing
and genetic programming for relevance feedback in fuzzy information retrieval systems,” Soft
Computing, vol. 6, pp. 308-319, 2002.
5. http://katrinaeg.com/simulated-annealing.html

More Related Content

What's hot

2 law and exergy change
2 law and exergy change2 law and exergy change
2 law and exergy changeISEL
 
Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...
Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...
Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...IJRES Journal
 
Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...
Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...
Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...TELKOMNIKA JOURNAL
 
ME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design OptimizationME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design OptimizationBenjamin Johnson
 
Low thrust interplanetary trajectory optimization (Optimal control)
Low thrust interplanetary trajectory optimization (Optimal control)Low thrust interplanetary trajectory optimization (Optimal control)
Low thrust interplanetary trajectory optimization (Optimal control)naveen kumar
 
A Research on Optimal Power Flow Solutions For Variable Loa
A Research on Optimal Power Flow Solutions For Variable LoaA Research on Optimal Power Flow Solutions For Variable Loa
A Research on Optimal Power Flow Solutions For Variable LoaIJERA Editor
 
Single Pendulum Gantry (SPG) 2013.4.17
Single Pendulum Gantry (SPG) 2013.4.17Single Pendulum Gantry (SPG) 2013.4.17
Single Pendulum Gantry (SPG) 2013.4.17WEI WEI
 
Nonlinear batch reactor temperature control based on adaptive feedback based ilc
Nonlinear batch reactor temperature control based on adaptive feedback based ilcNonlinear batch reactor temperature control based on adaptive feedback based ilc
Nonlinear batch reactor temperature control based on adaptive feedback based ilcijics
 
Response spectrum
Response spectrumResponse spectrum
Response spectrumabak2
 
Applied thermodynamics(lecture 3)
Applied thermodynamics(lecture 3)Applied thermodynamics(lecture 3)
Applied thermodynamics(lecture 3)TAUSIQUE SHEIKH
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - IIItushardatta
 
03 part3 availability irreversibility
03 part3 availability irreversibility03 part3 availability irreversibility
03 part3 availability irreversibilitygunabalan sellan
 

What's hot (19)

2 law and exergy change
2 law and exergy change2 law and exergy change
2 law and exergy change
 
Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...
Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...
Dependence Of Energy Efficiency Indices On Individual Energy Technological Pr...
 
Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...
Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...
Exergy Assessment of Photovoltaic Thermal with V-groove Collector Using Theor...
 
ME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design OptimizationME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design Optimization
 
Low thrust interplanetary trajectory optimization (Optimal control)
Low thrust interplanetary trajectory optimization (Optimal control)Low thrust interplanetary trajectory optimization (Optimal control)
Low thrust interplanetary trajectory optimization (Optimal control)
 
A Research on Optimal Power Flow Solutions For Variable Loa
A Research on Optimal Power Flow Solutions For Variable LoaA Research on Optimal Power Flow Solutions For Variable Loa
A Research on Optimal Power Flow Solutions For Variable Loa
 
Single Pendulum Gantry (SPG) 2013.4.17
Single Pendulum Gantry (SPG) 2013.4.17Single Pendulum Gantry (SPG) 2013.4.17
Single Pendulum Gantry (SPG) 2013.4.17
 
Lect1
Lect1Lect1
Lect1
 
Nonlinear batch reactor temperature control based on adaptive feedback based ilc
Nonlinear batch reactor temperature control based on adaptive feedback based ilcNonlinear batch reactor temperature control based on adaptive feedback based ilc
Nonlinear batch reactor temperature control based on adaptive feedback based ilc
 
Response spectrum
Response spectrumResponse spectrum
Response spectrum
 
Applied thermodynamics(lecture 3)
Applied thermodynamics(lecture 3)Applied thermodynamics(lecture 3)
Applied thermodynamics(lecture 3)
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
 
14 34-46
14 34-4614 34-46
14 34-46
 
SPIE-9150-72
SPIE-9150-72SPIE-9150-72
SPIE-9150-72
 
03 part3 availability irreversibility
03 part3 availability irreversibility03 part3 availability irreversibility
03 part3 availability irreversibility
 
H04525159
H04525159H04525159
H04525159
 
Overview of thermodynamics
Overview of thermodynamicsOverview of thermodynamics
Overview of thermodynamics
 
Thermodynamics by s k mondal copy
Thermodynamics  by s k mondal   copyThermodynamics  by s k mondal   copy
Thermodynamics by s k mondal copy
 

Similar to Simulated Annealing for Optimal Power Flow (OPF)

Simulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation TechniqueSimulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation TechniqueAUSTIN MOSES
 
SimulatedAnnealing.ppt
SimulatedAnnealing.pptSimulatedAnnealing.ppt
SimulatedAnnealing.pptVivekChawla19
 
Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...
Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...
Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...Cemal Ardil
 
A Self-Tuned Simulated Annealing Algorithm using Hidden Markov Mode
A Self-Tuned Simulated Annealing Algorithm using Hidden Markov ModeA Self-Tuned Simulated Annealing Algorithm using Hidden Markov Mode
A Self-Tuned Simulated Annealing Algorithm using Hidden Markov ModeIJECEIAES
 
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...AbdlaDoski
 
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization Technique
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization TechniqueDynamic Economic Dispatch Assessment Using Particle Swarm Optimization Technique
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization TechniquejournalBEEI
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...ijrap
 
Comsol Simulation Paper
Comsol Simulation PaperComsol Simulation Paper
Comsol Simulation PaperDillon Stanger
 
MOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMysha Malar M
 
MODULE TITLE CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docx
MODULE TITLE    CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docxMODULE TITLE    CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docx
MODULE TITLE CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docxgilpinleeanna
 
computationalchemistry_12-6.ppt
computationalchemistry_12-6.pptcomputationalchemistry_12-6.ppt
computationalchemistry_12-6.pptsami97008
 
1987 . thermo economic functional analysis and optimization [frangopoulos]
1987 . thermo economic functional analysis and  optimization [frangopoulos]1987 . thermo economic functional analysis and  optimization [frangopoulos]
1987 . thermo economic functional analysis and optimization [frangopoulos]Wanderson Araujo
 
Investigation of heat transfer enhancement for a model 21 Feb 2021.pptx
Investigation of heat transfer enhancement for a model 21 Feb 2021.pptxInvestigation of heat transfer enhancement for a model 21 Feb 2021.pptx
Investigation of heat transfer enhancement for a model 21 Feb 2021.pptxMahmoudShakier2
 
heat transfer enhancement for Central solar tower
heat transfer enhancement for Central solar towerheat transfer enhancement for Central solar tower
heat transfer enhancement for Central solar towerMahmoudShakier2
 
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...Power System Operation
 
Lectures upto block diagram reduction
Lectures upto block diagram reductionLectures upto block diagram reduction
Lectures upto block diagram reductionUthsoNandy
 
energy hub IREC.pptx
energy hub IREC.pptxenergy hub IREC.pptx
energy hub IREC.pptxAlaa Eladl
 

Similar to Simulated Annealing for Optimal Power Flow (OPF) (20)

Simulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation TechniqueSimulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation Technique
 
SimulatedAnnealing.ppt
SimulatedAnnealing.pptSimulatedAnnealing.ppt
SimulatedAnnealing.ppt
 
Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...
Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...
Automatic generation-control-of-multi-area-electric-energy-systems-using-modi...
 
A Self-Tuned Simulated Annealing Algorithm using Hidden Markov Mode
A Self-Tuned Simulated Annealing Algorithm using Hidden Markov ModeA Self-Tuned Simulated Annealing Algorithm using Hidden Markov Mode
A Self-Tuned Simulated Annealing Algorithm using Hidden Markov Mode
 
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
 
GSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAYGSA TUNED HIGH EXERGY IN PV ARRAY
GSA TUNED HIGH EXERGY IN PV ARRAY
 
Simulated annealing
Simulated annealingSimulated annealing
Simulated annealing
 
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization Technique
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization TechniqueDynamic Economic Dispatch Assessment Using Particle Swarm Optimization Technique
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization Technique
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
 
Comsol Simulation Paper
Comsol Simulation PaperComsol Simulation Paper
Comsol Simulation Paper
 
MOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUES
 
Energy minimization
Energy minimizationEnergy minimization
Energy minimization
 
MODULE TITLE CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docx
MODULE TITLE    CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docxMODULE TITLE    CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docx
MODULE TITLE CONTROL SYSTEMS AND AUTOMATIONTOPIC TITLE.docx
 
computationalchemistry_12-6.ppt
computationalchemistry_12-6.pptcomputationalchemistry_12-6.ppt
computationalchemistry_12-6.ppt
 
1987 . thermo economic functional analysis and optimization [frangopoulos]
1987 . thermo economic functional analysis and  optimization [frangopoulos]1987 . thermo economic functional analysis and  optimization [frangopoulos]
1987 . thermo economic functional analysis and optimization [frangopoulos]
 
Investigation of heat transfer enhancement for a model 21 Feb 2021.pptx
Investigation of heat transfer enhancement for a model 21 Feb 2021.pptxInvestigation of heat transfer enhancement for a model 21 Feb 2021.pptx
Investigation of heat transfer enhancement for a model 21 Feb 2021.pptx
 
heat transfer enhancement for Central solar tower
heat transfer enhancement for Central solar towerheat transfer enhancement for Central solar tower
heat transfer enhancement for Central solar tower
 
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
 
Lectures upto block diagram reduction
Lectures upto block diagram reductionLectures upto block diagram reduction
Lectures upto block diagram reduction
 
energy hub IREC.pptx
energy hub IREC.pptxenergy hub IREC.pptx
energy hub IREC.pptx
 

More from Anmol Dwivedi

Connections b/w active learning and model extraction
Connections b/w active learning and model extractionConnections b/w active learning and model extraction
Connections b/w active learning and model extractionAnmol Dwivedi
 
Tutorial on Markov Random Fields (MRFs) for Computer Vision Applications
Tutorial on Markov Random Fields (MRFs) for Computer Vision ApplicationsTutorial on Markov Random Fields (MRFs) for Computer Vision Applications
Tutorial on Markov Random Fields (MRFs) for Computer Vision ApplicationsAnmol Dwivedi
 
Inference & Learning in Linear Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear Chain Conditional Random Fields (CRFs)Inference & Learning in Linear Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear Chain Conditional Random Fields (CRFs)Anmol Dwivedi
 
Linear Discriminant Analysis (LDA) Under f-Divergence Measures
Linear Discriminant Analysis (LDA) Under f-Divergence MeasuresLinear Discriminant Analysis (LDA) Under f-Divergence Measures
Linear Discriminant Analysis (LDA) Under f-Divergence MeasuresAnmol Dwivedi
 
Tutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian NetworksTutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian NetworksAnmol Dwivedi
 
Voltage stability Analysis using GridCal
Voltage stability Analysis using GridCalVoltage stability Analysis using GridCal
Voltage stability Analysis using GridCalAnmol Dwivedi
 
Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)Anmol Dwivedi
 
Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA)Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA)Anmol Dwivedi
 
Detection of Generator Loss of Excitation (LOE)
Detection of Generator Loss of Excitation (LOE)Detection of Generator Loss of Excitation (LOE)
Detection of Generator Loss of Excitation (LOE)Anmol Dwivedi
 
Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...
Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...
Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...Anmol Dwivedi
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference PresentationAnmol Dwivedi
 
Presentation on listening effectively.
Presentation on listening effectively.Presentation on listening effectively.
Presentation on listening effectively.Anmol Dwivedi
 

More from Anmol Dwivedi (13)

Connections b/w active learning and model extraction
Connections b/w active learning and model extractionConnections b/w active learning and model extraction
Connections b/w active learning and model extraction
 
Tutorial on Markov Random Fields (MRFs) for Computer Vision Applications
Tutorial on Markov Random Fields (MRFs) for Computer Vision ApplicationsTutorial on Markov Random Fields (MRFs) for Computer Vision Applications
Tutorial on Markov Random Fields (MRFs) for Computer Vision Applications
 
Inference & Learning in Linear Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear Chain Conditional Random Fields (CRFs)Inference & Learning in Linear Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear Chain Conditional Random Fields (CRFs)
 
Linear Discriminant Analysis (LDA) Under f-Divergence Measures
Linear Discriminant Analysis (LDA) Under f-Divergence MeasuresLinear Discriminant Analysis (LDA) Under f-Divergence Measures
Linear Discriminant Analysis (LDA) Under f-Divergence Measures
 
Tutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian NetworksTutorial on Belief Propagation in Bayesian Networks
Tutorial on Belief Propagation in Bayesian Networks
 
Voltage stability Analysis using GridCal
Voltage stability Analysis using GridCalVoltage stability Analysis using GridCal
Voltage stability Analysis using GridCal
 
Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)
Inference & Learning in Linear-Chain Conditional Random Fields (CRFs)
 
Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA)Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA)
 
Detection of Generator Loss of Excitation (LOE)
Detection of Generator Loss of Excitation (LOE)Detection of Generator Loss of Excitation (LOE)
Detection of Generator Loss of Excitation (LOE)
 
Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...
Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...
Rotor Resistance Control of Wound Rotor Induction Generator (WRIG) using PSCA...
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference Presentation
 
Presentation on listening effectively.
Presentation on listening effectively.Presentation on listening effectively.
Presentation on listening effectively.
 
Solar PV cells
Solar PV cellsSolar PV cells
Solar PV cells
 

Recently uploaded

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 

Recently uploaded (20)

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 

Simulated Annealing for Optimal Power Flow (OPF)

  • 1. An Improved Simulated Annealing Algorithm (SAA) EEPE40- MODERN OPTIMIZATION TECHNIQUES FOR ELECTRICAL POWER SYSTEMS DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI – 620015 Submitted By, Anmol Dwivedi (107115009)
  • 2. ACKNOWLEDGEMENTS My sincere thanks to Mr. Mukesh Muthu, Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirappalli, for his consent and support. ABSTRACT The simulated annealing is a general-purpose stochastic optimization technique that has proven to be an effective tool for approximating globally optimal solutions to many types of hard combinatorial optimization problems. Simulated annealing is based on an analogy with the physical annealing process - a technique in the field of condensed matter physics for obtaining the minimum-energy state of a solid. There are many optimization algorithms, including hill climbing, genetic algorithms, gradient descent, and more but the simulated annealing's strength is that it avoids getting caught at local maxima / minima - solutions that are better than any others nearby. The paradigm has also been proven to be effective in the field of power systems. However, the major drawback of the paradigm is its typically high and sometimes prohibitive computational cost. The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. In this report, the algorithm is tested on standard functions like the Himmelblau’s function, Easom function and Ackley function. Further the algorithm is used to solve an Optimal Power Flow (OPF) with an objective to minimize the transmission line losses for an IEEE 14 bus and 30 bus systems. The proposed methodology has been tested with IEEE 14 bus and 30 bus networks and finally the results section includes the conclusions of the work.
  • 3. TABLE OF CONTENTS Title Page No. ABSTRACT i ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iii REFERENCES iv 1. Introduction 2. Algorithm & Flowchart 3. Performance for standard functions 4. Optimal power flow (Objective to minimize loss) using SAA 5. Formulation of OPF 6. Algorithm for OPF 7. Performance of Algorithm& Results  IEEE 30 bus system  IEEE 14 bus system 8. Conclusion
  • 4. 1 | P a g e Introduction: Meta-heuristic optimization algorithms have received significant attention and remarkable growth over the past few decades. The most common way to classify meta-heuristic algorithms is based on solo-searchers (simulated annealing (SA), tabu search (TS), hill climbing (HC)) versus the population-based searchers, such as genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) and other. The first methods are those that employ a single solution during the search process while in the latter a population of solutions is used and evolved during a given number of iterations. Population-based algorithms have been found to perform well on many real world problems. This has led to an effort by researchers to understand and explain this behaviour. Simulated annealing (SA) is a popular generic probabilistic solo-algorithm used for global optimization problems. The name and inspiration stem from annealing in metallurgy, a process involving heating and controlled cooling of a material to increase the size of its crystals and reduce its defects. The atoms become unstuck from their initial positions by heating and wander randomly through states of higher energy. More chance to find configurations with lower internal energy than initial one is provided by slow cooling. In a similar way with this physical process, in SA, each feasible solution is analogous to a state of a physical system, and the fitness function which needs to be minimized is similar to the internal energy of the system in that state. The ultimate goal is to bring the system, from an arbitrary (random) initial state, to a state in which the energy of the system is minimal. In each stage, SA replaces the current solution by a random nearby solution with a probability depending both on the difference between the corresponding fitness values and also on a parameter, named temperature. The ease of implementation makes SA as an extremely popular method for solving large and practical problems such as travelling salesman, communication systems continuous optimization among others. However, SA suffers from two main drawbacks, being trapped in local minima and taking long computational time to find a reasonable solution. Due to the fact that SA is a solo- searcher, its success depends strongly on the selection of the starting point and the decisions it makes. Hence, any bad luck affects the nature of the results and instead of a global minimum a local one may be achieved, especially when the problem dimension is high and there are many local minima. Moreover, seeking search space with a single solution takes long computational time to discover a reasonable solution. In order to improve the SA performance, various researchers have developed different strategies like faster annealing schedules [1], simulated annealing with an adaptive non-uniform mutation [2], adaptive simulated annealing (ASA) [3], and hybridization of SA with other heuristics, such as genetic algorithm [4]. Formulation: The law of thermodynamics state that at temperature T, the probability of an increase in energy of magnitude E , is given by
  • 5. 2 | P a g e ( ) E kT P E e    (1) Where k is a constant known as Boltzmann’s constant. The simulation in the Metropolis algorithm calculates the new energy of the system. If the energy has decreased then the system moves to this state. If the energy has increased then the new state is accepted using the probability returned by the above formula. A certain number of iterations are carried out at each temperature and then the temperature is decreased. This is repeated until the system freezes into a steady state. This equation is directly used in simulated annealing, although it is usual to drop the Boltzmann constant as this was only introduced into the equation to cope with different materials. Therefore, the probability of accepting a worse state is given by the equation c T P e r    (2) Where c = the change in the evaluation function T = the current temperature r = a random number between 0 and 1 The probability of accepting a worse move is a function of both the temperature of the system and of the change in the cost function. It can be appreciated that as the temperature of the system decreases the probability of accepting a worse move is decreased. This is the same as gradually moving to a frozen state in physical annealing. Also note, for small temperature, only better moves will be accepted which effectively makes simulated annealing act like hill climbing. Algorithm & Flow Chart: Function SIMULATED-ANNEALING (Problem, Schedule) returns a solution state: Inputs: Problem, a problem (Objective) Schedule, a mapping from time to temperature (Cooling process) Local Variables: Present node Next node (Neighbour) T, a “temperature” controlling the probability of downward steps Present = MAKE-NODE (INITIAL STATE [Objective]) For t = 1 to  do 1. T = Schedule [t] 2. If T = 0 then return Present 3. Next = a randomly selected successor of Present 4. E = VALUE [Next] – VALUE [Present] If E > 0 then Present = Next Else if Present = Next only with probability E T e  if greater than U (0, 1)
  • 6. 3 | P a g e Else go to Step (2) 5. If the stopping criterion is satisfied then stop; else decrease the temperature T and go to Step (3). End Fig.1
  • 7. 4 | P a g e Performance for Standard functions: 1. Easom Function: z = -cos( x(1) ) * cos( x(2) ) * exp( -( (x(1)-pi).^2 + (x(2)-pi).^2) ) ; -100 < x(1) & x(2)< 100 Iteration 100: Best Cost = -0.99995 Position Vector of particle: [3.147189828330370,3.141363964704188] Best Cost: -0.999952930030512 Fig.2 Fig.3
  • 8. 5 | P a g e 2. Ackley Function: z= ( -20*exp( -0.2*sqrt(0.5*( x(1).^2 + x(2).^2) )) - exp(0.5*(cos(2*pi*x(1))+cos(2*pi*x(2)))) + exp(1) + 20 ); -5 < x(1) & x(2)< 5 Iteration 100: Best Cost = 0.013159 Position Vector of particle: [0.00393793979981002, -0.00210400838651485] Best Cost: 0.013159033438857 Fig.4 Fig.5
  • 9. 6 | P a g e 3. Himmelblau Function: z= ( x(1).^2 + x(2) - 11).^2 + ( x(1) + x(2).^2 - 7 ).^2; -5 < x(1) & x(2)< 5 Iteration 100: Best Cost = 0.0082141 Fig.6 Fig.7
  • 10. 7 | P a g e Optimal power flow (Objective to minimize loss) using SAA: Optimal Power Flow (OPF) has the goal of determining the active and reactive power generation in order to obtain the optimal operation of the power system. It requires running several times a power flow algorithm with different power generation values and choosing the best scenario for a certain objective. Typical OPF objectives can be: to minimize generation costs, to minimize active power losses. This fact implies different state variables. This objective function in the report minimizes the transmission line losses by varying the bus voltage magnitude and power generated by all the generator buses except the slack bus. Thus these variables are the control also known as the control variables. This implies that it is necessary to have distinct mathematical formulation for the OPF problem according to the aimed goals. The OPF is studied since the 1960’s when electricity companies needed to reduce their cost but maintaining the security and power quality in the system. It is run offline well in advance and is mainly used for power system planning. Several methods were used on OPF, such as Linear Programming (LP); Non-Linear Programming (NLP); Mixed-Integer Programming (MIP); Newton method; interior point method; and Artificial Intelligence (AI) techniques. The most modern techniques to solve OPF come from the artificial intelligence field, being mainly metaheuristics based on local search and population evolution. These techniques have advantages against classical optimization techniques (as LP, NLP, and MIP) in required computational resources, such as execution time and memory allocation. So, AI techniques could be applied in large combinatorial problems due to the characteristics above. Genetic Algorithm (GA), Particle Swarm Optimization (PSO). Formulation of OPF: Objective Function (losses):    max min 2 2 2 2 max min max min 2 2 ( - ) ( - ) ( , , ) 1 1 + p2 ( - ) ( - ) ( -Q ) ( -Q ) 3 gslack gslack gslack gslack gi di base base i i i i gslack gslack gslack gslack base base P P P P F x u c P P p p S S V V V V Q Q p S S                                 (3) 1 iN gi di ij i j i P P P      (4)
  • 11. 8 | P a g e 1 iN gi di ij i j i Q Q Q      (5) min max ,gi gi gi GP P P i N    (6) min max ,gi gi gi GQ Q Q i N    (7) min max ,i i i BV V V i N    (8) min max ,i i i Bi N      (9) Penalty functions p1, p2 and p3 are penalty functions which ensure the voltage at all the buses and power at generator buses are within limits. Algorithm for OPF: Initialize SA Parameters (T0, M0, α) Set Initial Solution Randomly (s0) Previous Solution (s1) ← Initial Solution (s0) While stopping criteria are not satisfied do For 1 until M0 Temperature Iteration do s2 ← generate Neighbourhood Solution (s1) Run a Newton-Raphson PF If F (s2) < F (s1) (eq. 10) s1 ← s2 If F (s2) < F (best) (eq. 1) Best ← s2 End Else If randomly probability < Boltzmann’s probability s1 ← s2 End End End for Reduce Temperature by α Iteration ← Iteration +1 Evaluate Best Solution Evolution
  • 12. 9 | P a g e End while Results: 1. IEEE 30 Bus System:) MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton) Newton's method power flow converged in 3 iterations. Converged in 0.00 seconds ================================================================================ | System Summary | ================================================================================ How many? How much? P (MW) Q (MVAr) --------------------- ------------------- ------------- ----------------- Buses 30 Total Gen Capacity 335.0 -95.0 to 405.9 Generators 6 On-line Capacity 335.0 -95.0 to 405.9 Committed Gens 6 Generation (actual) 191.0 99.8 Loads 20 Load 189.2 107.2 Fixed 20 Fixed 189.2 107.2 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0 Shunts 2 Shunt (inj) -0.0 0.2 Branches 41 Losses (I^2 * Z) 1.75 8.69 Transformers 0 Branch Charging (inj) - 15.9 Inter-ties 7 Total Inter-tie Flow 43.8 39.2 Areas 3 Minimum Maximum ------------------------- -------------------------------- Voltage Magnitude 0.979 p.u. @ bus 8 1.060 p.u. @ bus 13 Voltage Angle -1.47 deg @ bus 7 3.10 deg @ bus 13 P Losses (I^2*R) - 0.16 MW @ line 27-30 Q Losses (I^2*X) - 2.74 MVAr @ line 12-13 ================================================================================ | Bus Data | ================================================================================ Bus Voltage Generation Load # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ------- -------- -------- -------- -------- -------- 1 1.000 0.000* 0.57 -4.23 - - 2 1.002 0.160 57.96 16.70 21.70 12.70 3 0.996 -0.640 - - 2.40 1.20 4 0.996 -0.721 - - 7.60 1.60 5 0.992 -0.899 - - - - 6 0.991 -0.957 - - - - 7 0.982 -1.468 - - 22.80 10.90 8 0.979 -1.382 - - 30.00 30.00 9 1.001 -0.364 - - - - 10 1.007 -0.058 - - 5.80 2.00 11 1.001 -0.364 - - - - 12 1.022 0.382 - - 11.20 7.50 13 1.060 3.098 36.66 29.15 - - 14 1.012 -0.194 - - 6.20 1.60 15 1.014 -0.017 - - 8.20 2.50 16 1.009 -0.101 - - 3.50 1.80 17 1.002 -0.285 - - 9.00 5.80 18 0.999 -0.769 - - 3.20 0.90
  • 13. 10 | P a g e 19 0.994 -1.022 - - 9.50 3.40 20 0.996 -0.836 - - 2.20 0.70 21 1.018 0.397 - - 17.50 11.20 22 1.026 0.647 47.09 30.74 - - 23 1.031 0.951 17.32 7.90 3.20 1.60 24 1.019 0.628 - - 8.70 6.70 25 1.028 1.082 - - - - 26 1.011 0.666 - - 3.50 2.30 27 1.043 1.630 31.35 19.55 - - 28 0.995 -0.862 - - - - 29 1.023 0.437 - - 2.40 0.90 30 1.012 -0.399 - - 10.60 1.90 -------- -------- -------- -------- Total: 190.95 99.81 189.20 107.20 ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 2 -5.39 -3.67 5.40 0.68 0.007 0.02 2 1 3 5.97 -0.57 -5.95 -1.36 0.018 0.07 3 2 4 9.26 -0.34 -9.21 -1.51 0.051 0.15 4 3 4 3.55 0.16 -3.55 -0.15 0.001 0.01 5 2 5 9.90 1.85 -9.85 -3.63 0.053 0.21 6 2 6 11.69 1.82 -11.61 -3.54 0.086 0.26 7 4 6 12.69 10.11 -12.67 -10.00 0.027 0.11 8 5 7 9.85 3.81 -9.79 -4.65 0.059 0.14 9 6 7 13.07 5.45 -13.01 -6.25 0.063 0.17 10 6 8 23.81 23.22 -23.69 -22.77 0.113 0.45 11 6 9 -4.89 -5.14 4.89 5.25 0.000 0.11 12 6 10 -2.80 -2.94 2.80 3.03 0.000 0.09 13 9 11 0.00 0.00 0.00 0.00 0.000 0.00 14 9 10 -4.89 -5.25 4.89 5.31 0.000 0.06 15 4 12 -7.53 -10.05 7.53 10.46 0.000 0.41 16 12 13 -36.66 -26.41 36.66 29.15 0.000 2.74 17 12 14 4.86 1.87 -4.83 -1.80 0.031 0.07 18 12 15 6.87 2.46 -6.83 -2.39 0.036 0.07 19 12 16 6.20 4.13 -6.15 -4.02 0.048 0.11 20 14 15 -1.37 0.20 1.38 -0.19 0.004 0.00 21 16 17 2.65 2.22 -2.64 -2.20 0.009 0.02 22 15 18 7.65 3.20 -7.58 -3.06 0.074 0.15 23 18 19 4.38 2.16 -4.36 -2.13 0.014 0.03 24 19 20 -5.14 -1.27 5.15 1.29 0.009 0.02 25 10 20 7.40 2.12 -7.35 -1.99 0.053 0.12 26 10 17 6.37 3.64 -6.36 -3.60 0.016 0.04 27 10 21 -15.58 -9.24 15.68 9.46 0.097 0.23 28 10 22 -11.68 -6.86 11.81 7.14 0.127 0.27 29 21 22 -33.18 -20.66 33.32 20.96 0.147 0.29 30 15 23 -10.39 -3.12 10.51 3.35 0.114 0.23 31 22 24 1.96 2.65 -1.94 -2.63 0.012 0.02 32 23 24 3.61 2.95 -3.59 -2.89 0.027 0.06 33 24 25 -3.17 -1.13 3.19 1.17 0.021 0.04 34 25 26 3.54 2.37 -3.50 -2.30 0.043 0.07 35 25 27 -6.73 -3.54 6.79 3.65 0.060 0.11 36 28 27 -11.28 -11.54 11.28 12.59 -0.000 1.05 37 27 29 6.16 1.66 -6.08 -1.51 0.082 0.16 38 27 30 7.11 1.65 -6.95 -1.35 0.157 0.29 39 29 30 3.68 0.61 -3.65 -0.55 0.032 0.06 40 8 28 -6.31 -7.23 6.36 5.44 0.050 0.17 41 6 28 -4.91 -7.04 4.93 6.10 0.014 0.04
  • 14. 11 | P a g e -------- -------- Total: 1.753 8.69 **************************************************************** Minimum loss = 1.75 Iteration 500: Best Cost = 1.7514 Optimized Values of Power Generated and Voltage Magnitudes at buses: 57.8669783832663 MW 47.0437161375111 MW 31.5441607694867 MW 17.4098016695630 MW 36.7817327215485 MW 1.00263461153200 PU 1.02564085717530 PU 1.04167046811973 PU 1.03029604471814 PU 1.05941127920561 PU Fig.8
  • 15. 12 | P a g e Comparison with power flows: 1. Normal Power Flow for IEEE 30 BUS SYSTEM: ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 2 12.40 -36.60 -12.09 34.84 0.316 0.95 2 1 3 15.91 -3.77 -15.76 2.57 0.148 0.56 3 2 4 16.35 5.82 -16.14 -7.04 0.204 0.58 4 3 4 13.36 -3.77 -13.34 3.85 0.022 0.09 5 2 5 14.08 4.02 -13.96 -5.35 0.121 0.48 6 2 6 20.93 6.01 -20.61 -6.86 0.317 0.95 7 4 6 24.70 2.40 -24.63 -2.12 0.070 0.28 8 5 7 13.96 5.52 -13.83 -6.08 0.130 0.31 9 6 7 9.01 4.04 -8.97 -4.82 0.035 0.09 10 6 8 24.62 25.10 -24.48 -24.53 0.141 0.57 11 6 9 8.40 -12.56 -8.40 13.11 0.000 0.55 12 6 10 4.80 -7.18 -4.80 7.66 0.000 0.48 13 9 11 0.00 0.00 0.00 0.00 0.000 0.00 14 9 10 8.40 -13.11 -8.40 13.40 0.000 0.29 15 4 12 -2.82 -0.82 2.82 0.84 0.000 0.03 16 12 13 -37.00 -1.96 37.00 4.14 0.000 2.17 17 12 14 5.27 1.19 -5.23 -1.10 0.040 0.09 18 12 15 8.84 0.04 -8.77 0.08 0.062 0.11 19 12 16 8.88 -7.60 -8.74 7.91 0.139 0.31 20 14 15 -0.97 -0.50 0.97 0.50 0.003 0.00 21 16 17 5.24 -9.71 -5.13 9.97 0.108 0.26 22 15 18 8.71 -4.90 -8.58 5.16 0.126 0.25 23 18 19 5.38 -6.06 -5.34 6.15 0.045 0.10 24 19 20 -4.16 -9.55 4.20 9.64 0.037 0.09 25 10 20 6.55 10.68 -6.40 -10.34 0.148 0.34 26 10 17 3.95 16.00 -3.87 -15.77 0.085 0.23 27 10 21 -0.32 -30.21 0.61 30.88 0.286 0.67 28 10 22 -2.78 -19.53 3.06 20.14 0.285 0.61 29 21 22 -18.11 -42.08 18.32 42.50 0.210 0.42 30 15 23 -9.11 1.83 9.20 -1.63 0.099 0.20 31 22 24 0.21 25.76 0.57 -24.59 0.781 1.17 32 23 24 6.80 -11.51 -6.53 12.06 0.263 0.55 33 24 25 -2.74 5.87 2.82 -5.72 0.086 0.15 34 25 26 3.55 2.38 -3.50 -2.30 0.051 0.08 35 25 27 -6.37 3.35 6.44 -3.22 0.063 0.12 36 28 27 -7.14 -3.41 7.14 3.70 0.000 0.29 37 27 29 6.19 1.71 -6.09 -1.52 0.101 0.19
  • 16. 13 | P a g e 38 27 30 7.14 1.71 -6.95 -1.35 0.191 0.36 39 29 30 3.69 0.62 -3.65 -0.55 0.039 0.07 40 8 28 -5.52 -5.47 5.56 3.87 0.037 0.12 41 6 28 -1.58 -0.42 1.58 -0.45 0.001 0.00 -------- -------- Total: 4.786 15.14 2. Optimal Power Flow for IEEE 30 BUS SYSTEM using cost as objective function: ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 2 21.04 -2.34 -20.95 -0.27 0.092 0.28 2 1 3 20.50 -3.10 -20.28 2.02 0.220 0.84 3 2 4 18.63 -5.85 -18.40 4.60 0.232 0.66 4 3 4 17.88 -3.22 -17.84 3.36 0.035 0.14 5 2 5 14.36 -0.69 -14.25 -0.78 0.108 0.43 6 2 6 21.66 -4.21 -21.36 3.21 0.300 0.90 7 4 6 17.58 5.68 -17.54 -5.54 0.036 0.14 8 5 7 14.25 0.96 -14.15 -1.64 0.109 0.26 9 6 7 8.70 8.46 -8.65 -9.26 0.049 0.13 10 6 8 23.82 21.37 -23.71 -20.93 0.108 0.43 11 6 9 7.27 -8.27 -7.27 8.54 0.000 0.27 12 6 10 4.15 -4.73 -4.15 4.96 0.000 0.23 13 9 11 0.00 0.00 0.00 0.00 0.000 0.00 14 9 10 7.27 -8.54 -7.27 8.68 -0.000 0.14 15 4 12 11.06 -15.24 -11.06 16.21 0.000 0.97 16 12 13 -16.20 -34.01 16.20 35.93 0.000 1.92 17 12 14 4.68 2.08 -4.65 -2.01 0.030 0.07 18 12 15 6.07 3.18 -6.04 -3.12 0.032 0.06 19 12 16 5.31 5.04 -5.26 -4.94 0.047 0.10 20 14 15 -1.55 0.41 1.55 -0.41 0.006 0.01 21 16 17 1.76 3.14 -1.75 -3.12 0.010 0.02 22 15 18 7.20 3.75 -7.13 -3.60 0.071 0.14 23 18 19 3.93 2.70 -3.92 -2.67 0.014 0.03 24 19 20 -5.58 -0.73 5.59 0.75 0.010 0.02 25 10 20 7.85 1.58 -7.79 -1.45 0.058 0.13 26 10 17 7.27 2.73 -7.25 -2.68 0.018 0.05 27 10 21 -4.43 -11.56 4.47 11.67 0.046 0.11 28 10 22 -5.06 -8.39 5.13 8.54 0.067 0.14 29 21 22 -21.97 -22.87 22.07 23.07 0.099 0.20 30 15 23 -10.92 -2.72 11.04 2.97 0.124 0.25 31 22 24 -4.46 2.59 4.49 -2.54 0.031 0.05 32 23 24 2.03 2.39 -2.01 -2.37 0.012 0.03 33 24 25 -11.18 -1.75 11.41 2.16 0.235 0.41 34 25 26 3.54 2.36 -3.50 -2.30 0.042 0.06 35 25 27 -14.96 -4.52 15.20 4.99 0.246 0.47 36 28 27 -11.45 -21.09 11.45 23.48 0.000 2.39 37 27 29 6.16 1.65 -6.08 -1.50 0.078 0.15
  • 17. 14 | P a g e 38 27 30 7.10 1.63 -6.95 -1.36 0.149 0.28 39 29 30 3.68 0.60 -3.65 -0.54 0.030 0.06 40 8 28 -6.29 -9.07 6.36 7.41 0.069 0.23 41 6 28 -5.05 -14.50 5.09 13.68 0.047 0.14 -------- -------- Total: 2.860 13.33 Thus the results for loss minimization is less than the losses occurred during a normal power flow and OPF for cost an objective function. 2. IEEE 14 Bus System: MATPOWER Version 6.0, 16-Dec-2016 -- AC Power Flow (Newton) Newton's method power flow converged in 4 iterations. Converged in 0.00 seconds | System Summary | =============================================================================== = How many? How much? P (MW) Q (MVAr) --------------------- ------------------- ------------- ----------------- Buses 14 Total Gen Capacity 772.4 -52.0 to 148.0 Generators 5 On-line Capacity 772.4 -52.0 to 148.0 Committed Gens 5 Generation (actual) 259.6 49.1 Loads 11 Load 259.0 73.5 Fixed 11 Fixed 259.0 73.5 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0 Shunts 1 Shunt (inj) -0.0 21.1 Branches 20 Losses (I^2 * Z) 0.64 21.87 Transformers 3 Branch Charging (inj) - 25.2 Inter-ties 0 Total Inter-tie Flow 0.0 0.0 Areas 1 Minimum Maximum ------------------------- -------------------------------- Voltage Magnitude 1.031 p.u. @ bus 14 1.060 p.u. @ bus 8 Voltage Angle -0.84 deg @ bus 14 12.13 deg @ bus 8 P Losses (I^2*R) - 0.19 MW @ line 9-14 Q Losses (I^2*X) - 13.35 MVAr @ line 7-8 =============================================================================== = | Bus Data | =============================================================================== = Bus Voltage Generation Load # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ------- -------- -------- -------- -------- -------- 1 1.060 0.000* 4.70 8.83 - - 2 1.056 -0.005 25.47 13.41 21.70 12.70 3 1.054 0.087 99.01 19.65 94.20 19.00 4 1.043 -0.110 - - 47.80 -3.90 5 1.041 -0.056 - - 7.60 1.60 6 1.060 0.248 38.74 -2.85 11.20 7.50 7 1.054 3.820 - - - -
  • 18. 15 | P a g e 8 1.060 12.132 91.72 10.04 - - 9 1.054 0.707 - - 29.50 16.60 10 1.048 0.337 - - 9.00 5.80 11 1.051 0.164 - - 3.50 1.80 12 1.045 -0.534 - - 6.10 1.60 13 1.042 -0.537 - - 13.50 5.80 14 1.031 -0.842 - - 14.90 5.00 -------- -------- -------- -------- Total: 259.64 49.08 259.00 73.50 =============================================================================== = | Branch Data | =============================================================================== = Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 2 2.18 3.16 -2.17 -9.05 0.007 0.02 2 1 5 2.52 5.67 -2.49 -10.94 0.037 0.15 3 2 3 -0.62 -1.21 0.62 -3.67 0.001 0.00 4 2 4 3.32 4.72 -3.30 -8.38 0.029 0.09 5 2 5 3.23 6.25 -3.20 -9.93 0.039 0.12 6 3 4 4.19 4.32 -4.16 -5.66 0.026 0.07 7 4 5 -0.56 5.98 0.57 -5.96 0.004 0.01 8 4 7 -36.86 7.59 36.86 -4.98 0.000 2.60 9 4 9 -2.91 4.38 2.91 -4.24 0.000 0.13 10 5 6 -2.49 25.24 2.49 -23.94 0.000 1.30 11 6 11 2.59 3.72 -2.57 -3.68 0.017 0.04 12 6 12 7.17 2.62 -7.11 -2.49 0.064 0.13 13 6 13 15.29 7.25 -15.12 -6.92 0.169 0.33 14 7 8 -91.72 3.31 91.72 10.04 0.000 13.35 15 7 9 54.86 1.68 -54.86 1.30 0.000 2.98 16 9 10 9.96 4.01 -9.93 -3.93 0.033 0.09 17 9 14 12.49 3.44 -12.29 -3.04 0.192 0.41 18 10 11 0.93 -1.87 -0.93 1.88 0.003 0.01 19 12 13 1.01 0.89 -1.00 -0.88 0.004 0.00 20 13 14 2.62 2.00 -2.61 -1.96 0.017 0.03 -------- -------- Total: 0.642 21.87 **************************************************************** Minimum loss = 0.64 Iteration 500: Best Cost = 0.6416 Optimized Values of Power Generated and Voltage Magnitudes at buses: 25.4550379798578 MW 98.9612209204273 MW 38.7988155088688 MW 91.8537809557945 MW
  • 19. 16 | P a g e 1.05643879178643 PU 1.05424490663812 PU 1.06000000000000 PU 1.060000000000 PU Comparison with power flows: 1. Normal Power Flow for IEEE 14 BUS SYSTEM: ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 2 156.88 -20.40 -152.59 27.68 4.298 13.12 2 1 5 75.51 3.85 -72.75 2.23 2.763 11.41 3 2 3 73.24 3.56 -70.91 1.60 2.323 9.79 4 2 4 56.13 -1.55 -54.45 3.02 1.677 5.09 5 2 5 41.52 1.17 -40.61 -2.10 0.904 2.76 6 3 4 -23.29 4.47 23.66 -4.84 0.373 0.95 7 4 5 -61.16 15.82 61.67 -14.20 0.514 1.62 8 4 7 28.07 -9.68 -28.07 11.38 0.000 1.70 9 4 9 16.08 -0.43 -16.08 1.73 0.000 1.30 Fig.9
  • 20. 17 | P a g e 10 5 6 44.09 12.47 -44.09 -8.05 0.000 4.42 11 6 11 7.35 3.56 -7.30 -3.44 0.055 0.12 12 6 12 7.79 2.50 -7.71 -2.35 0.072 0.15 13 6 13 17.75 7.22 -17.54 -6.80 0.212 0.42 14 7 8 -0.00 -17.16 0.00 17.62 0.000 0.46 15 7 9 28.07 5.78 -28.07 -4.98 0.000 0.80 16 9 10 5.23 4.22 -5.21 -4.18 0.013 0.03 17 9 14 9.43 3.61 -9.31 -3.36 0.116 0.25 18 10 11 -3.79 -1.62 3.80 1.64 0.013 0.03 19 12 13 1.61 0.75 -1.61 -0.75 0.006 0.01 20 13 14 5.64 1.75 -5.59 -1.64 0.054 0.11 -------- -------- Total: 13.393 54.54 2. Optimal Power Flow for IEEE 30 BUS SYSTEM using cost as objective function: ================================================================================ | Branch Data | ================================================================================ Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z) # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr) ----- ----- ----- -------- -------- -------- -------- -------- -------- 1 1 2 129.67 -6.36 -126.77 9.40 2.902 8.86 2 1 5 64.66 6.37 -62.61 -3.21 2.051 8.47 3 2 3 55.59 0.47 -54.25 0.56 1.344 5.66 4 2 4 48.92 -0.48 -47.63 0.79 1.285 3.90 5 2 5 37.28 1.59 -36.54 -3.00 0.737 2.25 6 3 4 -11.21 4.57 11.31 -5.63 0.099 0.25 7 4 5 -49.17 11.58 49.50 -10.53 0.331 1.04 8 4 7 22.85 -3.99 -22.85 5.04 0.000 1.05 9 4 9 14.84 1.17 -14.84 -0.04 0.000 1.12 10 5 6 42.06 15.14 -42.06 -10.90 0.000 4.23 11 6 11 6.09 4.56 -6.04 -4.46 0.049 0.10 12 6 12 7.65 2.66 -7.58 -2.51 0.072 0.15 13 6 13 17.12 7.73 -16.91 -7.32 0.208 0.41 14 7 8 -8.49 -8.05 8.49 8.27 0.000 0.22 15 7 9 31.34 3.01 -31.34 -2.02 0.000 1.00 16 9 10 6.49 3.20 -6.47 -3.16 0.015 0.04 17 9 14 10.20 2.95 -10.06 -2.67 0.131 0.28 18 10 11 -2.53 -2.64 2.54 2.66 0.010 0.02 19 12 13 1.48 0.91 -1.47 -0.91 0.006 0.01 20 13 14 4.88 2.42 -4.84 -2.33 0.047 0.10 -------- -------- Total: 9.287 39.16 Thus, the results for loss minimization is less than the losses occurred during a normal power flow and OPF for cost an objective function.
  • 21. 18 | P a g e References: 1. X. Yao, “A new simulated annealing algorithm,” International Journal of Computer Mathematics, vol. 56, pp. 161-168, 1995MH Rashid - IEEE, ACADEMIC PRESS. ISBN 0-8493-7336-0, 2007 2. Z. Xinchao, “Simulated annealing algorithm with adaptive neighborhood,” Applied Soft Computing, vol. 11, pp. 1827-1836, 2010. 3. L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,” 1996 4. O. Cordon, F. Moya, and C. Zarco, “A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems,” Soft Computing, vol. 6, pp. 308-319, 2002. 5. http://katrinaeg.com/simulated-annealing.html