1. Exact inference in Bayesian networks is NP-hard in the worst case, so approximation techniques are needed for large networks.
2. Major approximation techniques include variational methods like mean-field approximation, sampling methods like Monte Carlo Markov Chain, and bounded cutset conditioning.
3. Variational methods introduce variational parameters to minimize the distance between the approximate and true distributions. Sampling methods draw random samples to estimate probabilities. Bounded cutset conditioning breaks loops by instantiating subsets of variables.