SlideShare a Scribd company logo
1 of 48
A machine learning method
for efficient design
optimization in nano-optics
2
Optical behavior of small structures (e.g. scattering in certain
direction) dominated by diffraction, interference and resonance
phenomena
๏ƒ˜ Full solution of Maxwellโ€™s equation required
๏ƒ˜ Behavior only known implicitly (black-box
function)
๏ƒ˜ Computation of solution is time
consuming (expensive
black-box function)
Computational challenges in nano-optics
?
3
Analysis of expensive black-box functions
Typical questions:
โ€ข Regression: What is the response ๐‘“(๐‘ฅ)
for unknown parameter values ๐‘ฅ ?
โ€ข Optimization: What are the best
parameter values that lead to a
measured/desired response?
โ€ข Integration: What is the average
response?
System response
(requires solution
of Maxwellโ€™s
equations)
k
ฯ‰
p1
p2
โ€ฆ
Black-box function
?
Isolated Scatterers Metamaterials Geometry Reconstruction
k, ฯ‰
4
Regression models
๏‚ง Regression models are important
tools to interpolate between
known data points.
๏‚ง Further, they can be used for
model-based optimization and
numerical integration
(quadrature).
5
+ Accurate and data
efficient
+ Reliable (provides
uncertainties)
+ Interpretable results
โ€’ Computationally
demanding but not as
much as training neural
networks
Regression models (small selection)
K-nearest neighbors
Linear regression
Support vector machine
Random forest trees
Gaussian process
regression (Kriging)
(Deep) neural networks
[CE Rasmussen, โ€œGaussian processes in machine learningโ€. Advanced lectures on machine
learning , Springer (2004)]
[B. Shahriari et al., "Taking the Human Out of the Loop: A Review of Bayesian Optimizationโ€œ.
Proc. IEEE 104(1), 148 (2016)]
Increasingpredictivepower
andcomputationaldemands
6
Gaussian process regression
How does it work?
7
๏ƒ˜ Gaussian process (GP): distribution of functions in a continuous domain ๐’ณ โŠ‚ โ„N
๏ƒ˜ Defined by: mean function ๐œ‡: ๐’ณ โ†’ โ„ and covariance function (kernel) ๐‘˜: ๐’ณ ร— ๐’ณ โ†’ โ„
๏ƒ˜ Training data: ๐‘€ known function values ๐‘“ ๐‘ฅ1 , โ€ฆ , ๐‘“ ๐‘ฅ ๐‘€ with corresponding
covariance matrix ๐Š = ๐‘˜ ๐‘ฅ๐‘–, ๐‘ฅ๐‘— ๐‘–,๐‘—
๏ƒ˜ Random function values at positions ๐—โˆ—
= (๐‘ฅ1
โˆ—
, โ€ฆ , ๐‘ฅ ๐‘
โˆ—
):
Multivariate Gaussian random variable ๐˜โˆ—
โˆผ ๐’ฉ ๐›, ๐šบ with probability density
๐‘ ๐˜โˆ—
=
1
2๐œ‹ ๐‘/2 ๐šบ 1/2
exp โˆ’
1
2
๐˜โˆ—
โˆ’ ๐› ๐‘‡
๐šบโˆ’1
๐˜โˆ—
โˆ’ ๐› ,
means, and covariance
๐›๐‘– = ๐œ‡(๐‘ฅ๐‘–
โˆ—
) โˆ’
๐‘˜๐‘™
๐‘˜ ๐‘ฅ๐‘–
โˆ—
, ๐‘ฅ ๐‘˜ ๐Š ๐‘˜๐‘™
โˆ’1
[๐‘“ ๐‘ฅ๐‘™ โˆ’ ๐œ‡ ๐‘ฅ๐‘™ ]
๐šบ๐‘–๐‘— = ๐‘˜ ๐‘ฅ๐‘–
โˆ—
, ๐‘ฅ๐‘—
โˆ—
โˆ’
๐‘˜๐‘™
๐‘˜ ๐‘ฅ๐‘–
โˆ—
, ๐‘ฅ ๐‘˜ ๐Š ๐‘˜๐‘™
โˆ’1
๐‘˜ ๐‘ฅ๐‘™, ๐‘ฅ๐‘—
โˆ—
.
๏ƒ˜ For a proof see:
http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
Gaussian process regression
8
Gaussian process regression
9
In the following we donโ€™t need correlated random vectors of
function values, but just the probability distribution of a
single function value ๐‘ฆ at some ๐‘ฅโˆ—
โˆˆ ๐’ณ
This is simply a normal distribution ๐‘ฆ โˆผ ๐’ฉ( ๐‘ฆ, ๐œŽ2
) with mean
and standard deviation
๐‘ฆ = ๐œ‡ ๐‘ฅโˆ— +
๐‘–๐‘—
๐‘˜ ๐‘ฅโˆ—, ๐‘ฅ๐‘– ๐Š ๐‘–๐‘—
โˆ’1
[๐‘“ ๐‘ฅ๐‘— โˆ’ ๐œ‡ ๐‘ฅ๐‘— ]
๐œŽ2 = ๐‘˜ ๐‘ฅโˆ—, ๐‘ฅโˆ— โˆ’ ๐‘–๐‘— ๐‘˜(๐‘ฅโˆ—, ๐‘ฅ๐‘–) ๐Š ๐‘–๐‘—
โˆ’1
๐‘˜(๐‘ฅ๐‘—, ๐‘ฅโˆ—)
Gaussian process regression
10
Gaussian-process regression
11
The mean and covariance function
are usually parametrized as
๐œ‡ ๐‘ฅ = ๐œ‡0
๐‘˜ ๐‘ฅ, ๐‘ฅโ€ฒ = ๐œŽ2 ๐ถ5/2 ๐‘Ÿ = ๐œŽ2 1 + 5๐‘Ÿ +
5
3
๐‘Ÿ2 exp โˆ’ 5๐‘Ÿ
with ๐‘Ÿ2 = ๐‘– ๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–
โ€ฒ 2/๐‘™๐‘–
2
Take values of ๐œ‡0, ๐œŽ, ๐‘™๐‘– are maximized w.r.t. the log-likelihood of the
observations:
log ๐‘ƒ ๐˜ = โˆ’
๐‘€
2
log 2๐œ‹ โˆ’
1
2
log ๐Š โˆ’
1
2
๐˜ โˆ’ ๐› ๐‘‡ ๐Šโˆ’1(๐˜ โˆ’ ๐›)
GP hyperparameters
Matern-5/2 function
12
Bayesian optimization
Use Gaussian process
regression to run
optmization or parameter
reconstruction
13
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
14
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
15
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
16
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
17
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
18
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
19
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
20
Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest
function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement
๐ผ ๐‘ฆ =
0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘›
๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘›
We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function
derived from normal distribution of ๐‘ฆ)
Bayesian optimization
For more and more data points in the local
minimum: ๐›ผEI ๐‘ฅ โ†’ 0.
Hence, we do not get trapped in local
minima, but eventually jump out of them.
21
Utilizing derivatives
The JCMsuite FEM solver can compute also derivatives w.r.t. geometric
parameter, material parameters and others. We can use derivatives to train the
GP because differentiation is a linear operator:
โ€ข What is the mean function of the GP for derivative observations?
๐œ‡ ๐ท ๐‘ฅ โ‰ก ๐”ผ ๐›ป๐‘“ ๐‘ฅ = ๐›ป๐”ผ ๐‘“ ๐‘ฅ = ๐›ป๐œ‡ ๐‘ฅ = 0
โ€ข What is the kernel function between an observation at ๐‘ฅ and a derivative
observation at ๐‘ฅโ€ฒ
?
๐‘˜ ๐ท ๐‘ฅ, ๐‘ฅโ€ฒ โ‰ก cov ๐‘“ ๐‘ฅ , ๐›ป๐‘“ ๐‘ฅโ€ฒ = ๐”ผ ๐‘“ ๐‘ฅ โˆ’ ๐œ‡ ๐‘ฅ ๐›ป๐‘“ ๐‘ฅโ€ฒ โˆ’ ๐œ‡ ๐ท ๐‘ฅโ€ฒ = ๐›ป๐‘ฅโ€ฒ ๐‘˜(๐‘ฅ, ๐‘ฅโ€ฒ)
โ€ข Analogously, the kernel function between a derivative observation at ๐‘ฅ and a
derivative observation at ๐‘ฅโ€ฒ
is given as
๐‘˜ ๐ท๐ท ๐‘ฅ, ๐‘ฅโ€ฒ
โ‰ก cov ๐›ป๐‘“ ๐‘ฅ , ๐›ป๐‘“ ๐‘ฅโ€ฒ
= ๐›ป๐‘ฅ ๐›ป๐‘ฅโ€ฒ ๐‘˜(๐‘ฅ, ๐‘ฅโ€ฒ)
๏ƒจ We can build a large GP (i.e. a large mean vector and covariance matrix)
containing observations of objective function and its derivatives
22
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
23
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
24
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
25
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
26
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
27
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
28
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
29
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
minimum found
30
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
minimum found
31
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
minimum found
32
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
minimum found
33
Utilizing derivatives
without gradient
with gradient
Derivative observations can speed up Bayesian optimization.
minimum found
34
Utilizing derivatives
without gradient
with gradient
minimum found
Derivative observations can speed up Bayesian optimization.
35
Utilizing derivatives
without gradient
with gradient
minimum found
Derivative observations can speed up Bayesian optimization.
36
Utilizing derivatives
without gradient
with gradient
minimum found
Derivative observations can speed up Bayesian optimization.
37
Utilizing derivatives
without gradient
with gradient
minimum found
minimum found
Derivative observations can speed up Bayesian optimization.
38
Solving arg max
๐‘ฅ
๐›ผEI(๐‘ฅ) can be very time consuming.
Bayesian optimization runs inefficiently if the sample computation
takes longer then the objective function calculation (simulation)
๏ƒจWe use differential evolution to maximize ๐›ผEI(๐‘ฅ) and adapt
the effort (i.e. the population size and number of generations)
to the simulation time.
๏ƒจWe calculate one sample in advance while the objective
function is evaluated.
See Schneider et al. arXiv:1809.06674 (2019) for details
Making Bayesian optimization time efficient
39
Benchmark
For the Rastrigin function
we compare Bayesian
optimization with other
optimization methods
40
Rastrigin function
๏‚ง Defined on an ๐‘›-dimensional domain as ๐‘“ ๐’™ = ๐ด๐‘› + ๐‘–=1
๐‘›
[๐‘ฅ๐‘–
2
โˆ’ ๐ด cos(2๐œ‹๐‘ฅ๐‘–)] with
๐ด = 10. We use ๐‘› = 3 and ๐‘ฅ๐‘– โˆˆ [โˆ’2.5,2.5].
๏‚ง Sleeping for 10s during evaluation to make function call โ€œexpensiveโ€.
๏‚ง Parallel minimization with 5 parallel evaluations of ๐‘“ ๐’™ .
Global minimum ๐‘“ ๐‘š๐‘–๐‘› = 0 at ๐’™ = 0
41
Choice of optimization algorithms
We compare the performance of
Bayesian optimization (BO) with
โ€ข Local optimization methods
Gradient-based low-memory
Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS-B) started in parallel from
10 different locations
โ€ข Global heuristic optimization
Differential evolution (DE),
Particle swarm optimization (PSO), Covariance matrix
adaptation evolution strategy (CMA-ES)
All optimization methods are run with standard parameters
42
Benchmark on Rastrigin function
[Laptop with 2-core Intel Core I7 @ 2.7 GHz]
๏กBO converges significantely faster than other methods
๏กAlthough more elaborate, BO has no significant computation time
overhead (total overhead approx. 3 min.)
43
Benchmark on Rastrigin function with derivatives
[Laptop with 2-core Intel Core I7 @ 2.7 GHz]
๏กDerivative information speed up minimization
๏กBO with and without derivatives finds lower function values than
multi-start L-BFGS-B with derivatives
44
Benchmark against open-source BO (scikit)
[Laptop with 2-core Intel Core I7 @ 2.7 GHz]
Comparison against Bayesian optimization of scikit-optimize
(https://scikit-optimize.github.io/stable/) shows that the
implemented sample computation methods lead to better samples in
a drastically reduced computation time.
45
More benchmarksโ€ฆ
More benchmarks for realistic
photonic optimization problems can
be found in the publication
ACS Photonics 6 2726 (2019)
https://arxiv.org/abs/1809.06674
โ€ข Single-Photon Source
โ€ข Metasurface
โ€ข Parameter reconstruction
46
Conclusion
โ€ข Bayesian optimization is a highly
efficient method for shape
optimization
โ€ข It can incorporate derivative
information if available
โ€ข It can be used for very expensive
simulations but also for
fast/parallelized simulations (e.g.
one simulation result every two
seconds)
47
Acknowledgements
We are grateful to the following institutions for funding
this research:
โ€ข European Unions Horizon 2020 research and
innovation programme under the Marie Sklodowska-
Curie grant agreement No 675745 (MSCA-ITN-EID
NOLOSS)
โ€ข EMPIR programme co-nanced by the Participating
States and from the European Unions Horizon 2020
research and innovation programme under grant
agreement number 17FUN01 (Be-COMe).
โ€ข Virtual Materials Design (VIRTMAT) project by the
Helmholtz Association via the Helmholtz program
Science and Technology of Nanosystems (STN).
โ€ข Central Innovation Programme for SMEs of the
German Federal Ministry for Economic Afairs and
Energy on the basis of a decision by the German
Bundestag (ZF4450901)
48
Resources
๏‚ง Description of FEM software
JCMsuite
๏‚ง Getting started with JCMsuite
๏‚ง Tutorial on optimization with
JCMsuite using Matlabยฎ/Python
๏‚ง Free trial download of JCMsuite

More Related Content

What's hot

Koh_Liang_ICML2017
Koh_Liang_ICML2017Koh_Liang_ICML2017
Koh_Liang_ICML2017Masa Kato
ย 
Reg n corr
Reg n corrReg n corr
Reg n corrNamVuTran1
ย 
Introductory maths analysis chapter 12 official
Introductory maths analysis   chapter 12 officialIntroductory maths analysis   chapter 12 official
Introductory maths analysis chapter 12 officialEvert Sandye Taasiringan
ย 
PyData Meetup Berlin 2017-04-19
PyData Meetup Berlin 2017-04-19PyData Meetup Berlin 2017-04-19
PyData Meetup Berlin 2017-04-19Florian Wilhelm
ย 
Explaining the idea behind automatic relevance determination and bayesian int...
Explaining the idea behind automatic relevance determination and bayesian int...Explaining the idea behind automatic relevance determination and bayesian int...
Explaining the idea behind automatic relevance determination and bayesian int...Florian Wilhelm
ย 
A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...
A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...
A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...Premier Publishers
ย 
07 interpolation
07 interpolation07 interpolation
07 interpolationMohammad Tawfik
ย 
Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...
Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...
Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...Mengxi Jiang
ย 
[M2A2] Data Analysis and Interpretation Specialization
[M2A2] Data Analysis and Interpretation Specialization [M2A2] Data Analysis and Interpretation Specialization
[M2A2] Data Analysis and Interpretation Specialization Andrea Rubio
ย 
Sampling method : MCMC
Sampling method : MCMCSampling method : MCMC
Sampling method : MCMCSEMINARGROOT
ย 
02 basics i-handout
02 basics i-handout02 basics i-handout
02 basics i-handoutsheetslibrary
ย 
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...DavidIlejimi
ย 
BEGAN Boundary Equilibrium Generative Adversarial Networks
BEGAN Boundary Equilibrium Generative Adversarial NetworksBEGAN Boundary Equilibrium Generative Adversarial Networks
BEGAN Boundary Equilibrium Generative Adversarial NetworksChung-Il Kim
ย 
Asymptotic properties of bayes factor in one way repeated measurements model
Asymptotic properties of bayes factor in one  way repeated measurements modelAsymptotic properties of bayes factor in one  way repeated measurements model
Asymptotic properties of bayes factor in one way repeated measurements modelAlexander Decker
ย 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrangeMohammad Tawfik
ย 

What's hot (17)

Koh_Liang_ICML2017
Koh_Liang_ICML2017Koh_Liang_ICML2017
Koh_Liang_ICML2017
ย 
Reg n corr
Reg n corrReg n corr
Reg n corr
ย 
Introductory maths analysis chapter 12 official
Introductory maths analysis   chapter 12 officialIntroductory maths analysis   chapter 12 official
Introductory maths analysis chapter 12 official
ย 
PyData Meetup Berlin 2017-04-19
PyData Meetup Berlin 2017-04-19PyData Meetup Berlin 2017-04-19
PyData Meetup Berlin 2017-04-19
ย 
NCM Graph theory talk
NCM Graph theory talkNCM Graph theory talk
NCM Graph theory talk
ย 
Explaining the idea behind automatic relevance determination and bayesian int...
Explaining the idea behind automatic relevance determination and bayesian int...Explaining the idea behind automatic relevance determination and bayesian int...
Explaining the idea behind automatic relevance determination and bayesian int...
ย 
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
ย 
A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...
A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...
A System of Estimators of the Population Mean under Two-Phase Sampling in Pre...
ย 
07 interpolation
07 interpolation07 interpolation
07 interpolation
ย 
Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...
Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...
Application of Graphic LASSO in Portfolio Optimization_Yixuan Chen & Mengxi J...
ย 
[M2A2] Data Analysis and Interpretation Specialization
[M2A2] Data Analysis and Interpretation Specialization [M2A2] Data Analysis and Interpretation Specialization
[M2A2] Data Analysis and Interpretation Specialization
ย 
Sampling method : MCMC
Sampling method : MCMCSampling method : MCMC
Sampling method : MCMC
ย 
02 basics i-handout
02 basics i-handout02 basics i-handout
02 basics i-handout
ย 
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
ย 
BEGAN Boundary Equilibrium Generative Adversarial Networks
BEGAN Boundary Equilibrium Generative Adversarial NetworksBEGAN Boundary Equilibrium Generative Adversarial Networks
BEGAN Boundary Equilibrium Generative Adversarial Networks
ย 
Asymptotic properties of bayes factor in one way repeated measurements model
Asymptotic properties of bayes factor in one  way repeated measurements modelAsymptotic properties of bayes factor in one  way repeated measurements model
Asymptotic properties of bayes factor in one way repeated measurements model
ย 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
ย 

Similar to A machine learning method for efficient design optimization in nano-optics

Paper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelinePaper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelineChenYiHuang5
ย 
Session 4 .pdf
Session 4 .pdfSession 4 .pdf
Session 4 .pdfssuser8cda84
ย 
Tudelft stramien 16_9_on_optimization
Tudelft stramien 16_9_on_optimizationTudelft stramien 16_9_on_optimization
Tudelft stramien 16_9_on_optimizationPirouz Nourian
ย 
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...IJERA Editor
ย 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
ย 
Specific topics in optimisation
Specific topics in optimisationSpecific topics in optimisation
Specific topics in optimisationFarzad Javidanrad
ย 
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Calculus Review Session Brian Prest Duke University Nicholas School of the En...Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Calculus Review Session Brian Prest Duke University Nicholas School of the En...rofiho9697
ย 
A New SR1 Formula for Solving Nonlinear Optimization.pptx
A New SR1 Formula for Solving Nonlinear Optimization.pptxA New SR1 Formula for Solving Nonlinear Optimization.pptx
A New SR1 Formula for Solving Nonlinear Optimization.pptxMasoudIbrahim3
ย 
Support Vector Machines Simply
Support Vector Machines SimplySupport Vector Machines Simply
Support Vector Machines SimplyEmad Nabil
ย 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptxHadrian7
ย 
4-Unconstrained Single Variable Optimization-Methods and Application.pdf
4-Unconstrained Single Variable Optimization-Methods and Application.pdf4-Unconstrained Single Variable Optimization-Methods and Application.pdf
4-Unconstrained Single Variable Optimization-Methods and Application.pdfkhadijabutt34
ย 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsSantiagoGarridoBulln
ย 
MLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptxMLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptxRahulChaudhry15
ย 
Chapter 3.Simplex Method hand out last.pdf
Chapter 3.Simplex Method hand out last.pdfChapter 3.Simplex Method hand out last.pdf
Chapter 3.Simplex Method hand out last.pdfTsegay Berhe
ย 
MACHINE LEARNING.pptx
MACHINE LEARNING.pptxMACHINE LEARNING.pptx
MACHINE LEARNING.pptxSOURAVGHOSH623569
ย 

Similar to A machine learning method for efficient design optimization in nano-optics (20)

Paper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelinePaper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipeline
ย 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptx
ย 
Session 4 .pdf
Session 4 .pdfSession 4 .pdf
Session 4 .pdf
ย 
Tudelft stramien 16_9_on_optimization
Tudelft stramien 16_9_on_optimizationTudelft stramien 16_9_on_optimization
Tudelft stramien 16_9_on_optimization
ย 
5163147.ppt
5163147.ppt5163147.ppt
5163147.ppt
ย 
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...
Unsteady MHD Flow Past A Semi-Infinite Vertical Plate With Heat Source/ Sink:...
ย 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
ย 
Specific topics in optimisation
Specific topics in optimisationSpecific topics in optimisation
Specific topics in optimisation
ย 
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Calculus Review Session Brian Prest Duke University Nicholas School of the En...Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
ย 
Optimization Using Evolutionary Computing Techniques
Optimization Using Evolutionary Computing Techniques Optimization Using Evolutionary Computing Techniques
Optimization Using Evolutionary Computing Techniques
ย 
A New SR1 Formula for Solving Nonlinear Optimization.pptx
A New SR1 Formula for Solving Nonlinear Optimization.pptxA New SR1 Formula for Solving Nonlinear Optimization.pptx
A New SR1 Formula for Solving Nonlinear Optimization.pptx
ย 
Support Vector Machines Simply
Support Vector Machines SimplySupport Vector Machines Simply
Support Vector Machines Simply
ย 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptx
ย 
4-Unconstrained Single Variable Optimization-Methods and Application.pdf
4-Unconstrained Single Variable Optimization-Methods and Application.pdf4-Unconstrained Single Variable Optimization-Methods and Application.pdf
4-Unconstrained Single Variable Optimization-Methods and Application.pdf
ย 
Tema 8
Tema 8Tema 8
Tema 8
ย 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
ย 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
ย 
MLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptxMLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptx
ย 
Chapter 3.Simplex Method hand out last.pdf
Chapter 3.Simplex Method hand out last.pdfChapter 3.Simplex Method hand out last.pdf
Chapter 3.Simplex Method hand out last.pdf
ย 
MACHINE LEARNING.pptx
MACHINE LEARNING.pptxMACHINE LEARNING.pptx
MACHINE LEARNING.pptx
ย 

Recently uploaded

Data-Analysis for Chicago Crime Data 2023
Data-Analysis for Chicago Crime Data  2023Data-Analysis for Chicago Crime Data  2023
Data-Analysis for Chicago Crime Data 2023ymrp368
ย 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
ย 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...Pooja Nehwal
ย 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightDelhi Call girls
ย 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAroojKhan71
ย 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
ย 
Delhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Callshivangimorya083
ย 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
ย 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFxolyaivanovalion
ย 
Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...amitlee9823
ย 
Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...amitlee9823
ย 
Call Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girl
Call Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girlCall Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girl
Call Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girlkumarajju5765
ย 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxolyaivanovalion
ย 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfRachmat Ramadhan H
ย 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
ย 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxJohnnyPlasten
ย 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Delhi Call girls
ย 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
ย 

Recently uploaded (20)

Data-Analysis for Chicago Crime Data 2023
Data-Analysis for Chicago Crime Data  2023Data-Analysis for Chicago Crime Data  2023
Data-Analysis for Chicago Crime Data 2023
ย 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
ย 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
ย 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
ย 
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
ย 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
ย 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
ย 
Delhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 โ˜Žโœ”๐Ÿ‘Œโœ” Whatsapp Hard And Sexy Vip Call
ย 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
ย 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
ย 
Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore ...
ย 
Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore...
ย 
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get CytotecAbortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
ย 
Call Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girl
Call Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girlCall Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girl
Call Girls ๐Ÿซค Dwarka โžก๏ธ 9711199171 โžก๏ธ Delhi ๐Ÿซฆ Two shot with one girl
ย 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptx
ย 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
ย 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
ย 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptx
ย 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
ย 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
ย 

A machine learning method for efficient design optimization in nano-optics

  • 1. A machine learning method for efficient design optimization in nano-optics
  • 2. 2 Optical behavior of small structures (e.g. scattering in certain direction) dominated by diffraction, interference and resonance phenomena ๏ƒ˜ Full solution of Maxwellโ€™s equation required ๏ƒ˜ Behavior only known implicitly (black-box function) ๏ƒ˜ Computation of solution is time consuming (expensive black-box function) Computational challenges in nano-optics ?
  • 3. 3 Analysis of expensive black-box functions Typical questions: โ€ข Regression: What is the response ๐‘“(๐‘ฅ) for unknown parameter values ๐‘ฅ ? โ€ข Optimization: What are the best parameter values that lead to a measured/desired response? โ€ข Integration: What is the average response? System response (requires solution of Maxwellโ€™s equations) k ฯ‰ p1 p2 โ€ฆ Black-box function ? Isolated Scatterers Metamaterials Geometry Reconstruction k, ฯ‰
  • 4. 4 Regression models ๏‚ง Regression models are important tools to interpolate between known data points. ๏‚ง Further, they can be used for model-based optimization and numerical integration (quadrature).
  • 5. 5 + Accurate and data efficient + Reliable (provides uncertainties) + Interpretable results โ€’ Computationally demanding but not as much as training neural networks Regression models (small selection) K-nearest neighbors Linear regression Support vector machine Random forest trees Gaussian process regression (Kriging) (Deep) neural networks [CE Rasmussen, โ€œGaussian processes in machine learningโ€. Advanced lectures on machine learning , Springer (2004)] [B. Shahriari et al., "Taking the Human Out of the Loop: A Review of Bayesian Optimizationโ€œ. Proc. IEEE 104(1), 148 (2016)] Increasingpredictivepower andcomputationaldemands
  • 7. 7 ๏ƒ˜ Gaussian process (GP): distribution of functions in a continuous domain ๐’ณ โŠ‚ โ„N ๏ƒ˜ Defined by: mean function ๐œ‡: ๐’ณ โ†’ โ„ and covariance function (kernel) ๐‘˜: ๐’ณ ร— ๐’ณ โ†’ โ„ ๏ƒ˜ Training data: ๐‘€ known function values ๐‘“ ๐‘ฅ1 , โ€ฆ , ๐‘“ ๐‘ฅ ๐‘€ with corresponding covariance matrix ๐Š = ๐‘˜ ๐‘ฅ๐‘–, ๐‘ฅ๐‘— ๐‘–,๐‘— ๏ƒ˜ Random function values at positions ๐—โˆ— = (๐‘ฅ1 โˆ— , โ€ฆ , ๐‘ฅ ๐‘ โˆ— ): Multivariate Gaussian random variable ๐˜โˆ— โˆผ ๐’ฉ ๐›, ๐šบ with probability density ๐‘ ๐˜โˆ— = 1 2๐œ‹ ๐‘/2 ๐šบ 1/2 exp โˆ’ 1 2 ๐˜โˆ— โˆ’ ๐› ๐‘‡ ๐šบโˆ’1 ๐˜โˆ— โˆ’ ๐› , means, and covariance ๐›๐‘– = ๐œ‡(๐‘ฅ๐‘– โˆ— ) โˆ’ ๐‘˜๐‘™ ๐‘˜ ๐‘ฅ๐‘– โˆ— , ๐‘ฅ ๐‘˜ ๐Š ๐‘˜๐‘™ โˆ’1 [๐‘“ ๐‘ฅ๐‘™ โˆ’ ๐œ‡ ๐‘ฅ๐‘™ ] ๐šบ๐‘–๐‘— = ๐‘˜ ๐‘ฅ๐‘– โˆ— , ๐‘ฅ๐‘— โˆ— โˆ’ ๐‘˜๐‘™ ๐‘˜ ๐‘ฅ๐‘– โˆ— , ๐‘ฅ ๐‘˜ ๐Š ๐‘˜๐‘™ โˆ’1 ๐‘˜ ๐‘ฅ๐‘™, ๐‘ฅ๐‘— โˆ— . ๏ƒ˜ For a proof see: http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html Gaussian process regression
  • 9. 9 In the following we donโ€™t need correlated random vectors of function values, but just the probability distribution of a single function value ๐‘ฆ at some ๐‘ฅโˆ— โˆˆ ๐’ณ This is simply a normal distribution ๐‘ฆ โˆผ ๐’ฉ( ๐‘ฆ, ๐œŽ2 ) with mean and standard deviation ๐‘ฆ = ๐œ‡ ๐‘ฅโˆ— + ๐‘–๐‘— ๐‘˜ ๐‘ฅโˆ—, ๐‘ฅ๐‘– ๐Š ๐‘–๐‘— โˆ’1 [๐‘“ ๐‘ฅ๐‘— โˆ’ ๐œ‡ ๐‘ฅ๐‘— ] ๐œŽ2 = ๐‘˜ ๐‘ฅโˆ—, ๐‘ฅโˆ— โˆ’ ๐‘–๐‘— ๐‘˜(๐‘ฅโˆ—, ๐‘ฅ๐‘–) ๐Š ๐‘–๐‘— โˆ’1 ๐‘˜(๐‘ฅ๐‘—, ๐‘ฅโˆ—) Gaussian process regression
  • 11. 11 The mean and covariance function are usually parametrized as ๐œ‡ ๐‘ฅ = ๐œ‡0 ๐‘˜ ๐‘ฅ, ๐‘ฅโ€ฒ = ๐œŽ2 ๐ถ5/2 ๐‘Ÿ = ๐œŽ2 1 + 5๐‘Ÿ + 5 3 ๐‘Ÿ2 exp โˆ’ 5๐‘Ÿ with ๐‘Ÿ2 = ๐‘– ๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘– โ€ฒ 2/๐‘™๐‘– 2 Take values of ๐œ‡0, ๐œŽ, ๐‘™๐‘– are maximized w.r.t. the log-likelihood of the observations: log ๐‘ƒ ๐˜ = โˆ’ ๐‘€ 2 log 2๐œ‹ โˆ’ 1 2 log ๐Š โˆ’ 1 2 ๐˜ โˆ’ ๐› ๐‘‡ ๐Šโˆ’1(๐˜ โˆ’ ๐›) GP hyperparameters Matern-5/2 function
  • 12. 12 Bayesian optimization Use Gaussian process regression to run optmization or parameter reconstruction
  • 13. 13 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 14. 14 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 15. 15 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 16. 16 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 17. 17 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 18. 18 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 19. 19 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization
  • 20. 20 Problem: Find parameters ๐‘ฅ โˆˆ ๐’ณ that minimize ๐‘“ ๐‘ฅ . For the currently known smallest function value ๐‘ฆ ๐‘š๐‘–๐‘› we define the improvement ๐ผ ๐‘ฆ = 0 โˆถ ๐‘ฆ โ‰ฅ ๐‘ฆ ๐‘š๐‘–๐‘› ๐‘ฆ ๐‘š๐‘–๐‘› โˆ’ ๐‘ฆ โˆถ y < ๐‘ฆ ๐‘š๐‘–๐‘› We sample at points of largest expected improvement ๐›ผEI(๐‘ฅ) = ๐”ผ ๐ผ(๐‘ฆ) (analytic function derived from normal distribution of ๐‘ฆ) Bayesian optimization For more and more data points in the local minimum: ๐›ผEI ๐‘ฅ โ†’ 0. Hence, we do not get trapped in local minima, but eventually jump out of them.
  • 21. 21 Utilizing derivatives The JCMsuite FEM solver can compute also derivatives w.r.t. geometric parameter, material parameters and others. We can use derivatives to train the GP because differentiation is a linear operator: โ€ข What is the mean function of the GP for derivative observations? ๐œ‡ ๐ท ๐‘ฅ โ‰ก ๐”ผ ๐›ป๐‘“ ๐‘ฅ = ๐›ป๐”ผ ๐‘“ ๐‘ฅ = ๐›ป๐œ‡ ๐‘ฅ = 0 โ€ข What is the kernel function between an observation at ๐‘ฅ and a derivative observation at ๐‘ฅโ€ฒ ? ๐‘˜ ๐ท ๐‘ฅ, ๐‘ฅโ€ฒ โ‰ก cov ๐‘“ ๐‘ฅ , ๐›ป๐‘“ ๐‘ฅโ€ฒ = ๐”ผ ๐‘“ ๐‘ฅ โˆ’ ๐œ‡ ๐‘ฅ ๐›ป๐‘“ ๐‘ฅโ€ฒ โˆ’ ๐œ‡ ๐ท ๐‘ฅโ€ฒ = ๐›ป๐‘ฅโ€ฒ ๐‘˜(๐‘ฅ, ๐‘ฅโ€ฒ) โ€ข Analogously, the kernel function between a derivative observation at ๐‘ฅ and a derivative observation at ๐‘ฅโ€ฒ is given as ๐‘˜ ๐ท๐ท ๐‘ฅ, ๐‘ฅโ€ฒ โ‰ก cov ๐›ป๐‘“ ๐‘ฅ , ๐›ป๐‘“ ๐‘ฅโ€ฒ = ๐›ป๐‘ฅ ๐›ป๐‘ฅโ€ฒ ๐‘˜(๐‘ฅ, ๐‘ฅโ€ฒ) ๏ƒจ We can build a large GP (i.e. a large mean vector and covariance matrix) containing observations of objective function and its derivatives
  • 22. 22 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 23. 23 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 24. 24 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 25. 25 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 26. 26 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 27. 27 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 28. 28 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization.
  • 29. 29 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization. minimum found
  • 30. 30 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization. minimum found
  • 31. 31 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization. minimum found
  • 32. 32 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization. minimum found
  • 33. 33 Utilizing derivatives without gradient with gradient Derivative observations can speed up Bayesian optimization. minimum found
  • 34. 34 Utilizing derivatives without gradient with gradient minimum found Derivative observations can speed up Bayesian optimization.
  • 35. 35 Utilizing derivatives without gradient with gradient minimum found Derivative observations can speed up Bayesian optimization.
  • 36. 36 Utilizing derivatives without gradient with gradient minimum found Derivative observations can speed up Bayesian optimization.
  • 37. 37 Utilizing derivatives without gradient with gradient minimum found minimum found Derivative observations can speed up Bayesian optimization.
  • 38. 38 Solving arg max ๐‘ฅ ๐›ผEI(๐‘ฅ) can be very time consuming. Bayesian optimization runs inefficiently if the sample computation takes longer then the objective function calculation (simulation) ๏ƒจWe use differential evolution to maximize ๐›ผEI(๐‘ฅ) and adapt the effort (i.e. the population size and number of generations) to the simulation time. ๏ƒจWe calculate one sample in advance while the objective function is evaluated. See Schneider et al. arXiv:1809.06674 (2019) for details Making Bayesian optimization time efficient
  • 39. 39 Benchmark For the Rastrigin function we compare Bayesian optimization with other optimization methods
  • 40. 40 Rastrigin function ๏‚ง Defined on an ๐‘›-dimensional domain as ๐‘“ ๐’™ = ๐ด๐‘› + ๐‘–=1 ๐‘› [๐‘ฅ๐‘– 2 โˆ’ ๐ด cos(2๐œ‹๐‘ฅ๐‘–)] with ๐ด = 10. We use ๐‘› = 3 and ๐‘ฅ๐‘– โˆˆ [โˆ’2.5,2.5]. ๏‚ง Sleeping for 10s during evaluation to make function call โ€œexpensiveโ€. ๏‚ง Parallel minimization with 5 parallel evaluations of ๐‘“ ๐’™ . Global minimum ๐‘“ ๐‘š๐‘–๐‘› = 0 at ๐’™ = 0
  • 41. 41 Choice of optimization algorithms We compare the performance of Bayesian optimization (BO) with โ€ข Local optimization methods Gradient-based low-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) started in parallel from 10 different locations โ€ข Global heuristic optimization Differential evolution (DE), Particle swarm optimization (PSO), Covariance matrix adaptation evolution strategy (CMA-ES) All optimization methods are run with standard parameters
  • 42. 42 Benchmark on Rastrigin function [Laptop with 2-core Intel Core I7 @ 2.7 GHz] ๏กBO converges significantely faster than other methods ๏กAlthough more elaborate, BO has no significant computation time overhead (total overhead approx. 3 min.)
  • 43. 43 Benchmark on Rastrigin function with derivatives [Laptop with 2-core Intel Core I7 @ 2.7 GHz] ๏กDerivative information speed up minimization ๏กBO with and without derivatives finds lower function values than multi-start L-BFGS-B with derivatives
  • 44. 44 Benchmark against open-source BO (scikit) [Laptop with 2-core Intel Core I7 @ 2.7 GHz] Comparison against Bayesian optimization of scikit-optimize (https://scikit-optimize.github.io/stable/) shows that the implemented sample computation methods lead to better samples in a drastically reduced computation time.
  • 45. 45 More benchmarksโ€ฆ More benchmarks for realistic photonic optimization problems can be found in the publication ACS Photonics 6 2726 (2019) https://arxiv.org/abs/1809.06674 โ€ข Single-Photon Source โ€ข Metasurface โ€ข Parameter reconstruction
  • 46. 46 Conclusion โ€ข Bayesian optimization is a highly efficient method for shape optimization โ€ข It can incorporate derivative information if available โ€ข It can be used for very expensive simulations but also for fast/parallelized simulations (e.g. one simulation result every two seconds)
  • 47. 47 Acknowledgements We are grateful to the following institutions for funding this research: โ€ข European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska- Curie grant agreement No 675745 (MSCA-ITN-EID NOLOSS) โ€ข EMPIR programme co-nanced by the Participating States and from the European Unions Horizon 2020 research and innovation programme under grant agreement number 17FUN01 (Be-COMe). โ€ข Virtual Materials Design (VIRTMAT) project by the Helmholtz Association via the Helmholtz program Science and Technology of Nanosystems (STN). โ€ข Central Innovation Programme for SMEs of the German Federal Ministry for Economic Afairs and Energy on the basis of a decision by the German Bundestag (ZF4450901)
  • 48. 48 Resources ๏‚ง Description of FEM software JCMsuite ๏‚ง Getting started with JCMsuite ๏‚ง Tutorial on optimization with JCMsuite using Matlabยฎ/Python ๏‚ง Free trial download of JCMsuite