SlideShare a Scribd company logo
Radiantによる
データ分析入門
Tokyo.R 2019-05-25
タナカ ケンタ
https://mana.bi/
1 Radiantとは (1)
"Business analytics" のためのRパッケージ
ShinyによるブラウザベースのGUIで、容易に
"EDA" や "Reproducible research" が可能
UCSDのMBAコースで使用されている
インストール、アップデートは関数1つで簡単 (後述)
https://vnijs.github.io/radiant/
1 Radiantとは (2)
 ブラウザ上でのマウス操作で、グラフ作成、クロス集計、データ加工などができる
2 探索的データ解析 (EDA) (1)
John W. Tukeyによるデータ分析の考え方
データの観察を基に、仮説立案、手法選択、高度
な分析のためのデータ収集計画などを検討する
2018年の「Kaggle流行語大賞」に選ばれた
 (Wikipediaいわく) EDAに触発されて "S" が作られ、
Sを基にRが作られたので、ある種Rの源流と言える
2 探索的データ解析 (EDA) (2)
 1970年代に提唱された古典的な方法論だが、現在あらためて注目が集まっている
3 Radiantのインストール・アップデート
RadiantはCRANに登録されており、基本的に
install.packages("radiant") だけで
インストールできる
RadiantのWebサイトから、開発版のインストール、
アップデートもできる
radiant::launcher() 関数でデスクトップに
起動用のショートカットを作成できる (Win, macOS)
4 Radiantの起動・終了
1. Rのコンソールからパッケージを読み込み、起動する
2. RStudioのアドインとして動作するので、UIのボタンから起動する
3. launcher() 関数で作ったショートカットから起動する
> library(radiant)
> radiant()
5 データの読み込み
5.1 サンプルデータの読み込み
Radiantには起動時点で diamonds と titanic
データセットが読み込まれている
その他、examples データを読み込み、多数のサン
プルデータセットを使用可能
5.2 CSVファイルの読み込み
 ローカルのファイルまたはURLから、CSVファイルを読み込める
 区切り文字、見出し行の有無、読み込む行数なども指定可能
5.3 クリップボードからの読み込み
 Excelなどのデータについては、クリップボード経由でも読み込める
6 データの観察
 高度なデータ分析も、まずはデータを眺めるところから
 Radiantでは、グラフによる可視化と、ピボットテーブルによる集計が簡単にできる
7 データの可視化
 Radiantでは、ヒストグラム、確率密度曲線、散布図、3D曲面プロット、
折れ線グラフ、棒グラフ、箱ひげ図を描くことができる
 軸やラベル、外観のテーマ設定などもGUIで選択、設定できる
8 データの集計
8.1 ピボットテーブル
 ピボットテーブルも集計軸を選択するだけで簡単に作成できる
 平均以外に標準偏差、尖度、歪度、四分位数など様々な観点で集計可能
8.2 集計関数の適用
 "Explore" タブでデータをグループ化し、様々な集計関数を適用して観察できる
9 データの加工
 "Transform" タブで既存のデータを加工し、新しい列を追加するなどができる
 "Combine" タブで複数のデータフレームを結合 (Join) できる
10 モデリング
10.1 回帰モデル
 "Model" - "Estimate" - "Linear Regression" から様々なパラメータを選択
して回帰モデルを作成できる
 モデルの精度評価も、数値とグラフをGUIで操作して行える
10.2 分類モデル (1)
 "Logistic Regression" など、いくつかの分類アルゴリズムをサポートしている
10.2 分類モデル (2)
 決定木のプロットも簡単にできる
11 多変量解析
11.1 クラスタリング
 "Multivariate" - "Cluster" でクラスタリングができる
 k-means法、階層的クラスタリングに対応している
11.2 因子分析
 "Multivariate" - "Factor" で因子分析ができる
 最尤法、主成分分析による方法 (?) が選択でき、多くの回転法をサポートする
11.3 コンジョイント分析
 マーケティングにおいて、最適な商品設計をする際の判断基準として行われる
 "Multivariate" - "Conjoint" で容易に実行可能
12 レポートの作成
 ここまでGUIで行ってきた操作の結果をRMarkdownで書き出せる
 日本語にも対応しており、様々な形式でエクスポート可能
13 まとめ
Radiantは "Business analytics" のためのRパッケージ
インストール、アップデートは関数1つで簡単
RStudioのアドインとして動作する
可視化、集計がGUIで簡単にできる
回帰、分類、クラスタリングなど一般的なデータ分析手法を
サポートしている
操作の結果をRMarkdownで書き出せる

More Related Content

What's hot

傾向スコアの概念とその実践
傾向スコアの概念とその実践傾向スコアの概念とその実践
傾向スコアの概念とその実践
Yasuyuki Okumura
 
Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説
Hiroshi Shimizu
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
Hiroshi Shimizu
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnetNagi Teramo
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
cvpaper. challenge
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
Shuyo Nakatani
 
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
Yasuyuki Okumura
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説
弘毅 露崎
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
Satoshi Hara
 
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
. .
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性
Shiga University, RIKEN
 
統計学勉強会#2
統計学勉強会#2統計学勉強会#2
統計学勉強会#2
Hidehisa Arai
 
[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル
Deep Learning JP
 
21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)
Toru Imai
 
SIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to RankSIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to Rank
sleepy_yoshi
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
Deep Learning Lab(ディープラーニング・ラボ)
 
Rでコンジョイント分析
Rでコンジョイント分析Rでコンジョイント分析
Rでコンジョイント分析osamu morimoto
 
RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門
Masaki Tsuda
 

What's hot (20)

傾向スコアの概念とその実践
傾向スコアの概念とその実践傾向スコアの概念とその実践
傾向スコアの概念とその実践
 
Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
 
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
 
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性
 
統計学勉強会#2
統計学勉強会#2統計学勉強会#2
統計学勉強会#2
 
[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル
 
21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)
 
SIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to RankSIGIR2011読み会 3. Learning to Rank
SIGIR2011読み会 3. Learning to Rank
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
Rでコンジョイント分析
Rでコンジョイント分析Rでコンジョイント分析
Rでコンジョイント分析
 
RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門
 

Similar to 78th Tokyo.R Radiantによるデータ分析入門

Snowflake Architecture and Performance(db tech showcase Tokyo 2018)
Snowflake Architecture and Performance(db tech showcase Tokyo 2018)Snowflake Architecture and Performance(db tech showcase Tokyo 2018)
Snowflake Architecture and Performance(db tech showcase Tokyo 2018)
Mineaki Motohashi
 
この Visualization がすごい2014 〜データ世界を彩るツール6選〜
この Visualization がすごい2014 〜データ世界を彩るツール6選〜この Visualization がすごい2014 〜データ世界を彩るツール6選〜
この Visualization がすごい2014 〜データ世界を彩るツール6選〜Takahiro Inoue
 
Sit tokyo2022 How does DWC change future of business analytics
Sit tokyo2022 How does DWC change future of business analyticsSit tokyo2022 How does DWC change future of business analytics
Sit tokyo2022 How does DWC change future of business analytics
ssuserf40d8b
 
Node-REDのworldmapの活用
Node-REDのworldmapの活用Node-REDのworldmapの活用
Node-REDのworldmapの活用
OSgeo Japan
 
JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例
JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例
JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例
Yutaro Ono
 
Microsoft Ignite Fall 2021 Data Platform Update Topics
Microsoft Ignite Fall 2021 Data Platform Update TopicsMicrosoft Ignite Fall 2021 Data Platform Update Topics
Microsoft Ignite Fall 2021 Data Platform Update Topics
Microsoft
 
Spark Summit 2014 の報告と最近の取り組みについて
Spark Summit 2014 の報告と最近の取り組みについてSpark Summit 2014 の報告と最近の取り組みについて
Spark Summit 2014 の報告と最近の取り組みについて
Recruit Technologies
 
Synapse lakedatabase
Synapse lakedatabaseSynapse lakedatabase
Synapse lakedatabase
Ryoma Nagata
 
PCCC21:株式会社アックス「俺のハードウェア」
PCCC21:株式会社アックス「俺のハードウェア」PCCC21:株式会社アックス「俺のハードウェア」
PCCC21:株式会社アックス「俺のハードウェア」
PC Cluster Consortium
 
Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介
Daisuke Taniwaki
 
講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」
講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」
講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」
Kohei Ogawa
 
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
Dell TechCenter Japan
 
【2017.03】cvpaper.challenge2017
【2017.03】cvpaper.challenge2017【2017.03】cvpaper.challenge2017
【2017.03】cvpaper.challenge2017
cvpaper. challenge
 
[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...
[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...
[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...
Insight Technology, Inc.
 
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
NTT DATA Technology & Innovation
 
M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...
M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...
M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...
日本マイクロソフト株式会社
 
2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』
2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』
2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』
dstn
 
Gitlab ci & ecsへのデプロイ
Gitlab ci & ecsへのデプロイGitlab ci & ecsへのデプロイ
Gitlab ci & ecsへのデプロイ
iwata jaws-ug
 
【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)
【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)
【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)
日本マイクロソフト株式会社
 
Mulvery@沖縄Ruby会議02
Mulvery@沖縄Ruby会議02Mulvery@沖縄Ruby会議02
Mulvery@沖縄Ruby会議02
Daichi Teruya
 

Similar to 78th Tokyo.R Radiantによるデータ分析入門 (20)

Snowflake Architecture and Performance(db tech showcase Tokyo 2018)
Snowflake Architecture and Performance(db tech showcase Tokyo 2018)Snowflake Architecture and Performance(db tech showcase Tokyo 2018)
Snowflake Architecture and Performance(db tech showcase Tokyo 2018)
 
この Visualization がすごい2014 〜データ世界を彩るツール6選〜
この Visualization がすごい2014 〜データ世界を彩るツール6選〜この Visualization がすごい2014 〜データ世界を彩るツール6選〜
この Visualization がすごい2014 〜データ世界を彩るツール6選〜
 
Sit tokyo2022 How does DWC change future of business analytics
Sit tokyo2022 How does DWC change future of business analyticsSit tokyo2022 How does DWC change future of business analytics
Sit tokyo2022 How does DWC change future of business analytics
 
Node-REDのworldmapの活用
Node-REDのworldmapの活用Node-REDのworldmapの活用
Node-REDのworldmapの活用
 
JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例
JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例
JAWS-UG広島 - 2019-07-12 - 金融ビッグデータを守るリソースポリシー実例
 
Microsoft Ignite Fall 2021 Data Platform Update Topics
Microsoft Ignite Fall 2021 Data Platform Update TopicsMicrosoft Ignite Fall 2021 Data Platform Update Topics
Microsoft Ignite Fall 2021 Data Platform Update Topics
 
Spark Summit 2014 の報告と最近の取り組みについて
Spark Summit 2014 の報告と最近の取り組みについてSpark Summit 2014 の報告と最近の取り組みについて
Spark Summit 2014 の報告と最近の取り組みについて
 
Synapse lakedatabase
Synapse lakedatabaseSynapse lakedatabase
Synapse lakedatabase
 
PCCC21:株式会社アックス「俺のハードウェア」
PCCC21:株式会社アックス「俺のハードウェア」PCCC21:株式会社アックス「俺のハードウェア」
PCCC21:株式会社アックス「俺のハードウェア」
 
Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介
 
講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」
講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」
講演資料「Azure AI Update Ignite Fall 2021を振り返ろう!」
 
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
 
【2017.03】cvpaper.challenge2017
【2017.03】cvpaper.challenge2017【2017.03】cvpaper.challenge2017
【2017.03】cvpaper.challenge2017
 
[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...
[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...
[db tech showcase Tokyo 2017] E35: 12台でやってみた!DWHソフトウェアアプライアンス Db2 Warehouse ~...
 
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
 
M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...
M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...
M06_DX を担うエンジニア向け Data & AI Analytics プラットフォームの最適解 ~ Azure Synapse 最新機能ご紹介 ~ ...
 
2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』
2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』
2015年2月26日 dsthHUB 『DataSpiderインターナル プラガブルアーキテクチャで広がる可能性』
 
Gitlab ci & ecsへのデプロイ
Gitlab ci & ecsへのデプロイGitlab ci & ecsへのデプロイ
Gitlab ci & ecsへのデプロイ
 
【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)
【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)
【de:code 2020】 Azure Synapse Analytics 技術編 ~ 最新の統合分析プラットフォームによる新しい価値の創出(前編)
 
Mulvery@沖縄Ruby会議02
Mulvery@沖縄Ruby会議02Mulvery@沖縄Ruby会議02
Mulvery@沖縄Ruby会議02
 

78th Tokyo.R Radiantによるデータ分析入門