SlideShare a Scribd company logo
1 of 138
Download to read offline
 
  
         ‫א‬




             -٢-
‫ﻃﺒﻘﺎ ﻟﻘﻮﺍﻧﲔ ﺍﳌﻠﻜﻴﺔ ﺍﻟﻔﻜﺮﻳﺔ‬
              ‫א‬         ‫א‬           ‫א‬
      ‫.‬                                          ‫אא‬
          ‫א‬
‫)ﻋـﱪ ﺍﻻﻧﱰﻧـﺖ ﺃﻭ‬                 ‫א‬                  ‫אא‬
‫ﻟﻠﻤﻜﺘﺒــﺎﺕ ﺍﻻﻟﻜﱰﻭﻧﻴــﺔ ﺃﻭ ﺍﻷﻗــﺮﺍﺹ ﺍﳌﺪﳎــﺔ ﺃﻭ ﺍﻯ‬
                                ‫א‬           ‫ﻭﺳﻴﻠﺔ ﺃﺧﺮﻯ (‬
                    ‫א‬       ‫א‬           ‫.‬
  ‫.‬           ‫א א‬
‫‪‬‬

‫:ﺍﻟﻨﻅﺭﻴﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ﻓﻲ ﺍﻟﺘﺼﻤﻴﻤﺎﺕ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴﺔ - ٦ -‬    ‫ﺍﻟﺒﺎﺏ ﺍﻷﻭل‬


‫: ﺘﺼﻤﻴﻡ ﺨﻁﻭﻁ ﺃﻨﺎﺒﻴﺏ ﻨﻘل ﺍﻟﺒﺘﺭﻭل .......... - ٣٤ -‬   ‫ﺍﻟﺒﺎﺏ ﺍﻟﺜﺎﻨﻲ‬


‫ﺍﻟﺒﺎﺏ ﺍﻟﺜﺎﻟﺙ : ﺘﻁﺒﻴﻘﺎﺕ ﻋﻠﻰ ﺍﻟﺘﺼﻤﻴﻤﺎﺕ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴﺔ ...... - ٧٧ -‬


‫ﺍﻟﺒﺎﺏ ﺍﻟﺭﺍﺒﻊ : ﺘﺼﻤﻴﻡ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ ................... - ٢١١ -‬




                           ‫-٣-‬
-٤-
‫‪‬‬
‫ﻤﻨﺫ ﻋﺩﺓ ﺴﻨﻭﺍﺕ ﻭﺍﻟﺤﺎﺠﺔ ﻤﺎﺴﺔ ﺇﻟـﻰ ﺒﺤـﺙ ﻤﺘﺨﺼـﺹ‬
‫ﻴﺘﻨﺎﻭل ﻤﻭﻀﻭﻉ ﺍﻟﺘﺼﻤﻴﻤﺎﺕ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴﺔ ﻟﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬
‫ﻭﺘﻁﺒﻴﻘﺎﺘﻬﺎ ﻓﻲ ﻤﺠﺎل ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﻭﻗﺩ ﺃﻋﺩﺩﺕ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﺁﻤﻼ‬
‫ﹰ‬
‫ﺃﻥ ﻴﻭﻀﺢ ﺍﻟﻤﻭﻀﻭﻋﺎﺕ ﺍﻟﺘﻲ ﻗﺩ ﺘﻜﻭﻥ ﻤﺒﻬﻤﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺠﺎل‬
‫ﻜﻤﺎ ﺃﻥ ﺇﺤﺘﻭﺍﺀ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﻋﻠﻰ ﺒﻌﺽ ﺍﻟﻤﻌﺎﺩﻻﺕ ﻭﺍﻟﺠـﺩﺍﻭل‬
‫ﻭﺍﻟﻘﻭﺍﻋ ـﺩ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴ ـﺔ ﺍﻟﻤﺴ ـﺘﻨﺘﺠﺔ ﺒﻤﻌﺭﻓﺘ ـﻰ ﻭﺍﻷﻤﺜﻠ ـﺔ‬
 ‫ـ‬         ‫ـ‬             ‫ـ‬       ‫ـ‬              ‫ـ‬
‫ﻭﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺘﻭﻀﻴﺤﻴﺔ ﻭﺍﻟﺘﻲ ﺤﺎﻭﻟـﺕ ﺠﺎﻫـﺩﺍ ﺃﻥ ﺃﺠﻌﻠﻬـﺎ‬
           ‫ﹰ‬
‫ﻤﺒﺴﻁﺔ ﺤﺘﻰ ﻴﺘﺴﻨﻰ ﻟﻜل ﺩﺍﺭﺱ ﺃﻭ ﻤﺘﺨﺼﺹ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺠﺎل‬
‫ﺃﻥ ﻴﺘﻨﺎﻭﻟﻬﺎ ﺒﻜل ﺴﻼﺴﺔ ﻭﻴﺴﺭ ﺁﻤﻼ ﻤﻥ ﺍﷲ ﻋﺯ ﻭﺠل ﺃﻥ ﻴﻌﻭﺩ‬
                     ‫ﹰ‬
          ‫ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﺒﺎﻟﻨﻔﻊ ﻋﻠﻰ ﺠﻤﻴﻊ ﺍﻟﻤﻬﺘﻤﻴﻥ ﺒﻬﺫﺍ ﺍﻟﻤﺠﺎل.‬




                         ‫-٥-‬
 
‫א‬       ‫א‬   ‫א‬   ‫א‬
    ‫א‬       ‫א‬




    -٦-
‫ﺍﻟﻜﺜﺎﻓﺔ )‪:(Density‬‬
‫ﻭﻫﻰ ﺘﻌﺒﺭ ﻋﻥ ﻜﺘﻠﺔ ﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ ﻤﻥ ﺍﻟﻤﺎﺩﺓ ﻭﻴﺭﻤﺯ ﻟﻬـﺎ‬
‫ﺒﺎﻟﺭﻤﺯ ‪ ρ‬ﻭﻭﺤﺩﺘﻬﺎ ﻫﻰ ﻜﺘﻠﺔ ﺍﻟﺠﺭﺍﻡ ﻟﻜل ﺴـﻨﺘﻴﻤﺘﺭ ﻤﻜﻌـﺏ‬
‫)ﺠﻡ/ﺴﻡ٣( ﻭﺘﻌﺘﻤﺩ ﻜﺜﺎﻓﺔ ﺍﻟﺴﺎﺌل ﻋﻠﻰ ﻨﻭﻋﻪ ﻭﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ،‬
‫ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺀ ﺘﺴﺎﻭﻯ ١ﺠﻡ/ﺴﻡ٣ ﻋﻨﺩ ٦,٥١‪º‬ﻡ.‬

            ‫ﺍﻟﻭﺯﻥ ﺍﻟﻨﻭﻋﻰ )‪:(Specific weight‬‬
‫ﻭﻫﻭ ﻴﻌﺒﺭ ﻋﻥ ﻭﺯﻥ ﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ ﻤﻥ ﺍﻟﻤﺎﺩﺓ ﻭﻴﺭﻤﺯ ﻟـﻪ‬
‫ﺒﺎﻟﺭﻤﺯ ‪ w‬ﻭﻭﺤﺩﺘﻪ ﻫﻰ ﻗﻭﺓ ﺍﻟﺠﺭﺍﻡ ﻟﻜـل ﺴـﻨﺘﻴﻤﺘﺭ ﻤﻜﻌـﺏ‬
‫)ﺠﻡ/ﺴﻡ٣( ﻤﻊ ﻤﻼﺤﻅﺔ ﺃﻥ ‪ w = ρg‬ﺤﻴﺙ ﺃﻥ ‪ g‬ﻫﻰ ﻋﺠﻠـﺔ‬
           ‫ﺍﻟﺠﺎﺫﺒﻴﺔ ﺍﻷﺭﻀﻴﺔ ﻭﺘﺴﺎﻭﻯ ٧٦٠٨,٩ ﻤﺘﺭ/ﺜﺎﻨﻴﺔ٢.‬




                       ‫-٧-‬
‫ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ )‪:(Specific Gravity‬‬
‫ﻭﺘﻌﺭﻑ ﺒﺄﻨﻬﺎ ﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺩﺓ ﺃﻭ ﻭﺯﻨﻬـﺎ ﺍﻟﻨـﻭﻋﻰ‬
‫ﻭﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺀ ﺃﻭ ﻭﺯﻨﻪ ﺍﻟﻨﻭﻋﻰ ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ sp.gr‬ﻭﻫﻰ‬
‫ﻨﺴﺒﺔ ﺒﺩﻭﻥ ﻭﺤﺩﺍﺕ، ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻤـﺎﺀ‬
‫ﺘﺴﺎﻭﻯ ١ ﻭﻟﻠﺯﺌﺒﻕ ﺘﺴـﺎﻭﻯ ٦,٣١ ﻭﻓـﻲ ﺍﻟﻨﻅـﺎﻡ ﺍﻟﻤﺘـﺭﻯ‬
‫ﻟﻠﻭﺤﺩﺍﺕ )ﺴﻨﺘﻴﻤﺘﺭ – ﺠﺭﺍﻡ – ﺜﺎﻨﻴﺔ( ﺘﻜﻭﻥ ﺍﻟﻜﺜﺎﻓـﺔ ﺍﻟﻨﺴـﺒﻴﺔ‬
                                    ‫ﺘﺴﺎﻭﻯ ﺍﻟﻜﺜﺎﻓﺔ ﻋﺩﺩﻴﺎ.‬
                                     ‫ﹰ‬

                              ‫ﺍﻟﻀﻐﻁ )‪:(Pressure‬‬
‫ﻴﻌﺭﻑ ﺍﻟﻀﻐﻁ ﺒﺄﻨﻪ ﺍﻟﻘﻭﺓ ﺍﻟﻤﺅﺜﺭﺓ ﻋﻠﻰ ﻭﺤـﺩﺓ ﺍﻟﻤﺴـﺎﺤﺔ‬
‫ﻭﺘﻜﻭﻥ ﺍﻟﻘﻭﺓ ﻤﺘﻌﺎﻤﺩﺓ ﻋﻠﻰ ﺍﻟﻤﺴﺎﺤﺔ ﻭﻭﺤﺩﺘﻪ ﻫـﻰ ﻜﻴﻠـﻭﺠﺭﺍﻡ‬
‫ﻟﻜل ﺴﻨﺘﻴﻤﺘﺭ ﻤﺭﺒﻊ )ﻜﺠﻡ/ﺴﻡ٢( ﻭﻓﻲ ﺤﺎﻟﺔ ﻭﺠﻭﺩ ﺴﺎﺌﻠﻴﻥ ﻟﻬـﻡ‬
‫ﻜﺜﺎﻓﺔ ١، ٥,٠ ﻜﻤﺎ ﺒﺎﻟﺸﻜل )١( ﻓﺈﻥ ﺍﻟﺴﺎﺌل ﺫﻭ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻷﻗـل‬
‫ﻻﺒﺩ ﺃﻥ ﻴﺼﻌﺩ ﺇﻟﻰ ﺇﺭﺘﻔﺎﻉ ﻋﻤﻭﺩ ﺃﻋﻠﻰ ﻟﻜﻲ ﻴﻭﻟﺩ ﻨﻔﺱ ﺍﻟﻀﻐﻁ‬
‫ﻋﻨﺩ ﻨﻔﺱ ﺍﻟﻤﺴﺘﻭﻯ ﻤﺜل ﺍﻟﺴﺎﺌل ﺍﻷﺜﻘل ﻭﻴﻜﻭﻥ ﺍﻟﻀـﻐﻁ ﻋﻨـﺩ‬
‫ﺃﺴﻔل ﺍﻟﻌﻤﻭﺩ ‪ H‬ﻟﻜل ﺴﺎﺌل ﻴﺴﺎﻭﻯ ﻭﺯﻥ ﺍﻟﺴﺎﺌل ﻓـﻭﻕ ﻨﻘﻁـﺔ‬
‫ﻗﻴﺎﺱ ﺍﻟﻀﻐﻁ ﻤﻘﺴﻭﻤﺎ ﻋﻠﻰ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁـﻊ ‪ A‬ﻋﻨـﺩ ﻨﻔـﺱ‬
                              ‫ﹰ‬
‫ﺃﻯ ﻴﺴﺎﻭﻯ ‪ WH‬ﻭﺒﺫﻟﻙ ﻴﻤﻜﻨﻨﺎ ﺍﻟﺘﻌﺒﻴﺭ ﻋـﻥ‬           ‫ﺍﻟﻨﻘﻁﺔ‬
                                           ‫‪AHW‬‬
                                            ‫‪A‬‬
                        ‫-٨-‬
‫ﺍﻟﻀﻐﻁ ﺒﺩﻻﻟﺔ ﺇﺭﺘﻔﺎﻉ ﻋﻤﻭﺩ ﺴﺎﺌل ﻤﻌﻴﻥ ﻭﻫـﻭ ﻤـﺎ ﻴﺴـﻤﻰ‬
‫‪ Head‬ﺃﻭ ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ‪ Pressure Energy‬ﻭﻭﺤﺩﺘﻪ ﻫـﻰ‬
‫ﻜﺠﻡ.ﻤﺘﺭ/ﻜﺠﻡ ﺃﻯ ﺍﻟﻤﺘﺭ ﻤﻊ ﻤﻼﺤﻅﺔ ﺃﻥ )‪ (Head‬ﺒـﺎﻟﻤﺘﺭ =‬
                      ‫ﺍﻟﻀﻐﻁ ﺒﺎﻟﻜﺠﻡ/ﺴﻡ٢×٠١/ ‪Sp.gr‬‬




                    ‫ﺸﻜل )١(‬




                     ‫-٩-‬
‫ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ ﻴﺴﺎﻭﻯ ٣٠,١ﻜﺠﻡ/ﺴﻡ٢‬
‫ﻋﻨﺩ ﻤﺴﺘﻭﻯ ﺴﻁﺢ ﺍﻟﺒﺤﺭ ﻭﻫﻭ ﻴﺴﺎﻭﻯ ﺍﻟﻀﻐﻁ ﺍﻟﻨﺎﺘﺞ ﻤﻥ ﻭﺯﻥ‬
                          ‫01 × 30.1‬
‫ﺃﻯ ٣,٠١ ﻤﺘﺭ ﻭﻴﺴﺎﻭﻯ ﺃﻴﻀﺎ‬
‫ﹰ‬                                   ‫ﻋﻤﻭﺩ ﻤﺎﺀ ﺇﺭﺘﻔﺎﻋﻪ‬
                              ‫1‬
‫ـﻪ‬
 ‫ـﻕ ﺇﺭﺘﻔﺎﻋـ‬
          ‫ـﻭﺩ ﺯﺌﺒـ‬
                 ‫ـﻐﻁ ﺍ ـﺎﺘﺞ ـﻥ ﻭﺯﻥ ﻋﻤـ‬
                          ‫ﻤـ‬   ‫ﻟﻨـ‬   ‫ﺍﻟﻀـ‬
                                 ‫01 × 30.1‬
                      ‫ﺃﻯ ٦٧ﺴﻡ.‬             ‫‪= 0.76 mt‬‬
                                   ‫6.31‬

                    ‫ﺍﻟﻀﻐﻭﻁ ﺍﻟﻌﻴﺎﺭﻴﺔ ﻭﺍﻟﻤﻁﻠﻘﺔ:‬




                    ‫ﺸﻜل )٢(‬



                     ‫- ٠١ -‬
‫ﻜﻤﺎ ﻴﺘﻀﺢ ﻤﻥ ﺸﻜل )٢( ﺃﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻌﻴـﺎﺭﻯ ) ‪Gage‬‬
‫‪ (pressure‬ﻫﻭ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻨﺴـﻭﺏ ﺇﻟـﻰ ﺍﻟﻀـﻐﻁ ﺍﻟﺠـﻭﻯ‬
‫)‪ (Atmospheric pressure‬ﺒﺈﻋﺘﺒﺎﺭ ﺃﻥ ﺍﻟﻀـﻐﻁ ﺍﻟﺠـﻭﻯ‬
‫ﻴﺴﺎﻭﻯ ﺼﻔﺭ ﻓﻬﻭ ﺇﻤﺎ ﺃﻋﻠﻰ ﻤﻥ ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ ﻓﻴﺴﻤﻰ ﻀﻐﻁ‬
‫)‪ (pressure‬ﺃﻭ ﺃﻗل ﻤﻥ ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ ﻓﻴﺴـﻤﻰ ﺘﻔﺭﻴـﻎ ﺃﻭ‬
‫ﺨﻠﺨﻠﺔ )‪ (vacuum‬ﻭﻴﻘﺎﺱ ﻫﺫﺍ ﺍﻟﻀﻐﻁ ﺒﻭﺍﺴﻁﺔ ﺃﺠﻬﺯﺓ ﻤﺜـل‬
‫ﺍﻟﻤ ـﺎﻨﻭﻤﺘﺭﺍﺕ ﻭﺃﻨﺒﻭﺒ ـﺔ ﺒ ـﻭﺭﺩﻭﻥ ﺃﻤ ـﺎ ﺍﻟﻀ ـﻐﻁ ﺍﻟﻤﻁﻠ ـﻕ‬
 ‫ـ‬         ‫ـ‬      ‫ـ‬         ‫ـ ـ‬                   ‫ـ‬
‫)‪ (Absolute pressure‬ﻓﻬﻭ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﺼـﻔﺭ‬
‫ﺍﻟﻤﻁﻠﻕ ﺤﻴﺙ ﺃﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻁﻠـﻕ = ﺍﻟﻀـﻐﻁ ﺍﻟﻌﻴـﺎﺭﻯ +‬
                                         ‫ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ.‬

              ‫ﻀﻐﻁ ﺍﻟﺒﺨﺎﺭ )‪:(Vapor pressure‬‬
‫ﻭﻴﻌﺭﻑ ﺒﺄﻨﻪ ﺍﻟﻀﻐﻁ ﺍﻟﺫﻯ ﻋﻨﺩﻩ ﻴﺘﺤﻭل ﺍﻟﺴﺎﺌل ﺇﻟﻰ ﺒﺨـﺎﺭ‬
‫ﻭﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﻭﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ ﻭﻴﺘﻡ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻨـﻪ‬
‫ﺒﺎﻟﻘﻴﻡ ﺍﻟﻤﻁﻠﻘﺔ ﻟﻠﻀﻐﻭﻁ، ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻀﻐﻁ ﺍﻟﺒﺨﺎﺭ ﻟﻠﻤﺎﺀ‬
‫ـﺔ )٦,٣٢‪º‬ﻡ( ـﺎﻭﻯ‬
   ‫ﻴﺴـ‬         ‫ـﺭﺍﺭﺓ ﺍﻟﻌﺎﺩﻴـ‬
                           ‫ـﺎﺕ ﺍﻟﺤـ‬
                                  ‫ـﺩ ﺩﺭﺠـ‬
                                        ‫ﻋﻨـ‬
‫٣٠,٠ﻜﺠﻡ/ﺴﻡ٢ ﻤﻁﻠﻕ ﻤﻌﻨﻰ ﺫﻟﻙ ﺃﻨﻪ ﻟﻭ ﺘﻡ ﺨﻠﺨﻠﺔ ﺍﻟﻔﺭﺍﻍ ﻓﻭﻕ‬
‫ﺴﻁﺢ ﺍﻟﻤﺎﺀ ﺤﺘﻰ ﻴﺼل ﺍﻟﻀﻐﻁ ﺇﻟﻰ ﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻓـﺈﻥ ﺍﻟﻤـﺎﺀ‬
                       ‫ﻴﺘﺒﺨﺭ ﻋﻨﺩ ﺩﺭﺠﺎﺕ ﺍﻟﺤﺭﺍﺭﺓ ﺍﻟﻌﺎﺩﻴﺔ.‬
                       ‫- ١١ -‬
‫ﺸﻜل )٣(‬

                                 ‫ﺃﻗﺼﻰ ﻀﻐﻁ ﺴﺎﻟﺏ:‬
‫ﻜﻤﺎ ﻴﺘﻀﺢ ﻤﻥ ﺸﻜل )٣( ﺃﻨﻪ ﺇﺫﺍ ﺘﻡ ﻋﻤـل ﺨﻠﺨﻠـﺔ ﻓـﻲ‬
‫ﺍﻷﻨﺒﻭﺒﺔ ﺍﻟﺭﺃﺴﻴﺔ ﻓﺈﻥ ﺍﻟﻤﺎﺀ ﻴﺼﻌﺩ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﺒﺘﺄﺜﻴﺭ ﺍﻟﻀـﻐﻁ‬
‫ﺍﻟﺠﻭﻯ ﺤﺘﻰ ﻴﺼل ﺇﻟﻰ ﺤﺩ ﻤﻌﻴﻥ ﻴﻜﻭﻥ ﺍﻟﻀﻐﻁ ﻋﻨﺩﻩ ﻴﺴـﺎﻭﻯ‬
‫ﻀﻐﻁ ﺍﻟﺒﺨﺎﺭ ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﺍﻹﺭﺘﻔﺎﻉ ﻤﻥ ﺴﻁﺢ ﺍﻟﺴﺎﺌل ﺒﺎﻹﻨـﺎﺀ‬
‫ﺤﺘﻰ ﻫﺫﺍ ﺍﻟﺤﺩ ﺒﺄﻗﺼﻰ ﻀﻐﻁ ﺴﺎﻟﺏ )ﻓﻲ ﺼﻭﺭﺓ ‪ (Head‬ﻭﻫﻭ‬
                      ‫]30.0 − 30.1[ × 01‬
‫ﻟﻠﻤـﺎﺀ ﻋﻨـﺩ ﺩﺭﺠـﺎﺕ‬                       ‫ﻴﺴﺎﻭﻯ ‪= 10 mt‬‬
                               ‫1‬
                                        ‫ﺍﻟﺤﺭﺍﺭﺓ ﺍﻟﻌﺎﺩﻴﺔ.‬

                       ‫- ٢١ -‬
‫ﺍﻟﻠﺯﻭﺠﺔ )‪:(Viscosity‬‬
‫ﻴﻁﻠﻕ ﺇﺴﻡ ﺍﻟﻤﻭﺍﺌﻊ ﻋﻠﻰ ﺍﻟﺴﻭﺍﺌل ﻭﺍﻟﻐﺎﺯﺍﺕ ﻭﺘﺴﻤﻰ ﺨﺎﺼﻴﺔ‬
‫ﺍﻟﺴﺎﺌل ﺍﻟﺘﻲ ﺘﻭﻟﺩ ﻤﻘﺎﻭﻤﺔ ﻟﻘﻭﻯ ﺍﻟﻘﺹ ﻓﻲ ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻠﺯﻭﺠـﺔ‬
‫ﻭﺇﺫﺍ ﺘﻡ ﻤلﺀ ﺍﻟﻔﺭﺍﻍ ﺒﻴﻥ ﺴﻁﺤﻴﻥ ﻤﺴﺘﻭﻴﻴﻥ ﺒﺴﺎﺌل ﻓﻴﻠﺯﻡ ﻗـﻭﺓ‬
‫ﻟﻜﻲ ﻴﺘﺤﺭﻙ ﺇﺤﺩﻯ ﺍﻟﺴﻁﺤﻴﻥ ﺒﺴﺭﻋﺔ ﺜﺎﺒﺘﺔ ﺒﺎﻟﻨﺴـﺒﺔ ﻟﻶﺨـﺭ‬
‫ﻭﺘﺘﻐﻴﺭ ﺴﺭﻋﺔ ﺍﻟﺴﺎﺌل ﺨﻁﻴﺎ ﺒﻴﻥ ﺍﻟﺴﻁﺤﻴﻥ ﻭﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﺍﻟﻘـﻭﺓ‬
                               ‫ﹰ‬
‫ﻟﻜل ﻭﺤﺩﺓ ﻤﺴﺎﺤﺔ )ﺇﺠﻬﺎﺩ ﺍﻟﻘﺹ( ﺇﻟﻰ ﺍﻟﺴﺭﻋﺔ ﻟﻜـل ﻭﺤـﺩﺓ‬
‫ﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﺴﻁﺤﻴﻥ )ﻤﻌﺩل ﺍﻟﻘﺹ( ﺘﻜﻭﻥ ﻤﻘﻴـﺎﺱ ﻟﺯﻭﺠـﺔ‬
‫ﺍﻟﺴﺎﺌل ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﺃﻭ ﺍﻟﻤﻁﻠﻘﺔ ﻭﺍﻟﺴﻭﺍﺌل ﺍﻟﺘﻲ ﺘﺘﻨﺎﺴـﺏ ﻓﻴﻬـﺎ‬
‫ﺇﺠﻬﺎﺩﺍﺕ ﺍﻟﻘﺹ ﻤﻊ ﻤﻌﺩﻻﺕ ﺍﻟﻘﺹ ﺘﻜﻭﻥ ﻟﻬﺎ ﻤﻌﺎﻤﻼﺕ ﻟﺯﻭﺠﺔ‬
‫ﺜﺎﺒﺘﺔ ﻋﻨﺩ ﻀﻐﻁ ﻭﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﻤﺤﺩﺩﻴﻥ ﻭﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﺇﺴـﻡ‬
‫ﺍﻟﺴـﻭﺍﺌل ﺍﻟﺤﻘﻴﻘﻴـﺔ ‪ Newtonian Liquids‬ﻭﻓﻴﻬـﺎ ﺘﺯﻴـﺩ‬
         ‫ﺍﻟﻠﺯﻭﺠﺔ ﻭﻤﻘﺎﻭﻤﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻤﻊ ﻨﻘﺹ ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ.‬
‫ﻭﺘﻜﻭﻥ ﻭﺤـﺩﺓ ﺍﻟﻠﺯﻭﺠـﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴـﺔ ﺃﻭ ﺍﻟﻤﻁﻠﻘـﺔ ﻫـﻰ‬
‫ﺩﺍﻴﻥ.ﺜﺎﻨﻴﺔ/ﺴﻡ٢ ﻭﺘﺴـﻤﻰ ﺒـﻭﻴﺯ )‪ (poise‬ﻭﺘﺴـﺎﻭﻯ ﻋـﺩﺩﻴﺎ‬
‫ﹰ‬
‫ﺠﻡ/ﺴﻡ.ﺜﺎﻨﻴﺔ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺸﺎﺌﻊ ﻟﻠﺯﻭﺠﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﺃﻭ ﺍﻟﻤﻁﻠﻘـﺔ‬
‫× ‪Centipoise‬‬      ‫ﻴﻜﻭﻥ ﺴﻨﺘﻰ ﺒﻭﻴﺯ )١/٠٠١ﺒﻭﻴﺯ( ﺤﻴﺙ ﺃﻥ‬
                          ‫‪.١٠-٣ = N.sec/m٢ = Pa.sec‬‬

                        ‫- ٣١ -‬
‫‪N – Newton‬‬
   ‫٢‪Pa – Pascal = N/m‬‬
‫ﻭﺃﺤﻴﺎﻨﺎ ﻴﻌﺒﺭ ﻋﻥ ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺒﺎﻟﻠﺯﻭﺠـﺔ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴـﺔ‬
                                             ‫ﹰ‬
‫ﻭﻫﻰ ﺘﺴﺎﻭﻯ ﺍﻟﻠﺯﻭﺠﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﻤﻘﺴﻭﻤﺔ ﻋﻠﻰ ﺍﻟﻜﺜﺎﻓﺔ )‪(w/g‬‬
‫ﻭﻭﺤ ـﺩﺘﻬﺎ ﺍﻟﻤﺘﺭﻴ ـﺔ ﻫ ـﻰ ﺴ ـﻡ٢/ﺜﺎﻨﻴ ـﺔ ﻭﺘﺴ ـﻤﻰ ﺴ ـﺘﻭﻙ‬
   ‫ـ‬     ‫ـ‬      ‫ـ‬        ‫ـ ـ ـ‬                  ‫ـ‬
‫)‪ (stoke‬ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺸﺎﺌﻊ ﻟﻠﺯﻭﺠﺔ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴﺔ ﻴﻜـﻭﻥ ﺴـﻨﺘﻰ‬
                           ‫ﺴﺘﻭﻙ )١/٠٠١ ﺴﺘﻭﻙ( ﺤﻴﺙ ﺃﻥ‬
   ‫‪Centistoke = mm٢/sec‬‬
   ‫‪Centistoke × ١٠-٦ = m٢/sec‬‬
‫ﻭﺘﻌﺘﻤﺩ ﺍﻟﻠﺯﻭﺠﺔ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﻭﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ، ﻋﻠـﻰ‬
‫ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻟﺯﻭﺠﺔ ﺍﻟﻤـﺎﺀ ﺘﺴـﺎﻭﻯ ٣١١٠,٠ ﺒـﻭﻴﺯ ﻋﻨـﺩ‬
‫٦,٥١‪º‬ﻡ ﻭﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻤﺘﺭﻯ ﻟﻠﻭﺤﺩﺍﺕ )ﺴﻡ.ﺠﻡ.ﺜﺎﻨﻴﺔ( ﺘﻜـﻭﻥ‬
‫ﺍﻟﻠﺯﻭﺠﺔ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴﺔ ﺒﺎﻟﺴﻨﺘﻰ ﺴﺘﻭﻙ = ﺍﻟﻠﺯﻭﺠﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﺃﻭ‬
‫ﺍﻟﻤﻁﻠﻘﺔ ﺒﺎﻟﺴﻨﺘﻰ ﺒﻭﻴﺯ/‪ Sp.gr‬ﻭﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻟﻤﺘﺭﻴﺔ‬
‫ﺇﻟﻰ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻹﻨﺠﻠﻴﺯﻴﺔ )ﻗـﺩﻡ – ﺭﻁـل – ﺜﺎﻨﻴـﺔ( ﻴﻜـﻭﻥ‬
         ‫ﺭﻁل.ﺜﺎﻨﻴﺔ/ﻗﺩﻡ٢ = ٥٥٨٨٠٢٠٠٠٠,٠ ﺴﻨﺘﻰ ﺒﻭﻴﺯ.‬
                ‫ﻗﺩﻡ٢/ﺜﺎﻨﻴﺔ = ٩٣٦٧٠١,٠ ﺴﻨﺘﻰ ﺴﺘﻭﻙ.‬


                        ‫- ٤١ -‬
‫ﻭﺍﻟﻤﺎﺌﻊ ﺍﻟﻤﺜﺎﻟﻰ ﻫﻭ ﺍﻟﻤﺎﺌﻊ ﺍﻟﺫﻯ ﻨﻌﺘﺒﺭﻩ ﺨﺎل ﻤﻥ ﺍﻟﻠﺯﻭﺠـﺔ‬
‫ﻭﺘﺴﻬﻴﻼ ﻟﺩﺭﺍﺴﺔ ﺍﻟﻤﻌﺎﺩﻻﺕ ﻨﻌﺘﺒﺭ ﺍﻟﻤﺎﺌﻊ ﻤﺜﺎﻟﻴﺎ ﺒﺈﻫﻤﺎل ﺘـﺄﺜﻴﺭ‬
              ‫ﹰ‬                                   ‫ﹰ‬
‫ﺍﻟﻠﺯﻭﺠﺔ ﺜﻡ ﺇﺩﺨﺎل ﻤﻌﺎﻤﻼﺕ ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﺘﻲ ﻴـﺘﻡ ﺍﻟﺤﺼـﻭل‬
                              ‫ﻋﻠﻴﻬﺎ ﻤﻥ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻌﻤﻠﻴﺔ.‬

 ‫ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ )‪:(Continuity Equation‬‬




                       ‫ﺸﻜل )٤(‬




                        ‫- ٥١ -‬
‫ﺘﺭﺒﻁ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺒﻴﻥ ﺍﻟﺴﺭﻋﺔ ﺍﻟﻤﺘﻭﺴـﻁﺔ ‪ V‬ﺍﻟﻌﻤﻭﺩﻴـﺔ‬
‫ﻋﺒﺭ ﻤﻘﻁﻊ ﻓﻲ ﺃﻨﺒﻭﺒﺔ ﻭﺒﻴﻥ ﺍﻟﻤﺴﺎﺤﺔ ‪ A‬ﻟﻬﺫﺍ ﺍﻟﻤﻘﻁـﻊ ﻭﻜﻤـﺎ‬
‫ﻴﺘﻀﺢ ﻤﻥ ﺸﻜل )٤( ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )١( ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻤﺴﺎﺤﺔ ١‪A‬‬
‫ﻭﺍﻟﺴﺭﻋﺔ ١‪ V‬ﻭﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺌﻊ ١‪ ρ‬ﺘﻜﻭﻥ ﻜﺘﻠﺔ ﺍﻟﻤﺎﺌﻊ ﺍﻟﻤﺎﺭ ﻓـﻲ‬
‫ﺍﻟﺜﺎﻨﻴﺔ ﺍﻟﻭﺍﺤﺩﺓ ﺨﻼل ﻫﺫﺍ ﺍﻟﻤﻘﻁﻊ ﻫﻰ ١‪ ρ١A١V‬ﻓﻠـﻭ ﺘﻐﻴـﺭ‬
‫ﺍﻟﻤﻘﻁﻊ ﺇﻟﻰ )٢( ﻭﻜﺎﻨﺕ ﻤﺴﺎﺤﺘﻪ ٢‪ A‬ﻓﻼﺒﺩ ﺃﻥ ﻴﺤﺩﺙ ﺘﻐﻴﺭ ﻓﻲ‬
‫ﻗﻴﻡ ٢‪ ρ٢,V‬ﻟﺘﻅل ﺍﻟﻜﺘﻠﺔ ﺜﺎﺒﺘﺔ ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﻭﺍﺌﻊ ﺍﻟﻐﻴﺭ ﻗﺎﺒﻠـﺔ‬
 ‫ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل ﻟﻡ ﺘﺘﻐﻴﺭ ﺍﻟﻜﺜﺎﻓﺔ ﺃﻯ ﺘﻅل ﺜﺎﺒﺘﺔ ﺃﻯ ﺃﻥ‬
              ‫ﻤﻘﺩﺍﺭ ﺜﺎﺒﺕ = ٢‪A١V١=A٢V‬‬
‫ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﻘﺩﺍﺭ ﺍﻟﺜﺎﺒﺕ ﺇﺴﻡ ﻤﻌـﺩل ﺍﻟﺴـﺭﻴﺎﻥ ﺃﻭ‬
‫ﺍﻟﻜﻤﻴﺔ )‪ (Flow Rate‬ﻭﻴﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪ Q‬ﻭﻴﻌـﺭﻑ ﺒﺄﻨـﻪ‬
 ‫ﺤﺠﻡ ﺍﻟﺴﺎﺌل ﺍﻟﻤﺎﺭ ﻓﻲ ﻭﺤﺩﺓ ﺍﻟﺯﻤﻥ ﻭﻭﺤﺩﺘﻪ ﻫﻰ ﻤﺘﺭ٣/ﺴﺎﻋﺔ.‬

                                  ‫ﺍﻟﻁﺎﻗﺔ )‪:(Energy‬‬
‫ﺘﻜﻭﻥ ﻁﺎﻗﺔ ﺍﻟﻤﻭﺍﺌﻊ ﺍﻟﻐﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل ﻓﻲ‬
‫ﺜﻼﺙ ﺼﻭﺭ ﻫﻰ ﺴﺭﻋﺔ، ﻀﻐﻁ ﻭﺇﺭﺘﻔﺎﻉ ﻭﻴﺘﻡ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻨﻬﺎ ﻓﻲ‬
‫ﺼﻭﺭﺓ ﻁﺎﻗﺔ ﻟﻭﺤﺩﺓ ﺍﻷﻭﺯﺍﻥ ﻭﻭﺤﺩﺘﻬﺎ ﻫﻰ ﻜﺠﻡ.ﻤﺘﺭ/ﻜﺠـﻡ ﺃﻭ‬
                                   ‫ﺍﻟﻤﺘﺭ ﻋﻴﺎﺭﻯ ﺃﻭ ﻤﻁﻠﻕ.‬

                        ‫- ٦١ -‬
‫ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ )‪:(Velocity Head‬‬
                 ‫2‪V‬‬
‫( ﻭﻭﺤـﺩﺘﻬﺎ ﻫـﻰ‬      ‫ﻭﻴﻌﺒﺭ ﻋﻨﻬﺎ ﻓﻲ ﺼﻭﺭﺓ ﺴـﺭﻋﺔ )‬
                 ‫‪2g‬‬
‫ﻜﺠﻡ.ﻤﺘﺭ/ﻜﺠﻡ ﺃﻯ ﺍﻟﻤﺘﺭ ﻭﺴـﺭﻋﺔ ﺍﻟﺴـﻭﺍﺌل ﻓـﻲ ﺍﻷﻨﺎﺒﻴـﺏ‬
‫ﻭﺍﻟﻘﻨﻭﺍﺕ ﺍﻟﻤﻔﺘﻭﺤﺔ ﺘﺘﻐﻴﺭ ﻋﺒﺭ ﺃﻯ ﻤﻘﻁﻊ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻤﺠـﺭﻯ‬
‫ﻭﻟﺫﻟﻙ ﻓﺈﻨﻪ ﻤﻥ ﺍﻟﺩﻗﺔ ﺍﻟﻜﺎﻓﻴﺔ ﺃﻥ ﻨﺴﺘﺨﺩﻡ ﺍﻟﺴﺭﻋﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ‪V‬‬
 ‫ﺍﻟﻤﺤﺴﻭﺒﺔ ﺒﻘﺴﻤﺔ ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ ﻋﻠﻰ ﻤﺴﺎﺤﺔ ﻤﻘﻁﻊ ﺍﻟﻤﺠﺭﻯ.‬

               ‫ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ )‪:(Pressure Head‬‬
          ‫‪10 4 P‬‬
‫ﻭﻭﺤﺩﺘﻬﺎ‬          ‫ﻭﻴﻌﺒﺭ ﻋﻨﻬﺎ ﻓﻲ ﺼﻭﺭﺓ ‪ Head‬ﻭﺘﺴﺎﻭﻯ‬
            ‫‪w‬‬
‫ﺍﻟﻤﺘﺭ ﺤﻴﺙ ﺃﻥ ‪ P‬ﺍﻟﻀﻐﻁ ﺒﺎﻟﻜﺠﻡ/ﺴﻡ٢، ‪ w‬ﺍﻟـﻭﺯﻥ ﺍﻟﻨـﻭﻋﻰ‬
                                     ‫ﻟﻠﺴﺎﺌل ﺒﺎﻟﻜﺠﻡ/ﻤﺘﺭ٣.‬

              ‫ﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ )‪:(Elevation Head‬‬
‫ﻭﻴﻌﺒﺭ ﻋﻨﻬﺎ ﺒﺎﻹﺭﺘﻔﺎﻉ ‪ Z‬ﻋـﻥ ﻤﺴـﺘﻭﻯ ﻗﻴﺎﺴـﻲ ﻤﻌـﻴﻥ‬
‫‪ Datum Plane‬ﻭﻋﺎﺩﺓ ﻴﻜﻭﻥ ﻤﺴﺘﻭﻯ ﺴﻁﺢ ﺍﻟﺒﺤﺭ ﻭﻭﺤﺩﺘﻬﺎ‬
                                                  ‫ﺍﻟﻤﺘﺭ.‬




                       ‫- ٧١ -‬
‫ﻨﻅﺭﻴﺔ ﺒﺭﻨﻭﻟﻠﻰ )‪:(Bernoulli's Equation‬‬
‫ﻨﻅﺭﻴﺔ ﺒﺭﻨﻭﻟﻠﻰ ﻟﻠﻤﻭﺍﺌﻊ ﺍﻟﻐﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل‬
‫ﺘﻨﺹ ﻋﻠﻰ ﺃﻨﻪ ﻓﻲ ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻤﺴﺘﻘﺭ ‪ Steady Flow‬ﺒـﺩﻭﻥ‬
‫ﻓﻭﺍﻗﺩ )ﻤﺎﺌﻊ ﻤﺜﺎﻟﻰ( "ﺍﻟﻁﺎﻗﺔ ﻋﻨﺩ ﺃﻯ ﻨﻘﻁﺔ ﺘﺴـﺎﻭﻯ ﻤﺠﻤـﻭﻉ‬
‫ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ ﻭﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ﻭﻁﺎﻗﺔ ﺍﻟﻭﻀـﻊ ﻭﻴﻜـﻭﻥ ﻫـﺫﺍ‬
‫ﺍﻟﻤﺠﻤﻭﻉ ﺜﺎﺒﺕ ﻋﻠﻰ ﻁﻭل ﺨﻁ ﺍﻟﺴﺭﻴﺎﻥ ﻓﻲ ﺍﻟﻤﺠﺭﻯ" ﻭﻫـﺫﻩ‬
                                           ‫ﺍﻟﻁﺎﻗﺔ ﺘﺴﺎﻭﻯ‬
                         ‫4‬      ‫2‬
                       ‫‪10 P V‬‬
                  ‫=‪H‬‬       ‫+‬    ‫‪+z‬‬
                         ‫‪w‬‬   ‫‪2g‬‬

‫ﻭﻋﻨﺩ ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻤﺴﺘﻘﺭ ﻟﻠﻤﺎﺌﻊ ﺍﻟﻤﺜﺎﻟﻰ ﻴﻤﻜـﻥ ﻟﻠﻁﺎﻗـﺔ ﺃﻥ‬
‫ﺘﺘﻐﻴﺭ ﻤﻥ ﺼﻭﺭﺓ ﻷﺨﺭﻯ ﻓﺈﺫﺍ ﺯﺍﺩﺕ ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ ﺇﻨﺨﻔﻀـﺕ‬
‫ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ﺃﻭ ﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ ﻭﺴﻭﻑ ﻨﻭﻀﺢ ﺘﻁﺒﻴﻘﺎﺕ ﻨﻅﺭﻴﺔ‬
‫ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺒﻌﺽ ﺤﺎﻻﺕ ﺍﻟﺴﺭﻴﺎﻥ ﻓﻲ ﺃﺠﻬﺯﺓ ﻗﻴﺎﺱ ﻤﻌـﺩل‬
                                       ‫ﺍﻟﺴﺭﻴﺎﻥ )ﺍﻟﻜﻤﻴﺔ(.‬




                       ‫- ٨١ -‬
‫١- ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ )‪:(Orifice Meter‬‬




            ‫ﺸﻜل )٥(‬




            ‫- ٩١ -‬
‫ﻴﺘﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻤﻘﻴﺎﺱ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ D‬ﻴﻜـﻭﻥ‬
‫ﺃﻜﺒﺭ ﻤﻥ ٥ﺴﻡ ﻭﻤﺭﻜﺏ ﺒﻬﺎ ﻗﺭﺹ ﺒﻪ ﻓﺘﺤﺔ ﻗﻁﺭﻫﺎ ‪ d‬ﺃﺼـﻐﺭ‬
‫ﻤﻥ ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒﺔ ﻭﻻ ﻴﻘل ﻋﻥ ٦ﻤﻡ ﻜﻤﺎ ﺒﺎﻟﺸﻜل )٥( ﺒﺤﻴـﺙ‬
‫ﻓﻲ ﺤـﺩﻭﺩ ٢,٠ – ٨,٠ ﻭﻻ ﺘﺯﻴـﺩ‬              ‫ﺘﻜﻭﻥ ﻨﺴﺒﺔ ﺍﻷﻗﻁﺎﺭ‬
                                       ‫‪d‬‬
                                       ‫‪D‬‬
                                       ‫2‬

‫ﻨﺴﺒﺔ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁﻊ ⎞ ⎛ ﻋـﻥ ٧,٠، ﺒﺘﻁﺒﻴـﻕ ﻤﻌﺎﺩﻟـﺔ‬
                          ‫‪d‬‬
                         ‫⎟ ⎜‬
                                 ‫⎠‪⎝D‬‬
          ‫ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺍﻟﻨﻘﻁﺘﻴﻥ )١(، )٢( ﻭﺇﻋﺘﺒﺎﺭ ﺍﻟﻤﺎﺌﻊ ﻤﺜﺎﻟﻴﺎ‬
          ‫ﹰ‬
   ‫ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ)١(= ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ)٢(= ﺜﺎﺒﺕ‬
‫2‪10 4 P‬‬     ‫22‪V‬‬        ‫21‪10 4 P1 V‬‬
          ‫+‬     ‫= 2‪+ Z‬‬        ‫+‬    ‫1‪+ Z‬‬
   ‫‪w‬‬        ‫‪2g‬‬            ‫‪w‬‬     ‫‪2g‬‬

‫ﻤﻊ ﺃﺨﺫ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻘﻴﺎﺴﻰ ﻫﻭ ﻤﺤـﻭﺭ ﺍﻷﻨﺒﻭﺒـﺔ ﻭﺇﻫﻤـﺎل‬
                       ‫ﺍﻟﺴﺭﻋﺔ ١‪ V‬ﺒﺈﻋﺘﺒﺎﺭﻫﺎ ﺃﻗل ﺒﻜﺜﻴﺭ ﻤﻥ ٢‪V‬‬
‫) 2 ‪V22 10 4 ( p1 − p‬‬
   ‫=‬                  ‫‪= H1 − H 2 = h‬‬
‫‪2g‬‬          ‫‪w‬‬
          ‫‪V 2 = 2 gh‬‬

‫ﻭﺇﺫﺍ ﺘﻜﻠﻤﻨﺎ ﻋﻥ ﺘﺄﺜﻴﺭ ﺍﻟﻠﺯﻭﺠﺔ ﻴﺘﺒﻴﻥ ﺃﻨﻪ ﻋﻨﺩ ﺴﺭﻴﺎﻥ ﺍﻟﻤﺎﺌﻊ‬
‫ﻴﻀﻴﻊ ﺠﺯﺀ ﻤﻥ ﺍﻟﻁﺎﻗﺔ ﻋﻥ ﻁﺭﻴﻕ ﺍﻹﺤﺘﻜـﺎﻙ ﺍﻟﻨﺎﺸـﺊ ﻤـﻥ‬
‫ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺃﻯ ﺃﻨﻪ ﺇﺫﺍ ﺘﻡ ﻗﻴﺎﺱ ﺍﻟﺴﺭﻋﺔ ٢‪ V‬ﻟﻭﺠﺩﻨﺎ ﺃﻨﻬـﺎ‬
‫ﻷﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ )٢( ﺘﻜﻭﻥ ﺃﻗـل‬         ‫ﺃﻗل ﻤﻥ ‪2 gh‬‬

                           ‫- ٠٢ -‬
‫ﻤﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ )١( ﻨﺘﻴﺠﺔ ﻓﻘﺩ ﺠﺯﺀ ﻤﻨﻬﺎ ﺒﺈﺤﺘﻜﺎﻙ‬
‫ﺍﻟﻤﺎﺌﻊ ﻤﻊ ﺠﺩﺭﺍﻥ ﺍﻟﻤﻘﻴﺎﺱ ﻋﻨﺩ ﺨﺭﻭﺠﻪ ﻤﻥ ﺍﻟﻔﺘﺤـﺔ، ﺤﻴـﺙ‬
‫ﻴﻨﺘﻘل ﺍﻟﺴﺎﺌل ﻤﻥ ﻨﻘﻁﺔ ﺇﻟﻰ ﺃﺨﺭﻯ ﻨﺘﻴﺠﺔ ﻓﺭﻕ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴـﺔ‬
                                                    ‫ﺒﻴﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ‬
‫ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﺍﻟﺴﺭﻋﺔ ٢‪ V‬ﺘﺴﺎﻭﻯ ‪ K V 2 gh‬ﺤﻴـﺙ ‪Kv‬‬
‫ﻴﺴﻤﻰ ﻤﻌﺎﻤل ﺍﻟﺴﺭﻋﺔ ﻭﻫﻭ ﺃﻗل ﻤﻥ ١ ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌـﺩل‬
‫ﺍﻟﺴﺭﻴﺎﻥ )ﺍﻟﻜﻤﻴﺔ( ‪ Q‬ﺍﻟﻤﺎﺭ ﺨﻼل ﺍﻟﻔﺘﺤﺔ ﻤﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ‬
‫٢‪ Q = A٢V‬ﺤﻴﺙ ﺃﻥ ﺍﻟﺴﺭﻋﺔ ﺘﻜﻭﻥ ﻋﻤﻭﺩﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺴـﺎﺤﺔ‬
‫ﻋﻨﺩ ﺍﻹﻨﻜﻤﺎﺵ ﺃﻯ ﻋﻨﺩ ﺍﻟﻨﻘﻁـﺔ )٢( ﻭﻟـﻴﺱ ﻋﻨـﺩ ﺍﻟﻔﺘﺤـﺔ‬
‫‪ Orifice‬ﺫﺍﺘﻬﺎ ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﻤﺴﺎﺤﺔ ﻤﻘﻁﻊ ﺍﻹﻨﻜﻤﺎﺵ ٢‪ A‬ﺃﻗل‬
                            ‫‪π‬‬
                                ‫ﻤﻥ ﻤﺴﺎﺤﺔ ﻤﻘﻁﻊ ﺍﻟﻔﺘﺤﺔ ﻨﻔﺴﻬﺎ 2 ‪d‬‬
                            ‫4‬
                   ‫‪π‬‬
        ‫‪A2 = K C‬‬       ‫2‪d‬‬
                   ‫4‬

‫ﺤﻴﺙ ﺃﻥ ‪ Kc‬ﻴﺴﻤﻰ ﻤﻌﺎﻤل ﺇﻨﻜﻤﺎﺵ ﻤﻘﻁﻊ ﺍﻟﺴﺭﻴﺎﻥ ﻭﻫـﻭ‬
    ‫ﺃﻗل ﻤﻥ ١ ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ ﺨﻼل ﺍﻟﻔﺘﺤﺔ ﺘﺴﺎﻭﻯ‬
                ‫‪π‬‬                           ‫‪π‬‬
       ‫‪Q = KC‬‬          ‫‪d 2 K V 2 gh = K d‬‬       ‫‪d 2 2 gh‬‬
                   ‫4‬                        ‫4‬
       ‫)١(‬


                                ‫- ١٢ -‬
‫ﺤﻴﺙ ﺃﻥ ‪ Kd‬ﻫﻭ ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ﻭﻴﺴﺎﻭﻯ ‪ KvKc‬ﻭﻴﻜﻭﻥ‬
‫ﺃﻗل ﻤﻥ ١ ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻤـﻥ ﺍﻟﺘﺠـﺎﺭﺏ‬
‫ﺍﻟﻤﻌﻤﻠﻴﺔ ﻭﻟﺘﺴﻬﻴل ﺍﻟﺤﺴﺎﺒﺎﺕ ﻴﻤﻜﻥ ﺇﻋﺘﺒﺎﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻬﺫﺍ‬
‫ﺍﻟﻤﻌﺎﻤل ﺘﺴﺎﻭﻯ ٦٩٥,٠، ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻴﺘﻡ ﻗﻴـﺎﺱ ﺍﻟﻜﻤﻴـﺔ‬
‫ﺒﻤﻌﺭﻓﺔ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺒﻴﻥ ﻗﺒل ﻭﺒﻌﺩ ﺍﻟﻔﺘﺤﺔ ﻭﻴﺘـﺭﺍﻭﺡ ﻀـﻐﻁ‬
‫ﺍﻟﻨﻔﺙ ‪ Jet‬ﺍﻟﺨﺎﺭﺝ ﻤﻥ ﺍﻟﻔﺘﺤﺔ ﺒﻴﻥ ﺃﻗل ﻗﻴﻤﺔ ﻟﻪ ﻋﻨﺩ ﺍﻹﻨﻜﻤﺎﺵ‬
‫ﻭﺃﻗﺼﻰ ﻗﻴﻤﺔ ﻟﻪ ﺒﻌﺩ ﺤﻭﺍﻟﻰ ٤ ﺃﻭ ٥ ﺃﻤﺜﺎل ﺍﻟﻘﻁـﺭ ‪ D‬ﺒﻌـﺩ‬
                                   ‫ﺍﻟﻔﺘﺤﺔ ﻓﻲ ﺇﺘﺠﺎﻩ ﺍﻟﺴﺭﻴﺎﻥ.‬
‫ﻭﺍﻟﻌﻴﺏ ﺍﻷﺴﺎﺴﻰ ﻟﻠﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ ﺒﺎﻟﻤﻘﺎﺭﻨﺔ ﺒﺎﻟﻤﻘﻴﺎﺱ ﺫﻭ‬
‫ﺍﻟﻔﻭﻫﺔ ﺃﻭ ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﻫﻭ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ ﻜﺒﻴـﺭ ﻭﻤـﻥ‬
‫ﻨﺎﺤﻴﺔ ﺃﺨﺭﻯ ﻓﺈﻨﻪ ﻏﻴﺭ ﻤﺭﺘﻔﻊ ﺍﻟﺜﻤﻥ ﻭﺒﺈﻤﻜﺎﻨﻪ ﻗﻴـﺎﺱ ﺍﻟﻜﻤﻴـﺔ‬
‫ﺒﺩﻗﺔ، ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻟﺤﺴﺎﺏ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘـﺎﺱ ﻋﺒـﺭ‬
‫ﺍﻟﻔﺘﺤﺔ ‪ Orifice‬ﻟﺨﻁ ﺃﻨﺎﺒﻴﺏ ﻗﻁﺭﻩ ٢١ ﺒﻭﺼﺔ ﻭﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ‬
                       ‫ﺤﻭﺍﻟﻰ ٠٠٤ ﻤﺘﺭ ﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ :‬
‫ﻨﻔﺘﺭﺽ ﺃﻥ ﻗﻁﺭ ﺍﻟﻔﺘﺤﺔ ﻴﺴﺎﻭﻯ ٥٧٦,٠ ﻗﻁـﺭ ﺍﻟﺨـﻁ ﺃﻯ‬
‫ﻴﺴﺎﻭﻯ ٨ ﺒﻭﺼﺔ، ﺒﺘﻁﺒﻴﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺭﻗﻡ )١( ﻭﺇﻋﺘﺒـﺎﺭ = ‪Kd‬‬
                              ‫‪π‬‬
                     ‫‪Q = Kd‬‬       ‫‪d 2 2 gh‬‬         ‫٦٩٥,٠‬
                              ‫4‬



                         ‫- ٢٢ -‬
‫⎞ 45.2 × 8 ⎛ ‪π‬‬
                                ‫2‬

                                    ‫٦٨٦,١ = ‪2 × 9.8h , h‬‬
    ‫004‬
        ‫⎜ 695.0 =‬           ‫⎟‬
   ‫0063‬        ‫⎠ 001 ⎝ 4‬
‫‪mt‬‬
‫ﻭﺒﻔﺭﺽ ﺃﻥ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺯﻴﺕ ﻜﺜﺎﻓﺘﻪ ٢٨٨,٠ ﺠﻡ/ ﺴﻡ٣‬
              ‫ﻴﻜﻭﻥ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘﺎﺱ ﻋﺒﺭ ﺍﻟﻔﺘﺤﺔ ﻴﺴﺎﻭﻯ‬
                      ‫288.0‬
       ‫× 686.1 = ‪∆P‬‬         ‫2 ‪= 0.148 kg / cm‬‬
                       ‫01‬


‫ﻭﻋﻨﺩ ﺇﺨﺘﻴﺎﺭ ﻤﻘﻴﺎﺱ ﺍﻟﻔﺘﺤﺔ ﻴﺠﺏ ﻤﺭﺍﻋﺎﺓ ﺍﻟﺤـﺩ ﺍﻷﻗﺼـﻰ‬
‫ﻟﻠﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻟﻠﻀﻐﻁ ﻋﺒﺭ ﺍﻟﻤﻘﻴﺎﺱ ‪ Head loss‬ﺤﻴﺙ ﻴﺠﺏ ﺃﻥ‬
‫ﻴﻜﻭﻥ ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻟﻠﻀﻐﻁ ﺃﻗل ﻤﺎ ﻴﻤﻜﻥ ﻭﻴﻨﺒﻐﻰ ﺃﻻ ﺘﺼل ﻗﻴﻤﺔ‬
‫ﻫﺫﺍ ﺍﻟﻔﺎﻗﺩ ﺇﻟﻰ ٥٢,٠ ﻜﺠﻡ/ﺴﻡ٢ ﺒﺄﻯ ﺤﺎل ﻤـﻥ ﺍﻷﺤـﻭﺍل ﻷﻥ‬
‫ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺤﺩﻭﺙ ﻓﻘﺩ ﻜﺒﻴﺭ ﻨﺴﺒﻴﺎ ﻓﻲ ﻁﺎﻗﺔ ﺍﻟﺴﺎﺌل ﻤﻘﺎﺒل ﻗﻴﺎﺱ‬
                          ‫ﹰ‬
                                                ‫ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ.‬
‫ﻤﻠﺤﻭﻅﺔ: ﻴﻤﻜﻥ ﺘﻁﺒﻴﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺭﻗﻡ )١( ﻓﻲ ﺤﺎﻟﺔ ﻗﻴـﺎﺱ‬
‫ﺍﻟﻜﻤﻴﺔ ﻟﻠﻤﻭﺍﺌﻊ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻼﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﻐﺎﺯﺍﺕ ﺒﺸﺭﻁ ﺃﻻ ﺘﺯﻴﺩ‬
‫ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﺍﻟﻐﺎﺯ ﻋﻥ ٠٠١ ﻤﺘﺭ ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ ﺤﻴﺙ ﺃﻨﻪ ﻋﻨـﺩ‬
‫ﻫﺫﻩ ﺍﻟﺴﺭﻋﺔ ﺘﺘﻐﻴﺭ ﻜﺜﺎﻓﺔ ﺍﻟﻐﺎﺯ ﺘﻐﻴﺭ ﻁﻔﻴﻑ ﺠﺩﺍ ﺃﻯ ﺃﻨﻪ ﻴﻤﻜﻥ‬
            ‫ﹰ‬
‫ﺇﻫﻤﺎل ﺘﺄﺜﻴﺭ ﺇﻨﻀﻐﺎﻁﻴﺔ ﺍﻟﻐﺎﺯ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻭﺇﻋﺘﺒﺎﺭ ﺍﻟﻐـﺎﺯ‬
                  ‫ﻜﻤﺎﺌﻊ ﻏﻴﺭ ﻗﺎﺒل ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل.‬
                        ‫- ٣٢ -‬
‫ﺸﻜل )٦(‬




‫- ٤٢ -‬
‫٢- ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﻭﻫﺔ)‪:(Flow-Nozzle Meter‬‬
‫ﻴﺘﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻤﻘﻴﺎﺱ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ D‬ﻴﻜـﻭﻥ‬
‫ﺃﻜﺒﺭ ﻤﻥ ٥ﺴﻡ ﻭﻤﺭﻜﺏ ﺩﺍﺨﻠﻬﺎ ﺃﻨﺒﻭﺒﺔ ﻗﺼﻴﺭﺓ ﻤﺘﻐﻴﺭﺓ ﺍﻟﻤﻘﻁـﻊ‬
‫ﺒﺈﻨﺘﻅﺎﻡ ﻭﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ d‬ﻜﻤﺎ ﺒﺎﻟﺸﻜل )٦( ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻨﺴﺒﺔ‬
                                                ‫2‬

‫⎞ ⎛ ﻓﻲ ﺤﺩﻭﺩ ٢,٠ ﺇﻟﻰ ٥٥,٠، ﺒﺘﻁﺒﻴـﻕ‬                   ‫ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁﻊ‬
                               ‫‪d‬‬
                              ‫⎟ ⎜‬
                              ‫⎠‪⎝D‬‬
‫ﻤﻌﺎﺩﻟﺔ ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺍﻟﻨﻘﻁﺘﻴﻥ )١(، )٢( ﻤﻊ ﻭﻀـﻊ ﺘـﺄﺜﻴﺭ‬
                                             ‫ﺍﻟﻠﺯﻭﺠﺔ ﻓﻲ ﺍﻹﻋﺘﺒﺎﺭ.‬
       ‫21‪10 4 P1 V‬‬        ‫22‪10 4 P2 V‬‬
              ‫+‬    ‫= 1‪+ Z‬‬        ‫+‬    ‫‪+ Z2 + hf‬‬
         ‫‪w‬‬      ‫‪2g‬‬          ‫‪w‬‬      ‫‪2g‬‬

‫ﺤﻴﺙ ﺃﻥ ‪ hf‬ﻫﻭ ﺍﻟﻔﺎﻗﺩ ﺒﺎﻹﺤﺘﻜﺎﻙ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺘـﻴﻥ )١(، )٢(‬
‫ﻤـﻊ ﺇﻋﺘﺒـﺎﺭ ﺍﻟﻤﺴـﺘﻭﻯ ﺍﻟﻘﻴﺎﺴـﻰ ﻫـﻭ ﻤﺤـﻭﺭ ﺍﻷﻨﺒﻭﺒـﺔ‬
 ‫ـ‬         ‫ـ‬    ‫ـ ـ‬            ‫ـ‬       ‫ـ‬      ‫ـ‬
                       ‫22‪10 4 P1 V12 10 4 P2 V‬‬
                              ‫+‬    ‫=‬      ‫+‬    ‫‪+ hf‬‬
                         ‫‪w‬‬      ‫‪2g‬‬   ‫‪w‬‬      ‫‪2g‬‬

‫ﺒﺈﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ ٢‪ A١V١=A٢V‬ﻭﺇﺩﺨﺎل ﻤﻌﺎﻤل‬
                ‫ﺍﻟﺴﺭﻋﺔ ‪ KV‬ﻟﻴﺤل ﻤﺤل ﺍﻟﻔﺎﻗﺩ ﺒﺎﻻﺤﺘﻜﺎﻙ ‪hf‬‬
       ‫) ‪10 4 P1 (V2 / K V‬‬                  ‫) ‪10 4 P2 (V2 / K V‬‬
                                         ‫2‬
                                 ‫2‪⎛ A‬‬   ‫⎞‬
                             ‫2‬                                    ‫2‬

              ‫+‬                  ‫⎜‬
                                 ‫‪⎜A‬‬     ‫= ⎟‬
                                        ‫⎟‬          ‫+‬
         ‫‪w‬‬         ‫‪2g‬‬            ‫1 ⎝‬    ‫⎠‬     ‫‪w‬‬         ‫‪2g‬‬



                       ‫- ٥٢ -‬
‫) 2‪10 4 (P1 − P‬‬    ‫⎤ ⎞ 2‪V22 ⎡ ⎛ A‬‬
                                          ‫2‬

                       ‫=‬         ‫‪⎢1 − ⎜ ⎟ ⎥ = H 1 − H 2 = h‬‬
                         ‫⎥ ⎠ 1‪2 gK v2 ⎢ ⎜ A‬‬
                                        ‫⎟‬
                                 ‫⎝ ⎣‬
              ‫‪w‬‬
                                            ‫⎦‬
                             ‫‪2 gh‬‬
       ‫‪V2 = K v‬‬
                     ‫‪⎡ ⎛A‬‬           ‫⎞‬
                                        ‫2‬
                                            ‫⎤‬
                     ‫2 ⎜ − 1⎢‬
                          ‫⎜‬         ‫⎟‬
                                    ‫⎟‬       ‫⎥‬
                     ‫1‪⎢ ⎝ A‬‬
                     ‫⎣‬              ‫⎠‬       ‫⎥‬
                                            ‫⎦‬

‫ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ )ﺍﻟﻜﻤﻴﺔ( ‪ Q‬ﺍﻟﻤـﺎﺭ ﺨـﻼل‬
                                                ‫ﺍﻟﻔﻭﻫﺔ ﻤﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ‬
                         ‫‪π‬‬
       ‫= 2‪Q = A2V‬‬            ‫2 ‪d 2V‬‬
                         ‫4‬
                ‫‪π‬‬               ‫‪2 gh‬‬
       ‫. ‪= Kd‬‬       ‫2‪d‬‬
                ‫4‬        ‫⎤ 4⎞ ‪⎡ ⎛ d‬‬
                         ‫⎥ ⎟ ⎜ − 1⎢‬
                         ‫⎥ ⎠‪⎢ ⎝D‬‬
                         ‫⎣‬        ‫⎦‬

‫ﺤﻴﺙ ﺃﻥ ‪ Kd=KV‬ﻭﻫﻭ ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ﻭﻴﻜﻭﻥ ﺃﻗل ﻤﻥ‬
‫١ ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻤﻥ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻌﻤﻠﻴﺔ ﻭﻓﻲ‬
‫ﻤﻌﻅﻡ ﺍﻷﺤﻴﺎﻥ ﻟﺘﺴﻬﻴل ﺍﻟﺤﺴﺎﺒﺎﺕ ﻴﻤﻜﻥ ﺇﻋﺘﺒﺎﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ‬
‫ﻟﻬﺫﺍ ﺍﻟﻤﻌﺎﻤل ﺘﺘـﺭﺍﻭﺡ ﺒـﻴﻥ ٥٣٩,٠ ﻟﻸﻗﻁـﺎﺭ ﻭﺍﻟﺴـﺭﻋﺎﺕ‬
‫ﺍﻟﺼﻐﻴﺭﺓ ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )٢( ﺇﻟﻰ ٨٨٩,٠ ﻟﻸﻗﻁﺎﺭ ﻭﺍﻟﺴـﺭﻋﺎﺕ‬
‫ﺍﻟﻜﺒﻴﺭﺓ ﻨﺴﺒﻴﺎ ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )٢( ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻴﻤﻜـﻥ ﻗﻴـﺎﺱ‬
                                              ‫ﹰ‬
‫ﺍﻟﻜﻤﻴﺔ ﺒﻤﻌﺭﻓﺔ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺒﻴﻥ ﻗﺒل ﻤﺩﺨل ﺍﻟﻔﻭﻫـﺔ ﻭﻋﻨـﺩ‬
                                                 ‫ﻤﺨﺭﺠﻬﺎ.‬
                               ‫- ٦٢ -‬
‫ﻭﺍﻟﺭﺴﻡ ﺒﺎﻟﺸﻜل )٦( ﻴﻭﻀﺢ ﺘﻐﻴﺭ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻤﻊ ﺍﻟﻁﻭل‬
‫ﻟﻜﻤﻴﺔ ﻤﻌﻴﻨﺔ ﺨﻼل ﺍﻟﻔﻭﻫﺔ ﺒﺈﻋﺘﺒـﺎﺭ ﺃﻥ ﺍﻟﻤﺴـﺘﻭﻯ ﺍﻟﻘﻴﺎﺴـﻰ‬
‫ﺍﻟﻤﻨﺎﺴﺏ ﻫﻭ ﻤﺤﻭﺭ ﺍﻟﻔﻭﻫﺔ ﻭﻨﺤﺩﺩ ﺍﻷﻁﻭﺍل ﻋﻠﻴﻪ ﺃﻤﺎ ﺍﻟﻤﺤـﻭﺭ‬
‫ﺍﻟﺭﺃﺴﻰ ﻓﻴﻤﺜل ﺼﻭﺭ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻓﻌﻨﺩ ﺍﻟﻨﻘﻁـﺔ )١( ﻨﺒـﺩﺃ‬
       ‫1‪10 4 P‬‬
‫ﻭﻨﻀـﻴﻑ‬          ‫ﺒﺘﻭﻗﻴﻊ ﻤﺴﺎﻓﺔ ﺭﺃﺴﻴﺔ ﺘﻤﺜل ﻁﺎﻗﺔ ﺍﻟﻀـﻐﻁ‬
         ‫‪w‬‬
               ‫2‪V‬‬
‫ﺇﻟﻴﻬﺎ ﻤﺴﺎﻓﺔ ﺃﺨﺭﻯ ﺘﻤﺜل ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ 1 ﻓﻨﺤﺼـل ﻋﻠـﻰ‬
               ‫‪2g‬‬
‫ﻨﻘﻁﺔ ﺘﻤﺜل ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ )١( ﻭﻨﻜـﺭﺭ ﺫﻟـﻙ ﻋﻨـﺩ‬
‫ﺍﻟﻨﻘﻁﺔ )٢( ﻓﻨﺤﺼل ﻋﻠﻰ ﻨﻘﻁﺔ ﺃﺨﺭﻯ ﺘﻤﺜل ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ‬
‫ﻨﻘﻁﺔ )٢( ﻭﻨﻜﺭﺭ ﻫﺫﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻋﻨﺩ ﺃﻭﻀﺎﻉ ﻤﺨﺘﻠﻔﺔ ﻋﻠﻰ ﻁﻭل‬
‫ﺍﻟﻤﻘﻴﺎﺱ ﻭﺫﻟﻙ ﺒﻤﻘﻴﺎﺱ ﺭﺴﻡ ﻤﻌﻴﻥ ﻭﺒﺘﻭﺼـﻴل ﻫـﺫﻩ ﺍﻟـﻨﻘﻁ‬
‫ﻨﺤﺼل ﻋﻠﻰ ﺨﻁ ﻴﻤﺜل ﺘﻐﻴﺭ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴـﺔ ﺨـﻼل ﺍﻟﻔﻭﻫـﺔ‬
‫ﻭﻴﻁﻠﻕ ﻋﻠﻴﻪ ﺇﻨﺤـﺩﺍﺭ ﺍﻟﻁﺎﻗـﺔ ‪(E.G) Energy Gradient‬‬
‫ﻭﺘﻜﻭﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻤﺨﺭﺝ ﺍﻟﻔﻭﻫﺔ ﺃﻗل ﻤﻨﻬﺎ ﻋﻨﺩ ﻤﺩﺨﻠﻬﺎ‬
‫ﺒﻤﻘﺩﺍﺭ ‪ hf‬ﻭﺇﺫﺍ ﺘﻡ ﺘﻭﺼﻴل ﻨﻘﻁ ﺘﻭﻗﻴﻊ ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ﻨﺤﺼـل‬
‫ﻋﻠﻰ ﺨﻁ ﻴﻤﺜل ﺘﻐﻴﺭ ﺍﻟﻀﻐﻁ ﺨﻼل ﺍﻟﻔﻭﻫـﺔ ﻭﻴﻁﻠـﻕ ﻋﻠﻴـﻪ‬
‫ﺇﻨﺤﺩﺍﺭ ﺍﻟﻀﻐﻁ ‪ (H.G) Hydraulic Gradient‬ﻭﻴﺘﻀﺢ ﺃﻥ‬
‫ﺇﻨﺤﺩﺍﺭ ﺍﻟﻀﻐﻁ ﻴﻨﺨﻔﺽ ﻋﻥ ﺇﻨﺤﺩﺍﺭ ﺍﻟﻁﺎﻗﺔ ﺒﻘﺩﺭ ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ‬


                       ‫- ٧٢ -‬
‫2‪V‬‬
‫ﻋﻨﺩ ﻫﺫﻩ ﺍﻟﻨﻘﻁﺔ ﻭﻨﻼﺤﻅ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ﻋﺒﺭ ﺍﻟﻤﻘﻴـﺎﺱ‬
                                                   ‫‪2g‬‬
‫ﻴﺴﺎﻭﻯ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ ﻋﺒﺭ ﺍﻟﻤﻘﻴﺎﺱ ﻭﺫﻟﻙ ﻟﺘﺴـﺎﻭﻯ ﺍﻟﺴـﺭﻋﺔ‬
‫ﻭﻜﺫﻟﻙ ﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ ﻋﻨﺩ ﻤﺩﺨل ﻭﻤﺨﺭﺝ ﺍﻟﻤﻘﻴـﺎﺱ ﻭﻴﺴـﺒﺏ‬
‫ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﻭﻫﺔ ﻓﺎﻗﺩ ﻀﻐﻁ ﺃﻜﺒﺭ ﻤﻥ ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﻭﺃﻗل‬
                                 ‫ﻤﻥ ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ.‬

          ‫٣- ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ‪:Venturi Meter‬‬




                      ‫ﺸﻜل )٧(‬

                      ‫- ٨٢ -‬
‫ﻴﺘﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻤﻘﻴﺎﺱ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ D‬ﻴﻜـﻭﻥ‬
‫ﺃﻜﺒﺭ ﻤﻥ ٥ ﺴﻡ ﻭﻴﻅل ﻴﺼﻐﺭ ﺤﺘﻰ ﻴﺼل ﺇﻟﻰ ﺍﻟﻘﻁـﺭ ‪ d‬ﺜـﻡ‬
‫ﻴﻜﺒﺭ ﺍﻟﻘﻁﺭ ﺘﺩﺭﻴﺠﻴﺎ ﻟﻴﺼل ﺇﻟﻰ ﻗﻴﻤﺘﻪ ﺍﻷﺼﻠﻴﺔ ﻜﻤـﺎ ﺒﺎﻟﺸـﻜل‬
                                   ‫ﹰ‬
                    ‫2‬

‫)٧( ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻨﺴﺒﺔ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁـﻊ ⎞ ⎛ ﻓـﻲ ﺤـﺩﻭﺩ‬
           ‫‪d‬‬
          ‫⎟ ⎜‬
          ‫⎠‪⎝D‬‬
                                      ‫٥٠,٠ ﺇﻟﻰ ٥٥,٠.‬
‫ﺒﺘﻁﺒﻴﻕ ﻤﻌﺎﺩﻟﺔ ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺍﻟﻨﻘﻁﺘﻴﻥ )١(، )٢( ﻤﻊ ﻭﻀﻊ‬
‫ﺘﺄﺜﻴﺭ ﺍﻟﻠﺯﻭﺠﺔ ﻓﻲ ﺍﻹﻋﺘﺒﺎﺭ ﻭﺇﺴـﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟـﺔ ﺍﻹﺴـﺘﻤﺭﺍﺭ‬
‫ﻭﺇﺩﺨﺎل ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ‪ Kd‬ﻟﻴﺤل ﻤﺤل ﺍﻟﻔﺎﻗﺩ ﺒﺎﻹﺤﺘﻜﺎﻙ ‪hf‬‬
‫ﻜﻤﺎ ﺘﻡ ﻟﻠﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﻭﻫﺔ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﻜﻤﻴـﺔ ‪ Q‬ﺍﻟﻤـﺎﺭﺓ‬
                                      ‫ﺨﻼل ﺍﻟﻔﻨﺸﻭﺭﻯ‬
                ‫‪π‬‬           ‫‪2 gh‬‬
       ‫‪Q = Kd‬‬       ‫2‪d‬‬
                ‫4‬        ‫⎤ 4⎞ ‪⎡ ⎛ d‬‬
                         ‫⎥ ⎟ ⎜ − 1⎢‬
                         ‫⎥ ⎠‪⎢ ⎝D‬‬
                         ‫⎣‬        ‫⎦‬

‫ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻴﺘﻡ ﻗﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﺒﻤﻌﺭﻓﺔ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺒـﻴﻥ‬
‫ﻗﺒل ﺒﺩﺍﻴﺔ ﺘﺼﻐﻴﺭ ﺍﻟﻘﻁﺭ ﻭﻋﻨﺩ ﺃﻗل ﻗﻁﺭ ﻭﻴﻤﻜﻥ ﺭﺴﻡ ﺇﻨﺤـﺩﺍﺭ‬
‫ﺍﻟﻁﺎﻗﺔ ﻭﺍﻟﻀﻐﻁ ﻭﻴﺘﻀﺢ ﻤﻨﻪ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ‪ hf‬ﺘﻘﺎﺒل ﺇﺴﺘﺨﺩﺍﻡ‬
‫ﺍﻟﻤﻌﺎﻤل ‪ ،kd‬ﻭﻴﺴﺒﺏ ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﻓﺎﻗﺩ ﻀﻐﻁ ﺼﻐﻴﺭ ﺠﺩﺍ‬
‫ﹰ‬
‫ﻭﻴﺘﺭﺍﻭﺡ ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ﻟﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﺒﻴﻥ ﻗﻴﻤﺔ ﺘﻘﺭﻴﺒﻴﺔ‬
‫ﻗﺩﺭﻫﺎ ٥٣٩,٠ ﻟﻸﻗﻁﺎﺭ ﻭﺍﻟﺴﺭﻋﺎﺕ ﺍﻟﺼﻐﻴﺭﺓ ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )٢(‬
                         ‫- ٩٢ -‬
‫ﺇﻟﻰ ٨٨٩,٠ ﻟﻸﻗﻁﺎﺭ ﻭﺍﻟﺴﺭﻋﺎﺕ ﺍﻟﻜﺒﻴﺭﺓ ﻨﺴﺒﻴﺎ ﻋﻨﺩ ﺍﻟﻤﻘﻁـﻊ‬
                     ‫ﹰ‬
         ‫)٢( ﻭﻟﺘﺴﻬﻴل ﺍﻟﺤﺴﺎﺒﺎﺕ ﻴﻤﻜﻥ ﺇﻋﺘﺒﺎﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴـﺔ ﻟﻬـﺫﺍ‬
         ‫ﺍﻟﻤﻌﺎﻤـل ﺘﺴـﺎﻭﻯ ٨٩,٠ – ٩٩,٠ ﻭﺘﻜـﻭﻥ ﻗﻴﻤـﺔ ﻤﻌﺎﻤـل‬
          ‫ـ‬      ‫ـ‬      ‫ـ‬                   ‫ـ‬    ‫ـ‬
                                          ‫ﺍﻟﺘﺼﺭﻴﻑ ﻟﻠﻬﻭﺍﺀ ﺤﻭﺍﻟﻰ ٩٩,٠‬
         ‫ﻭﺍﻟﺠﺩﻭل ﺭﻗﻡ )١( ﻴﻭﻀﺢ ﻤﻘﺎﺭﻨﺔ ﻟﻘﻴﻤـﺔ ﺍﻟﻔﺎﻗـﺩ ﺍﻟﻜﻠـﻰ‬
         ‫ﻟﻠﻀﻐﻁ ﻋﺒﺭ ﺍﻟﻤﻘﻴﺎﺱ ﻭﺫﻟﻙ ﻟﻸﻨﻭﺍﻉ ﺍﻟﺜﻼﺜﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻷﺠﻬـﺯﺓ‬
         ‫ﻗﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﻭﺫﻟﻙ ﺒﺈﻋﺘﺒﺎﺭ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘﺎﺱ ﻤﻘﺩﺍﺭ ﺜﺎﺒـﺕ‬
                                ‫ﻭﻴﺴﺎﻭﻯ ٠٣ﺴﻡ ﺯﺌﺒﻕ )٤,٠ﻜﺠﻡ/ﺴﻡ٢(.‬
‫ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ‬                                 ‫ﻓﺭﻕ ﺍﻟﻀﻐﻁ‬      ‫ﻨﺴﺒﺔ‬
                 ‫ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻟﻠﻀﻐﻁ ﻋﺒﺭ‬
‫ﻟﻠﻀﻐﻁ ﻋﺒﺭ‬                                    ‫ﺍﻟﻤﻘﺎﺱ ﻋﻨﺩ‬     ‫ﺍﻷﻗﻁﺎﺭ‬      ‫ﻨﻭﻉ‬
                ‫ﺍﻟﻤﻘﻴﺎﺱ ﻜﻨﺴﺒﺔ ﻤﺌﻭﻴﺔ ﻤﻥ‬
 ‫ﺍﻟﻤﻘﻴﺎﺱ‬                                   ‫ﺍﻟﻤﺂﺨﺫ ﺍﻟﻤﻼﺌﻤﺔ‬     ‫‪d‬‬        ‫ﺍﻟﻤﻘﻴﺎﺱ‬
                  ‫ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘﺎﺱ‬                          ‫) (‬
‫)٢‪(kg/cm‬‬                                     ‫)٢‪(kg/cm‬‬         ‫‪D‬‬

 ‫٦١٢,٠‬                  ‫٤٥%‬                     ‫٤,٠‬         ‫٥٧٦,٠‬     ‫ﺫﻭ ﺍﻟﻔﺘﺤﺔ‬
                                                                        ‫‪orifice‬‬
  ‫٨١,٠‬                  ‫٥٤%‬                     ‫٤,٠‬         ‫٢٥٦,٠‬     ‫ﺫﻭ ﺍﻟﻔﻭﻫﺔ‬
                                                                         ‫-‪Flow‬‬
                                                                       ‫‪Nozzle‬‬
  ‫٤٠,٠‬                  ‫٠١%‬                     ‫٤,٠‬         ‫٥,٠-‬      ‫ـﻭﺭﻯ‬‫ﻓﻨﺸـ‬
                                                            ‫٥٧٦,٠‬     ‫‪Venturi‬‬

                                    ‫ﺠﺩﻭل )١(‬


                                     ‫- ٠٣ -‬
‫ﺃﻁﻭﺍل ﺍﻷﻨﺎﺒﻴﺏ ﻗﺒل ﺃﺠﻬﺯﺓ ﺍﻟﻘﻴﺎﺱ ﻭﺒﻌﺩﻫﺎ:‬
‫ﻋﻨﺩ ﺇﺴﺘﺨﺩﺍﻡ ﺃﺠﻬﺯﺓ ﻟﻘﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ ﻓﻲ ﺍﻷﻨﺎﺒﻴﺏ ﻴﺠﺏ‬
‫ﺃﻥ ﻴﺴﺒﻕ ﺍﻟﺠﻬﺎﺯ ﻁﻭل ﻤﺴﺘﻘﻴﻡ ﻤﻥ ﺍﻷﻨﺒﻭﺒـﺔ ‪Straight Run‬‬
‫ﻟﻀﻤﺎﻥ ﺇﻨﺘﻅﺎﻡ ﺍﻟﺴﺭﻴﺎﻥ ﻗﺒل ﺍﻟﺠﻬـﺎﺯ ﻭﺨﺎﺼـﺔ ﺇﺫﺍ ﺇﺤﺘـﻭﺕ‬
‫ﺍﻷﻨﺒﻭﺒﺔ ﻋﻠﻰ ﺘﺭﻜﻴﺒﺎﺕ ﻤﺜل ﺍﻷﻜـﻭﺍﻉ، ﺍﻟﺘﻴﻬـﺎﺕ ﻭﺍﻟﻤﺤـﺎﺒﺱ‬
‫ﻭﻜﺫﻟﻙ ﻴﺠﺏ ﺃﻥ ﻴﻠﻰ ﺍﻟﺠﻬﺎﺯ ﻁﻭل ﻤﺴﺘﻘﻴﻡ ﻤﻥ ﺍﻷﻨﺒﻭﺒﺔ ﻭﺫﻟـﻙ‬
‫ﺤﺘﻰ ﻻ ﺘﺅﺜﺭ ﺍﻟﻀﻐﻭﻁ ﺍﻟﺨﻠﻔﻴﺔ ‪ Back pressure‬ﻋﻠﻰ ﺩﻗـﺔ‬
‫ﺘﺘﺭﺍﻭﺡ ﺒـﻴﻥ‬     ‫ﺍﻟﺠﻬﺎﺯ ﻭﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻨﺴﺒﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻸﻗﻁﺎﺭ‬
              ‫‪d‬‬
              ‫‪D‬‬
‫٢٥٦,٠ – ٥٧٦,٠ ﻴﻜﻭﻥ ﺍﻟﻁﻭل ﺍﻟﻤﺴـﺘﻘﻴﻡ ﺍﻟﺘﻘﺭﻴﺒـﻰ ﻗﺒـل‬
‫ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ ‪ orifice‬ﻴﺴﺎﻭﻯ ٠٢ ﻤﺜل ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒـﺔ‬
‫)‪ (٢٠ D‬ﻭﻴﻜﻭﻥ ﺍﻟﻁﻭل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺘﻘﺭﻴﺒﻰ ﻗﺒـل ﺍﻟﻤﻘﻴـﺎﺱ ﺫﻭ‬
‫ﺍﻟﻔﻭﻫﺔ ‪ Flow-Nozzle‬ﻭﻗﺒل ﻤﻘﻴـﺎﺱ ﻓﻨﺸـﻭﺭﻯ ‪Venturi‬‬
‫ﻴﺴﺎﻭﻯ ٠٣ ﻤﺜل ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒﺔ )‪ (٣٠D‬ﻭﺫﻟﻙ ﻓﻲ ﺃﺴﻭﺃ ﺤﺎﻟـﺔ‬
‫‪ Worst Case‬ﻤﻥ ﺃﻨﻭﺍﻉ ﺍﻟﺘﺭﻜﻴﺒﺎﺕ ﻭﻓﻲ ﺃﻏﻠﺏ ﺍﻷﺤﻴﺎﻥ ﻴﻜﻭﻥ‬
‫ﺍﻟﻁﻭل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺘﻘﺭﻴﺒﻰ ﺒﻌﺩ ﺍﻟﺠﻬﺎﺯ ﻴﺴﺎﻭﻯ ﺨﻤﺴـﺔ ﺃﻤﺜـﺎل‬
       ‫ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒﺔ )‪ (٥D‬ﻭﺫﻟﻙ ﻟﻜل ﺃﺠﻬﺯﺓ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺎﺒﻘﺔ.‬




                        ‫- ١٣ -‬
‫٤- ﺃﻨﺒﻭﺒﺔ ‪:Pitot‬‬




‫ﺸﻜل )٨(‬




‫ﺸﻜل )٩(‬




‫- ٢٣ -‬
‫ﺘﺘﻜﻭﻥ ﺃﻨﺒﻭﺒﺔ ‪ Pitot‬ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻋﻠﻰ ﻫﻴﺌﺔ ﺯﺍﻭﻴـﺔ ﻗﺎﺌﻤـﺔ‬
‫ﻭﻋﻨﺩﻤﺎ ﻴﻐﻤﺭ ﺍﻟﺠﺯﺀ ﺍﻟﻤﺜﻨﻰ ﺠﺯﺌﻴﺎ ﺘﺤﺕ ﺍﻟﻤﺎﺀ ﻭﻴﻭﺠﻪ ﻤﺒﺎﺸﺭﺓ‬
                       ‫ﹰ‬
‫ﻹﺘﺠﺎﻩ ﺍﻟﺴﺭﻴﺎﻥ ‪ Flow‬ﻓﺈﻨﻪ ﻴﺒﻴﻥ ﺴﺭﻋﺔ ﺍﻟﺴـﺭﻴﺎﻥ ﺒﺎﻟﻤﺴـﺎﻓﺔ‬
‫ﺍﻟﺘﻲ ﻴﺭﺘﻔﻌﻬﺎ ﺍﻟﻤﺎﺀ ﻓﻲ ﺍﻟﺠﺯﺀ ﺍﻟﺭﺃﺴﻰ ﻤﻥ ﺍﻷﻨﺒﻭﺒﺔ ﻋﻥ ﺴﻁﺢ‬
         ‫2‪V‬‬
‫ﻜﻤﺎ ﻫﻭ‬      ‫ﺍﻟﻤﺎﺀ ﺤﻴﺙ ﺃﻥ ﻫﺫﻩ ﺍﻟﻤﺴﺎﻓﺔ ﺘﺴﺎﻭﻯ ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ‬
         ‫‪2g‬‬
                                           ‫ﺒﺎﻟﺸﻜل )٨(.‬
‫ﻭﺍﻟﺸﻜل ﺍﻟﻤﺘﻜﺎﻤل ﻟﻬﺫﻩ ﺍﻷﻨﺒﻭﺒﺔ ﻴﻌﺭﻑ ﺒﺈﺴﻡ ‪Pitot-Static‬‬
‫ﻜﻤﺎ ﺒﺎﻟﺸﻜل )٩( ﻭﻫﻰ ﺘﺘﻜﻭﻥ ﻤﻥ ﺠﺯﺌﻴﻥ ﺃﺴﺎﺴﻴﻴﻥ ﻤﻨﻔﺼـﻠﻴﻥ‬
‫ﻭﻤﺘﻭﺍﺯﻴﻴﻥ ﺃﺤﺩﻫﻡ ﻴﺒﻴﻥ ﻤﺠﻤﻭﻉ ﺍﻟﻀﻐﻁ ﺍﻟﻜﻠﻰ )ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ(‬
‫ﻭﺍﻵﺨﺭ ﻴﺒﻴﻥ ﺍﻟﻀﻐﻁ ﺍﻹﺴﺘﺎﺘﻴﻜﻰ )ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ( ﻓﻘـﻁ ﻭﻴـﺘﻡ‬
‫ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻀﻐﻁ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻰ )ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜـﺔ( ﺒﻁـﺭﺡ‬
‫ﺍﻟﻀﻐﻁ ﺍﻹﺴﺘﺎﺘﻴﻜﻰ ﻤﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻜﻠﻰ ﺤﻴﺙ ﺃﻥ ﺃﻨﺒﻭﺒﺔ -‪Pitot‬‬
‫‪ static‬ﺘﻘﻴﺱ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻜﻠﻰ ﻭﺍﻟﻀﻐﻁ ﺍﻹﺴـﺘﺎﺘﻴﻜﻰ‬
‫ﻋﻨﺩ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ﻭﺘﺴﺘﺨﺩﻡ ﺍﻟﻤﺎﻨﻭﻤﺘﺭﺍﺕ ﺒﺼﻭﺭﺓ ﺸﺎﺌﻌﺔ ﻟﻘﻴﺎﺱ‬
                                          ‫ﻫﺫﻩ ﺍﻟﻀﻐﻭﻁ.‬




                        ‫- ٣٣ -‬
‫ﻭﻴﻭﻀﺢ ﺸﻜل )٠١( ﺇﺴﺘﺨﺩﺍﻡ ﺃﻨﺒﻭﺒﺔ ‪ Pitot-Static‬ﻟﻘﻴﺎﺱ‬
‫ﺍﻟﻜﻤﻴﺔ )ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ( ﻓـﻲ ﺍﻟﻘﻨـﻭﺍﺕ ﺍﻟﻤﻔﺘﻭﺤـﺔ ﻟﻠﺴـﺭﻴﺎﻥ‬
‫ﺍﻟﻤﻨﺨﻔﺽ ﺍﻟﺴﺭﻋﺔ ﺤﻴﺙ ﺃﻨﻪ ﻴﺼﻌﺏ ﻗﻴﺎﺱ ﺇﺭﺘﻔﺎﻉ ﺍﻟﻤﺎﺀ ﻓـﻲ‬
‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﻓﻭﻕ ﺴﻁﺢ ﺍﻟﻤﺎﺀ ﺍﻟﻤﺘﺩﻓﻕ ﻭﻴﺘﻡ ﺫﻟﻙ ﺒﺘﻭﺼﻴل ﻁﺭﻓﻲ‬
‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﺒﺒﻌﺽ ﻤﻥ ﺃﻋﻠﻰ ﺒﻭﺍﺴﻁﺔ ﻭﺼﻠﺔ ﻋﻠﻰ ﺸﻜل ﺤـﺭﻑ‬
‫‪ T‬ﻭﻴﻭﺼل ﺍﻟﻁﺭﻑ ﺍﻟﺜﺎﻟﺙ ﻟﻬﺎ ﺒﺨﻁ ﻴﻤﻜﻥ ﺘﻭﻟﻴﺩ ﺨﻠﺨﻠﺔ ﺠﺯﺌﻴﺔ‬
‫ﺒﻪ ﻭﺒﻌﺩ ﺃﺨﺫ ﺍﻟﻬﻭﺍﺀ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ‪ Pitot‬ﻴﺭﺘﻔﻊ ﺍﻟﻤﺎﺀ ﻷﻋﻠﻰ ﺇﻟﻰ‬
‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﺤﺘﻰ ﺍﻹﺭﺘﻔﺎﻉ ﺍﻟﻤﻘﺘﺭﺡ ﻟﺘﺴﻬﻴل ﺍﻟﻘﺭﺍﺀﺓ ﺜﻡ ﻴﻐﻠﻕ ﺨﻁ‬
‫ﺍﻟﺨﻠﺨﻠﺔ ﻭﺘﺅﺜﺭ ﺍﻟﺨﻠﺨﻠﺔ ﺍﻟﺠﺯﺌﻴـﺔ ﺒﺎﻟﺘﺴـﺎﻭﻯ ﻋﻠـﻰ ﻁﺭﻓـﻲ‬
        ‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻟﻡ ﻴﺘﻐﻴﺭ ﻓﺭﻕ ﺍﻟـ ‪.Head‬‬




                      ‫ﺸﻜل )٠١(‬



                       ‫- ٤٣ -‬
‫ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ﻓﻲ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬
         ‫ﻴﻨﻘﺴﻡ ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ﻓﻲ ﺍﻷﻨﺎﺒﻴﺏ ﺇﻟﻰ ﻨﻭﻋﻴﻥ ﻫﻤﺎ :‬
‫١- ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻨﺘﻴﺠﺔ ﺇﺠﻬﺎﺩﺍﺕ ﺍﻟﻘﺹ ﺍﻟﻠﺯﺝ ﺩﺍﺨـل‬
          ‫ﺍﻟﺴﺎﺌل ﻭﺍﻹﻀﻁﺭﺍﺏ ﻋﻨﺩ ﺠﺩﺍﺭ ﺍﻷﻨﺒﻭﺒﺔ.‬
‫٢- ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻨﺘﻴﺠﺔ ﻭﺠﻭﺩ ﺘﻐﻴﺭ ﻓـﻲ ﺴـﺭﻋﺔ ﺃﻭ‬
‫ﺇﺘﺠﺎﻩ ﺍﻟﺴﺭﻴﺎﻥ ﻭﻨﻼﺤﻅ ﺃﻥ ﺘﻘﻠﻴل ﺍﻟﺴﺭﻋﺔ ﻴﺘﺴﺒﺏ ﻓﻲ‬
                ‫ﻓﺎﻗﺩ ﻀﻐﻁ ﺃﻋﻠﻰ ﻤﻥ ﺯﻴﺎﺩﺓ ﺍﻟﺴﺭﻋﺔ.‬

       ‫١- ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ‪:Friction Head Loss‬‬
‫ﻴﻌﺘﻤﺩ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﺍﻟﻤـﺎﺭ‬
‫ﻭﺴﺭﻋﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻭﺃﺒﻌﺎﺩ ﺍﻷﻨﺒﻭﺒﺔ ﻭﺍﻟﻤـﺎﺩﺓ ﺍﻟﻤﺼـﻨﻭﻉ ﻤﻨﻬـﺎ‬
                                      ‫ﺍﻷﻨﺒﻭﺒﺔ ﻭﻫﻭ ﻴﺴﺎﻭﻯ.‬
                ‫‪l‬‬   ‫2 ‪⎛ V 2 ⎞ 0.81057 flQ‬‬
       ‫‪hf = f‬‬       ‫⎜‬
                    ‫= ⎟ ‪⎜ 2g‬‬
                          ‫⎟‬
                ‫‪d‬‬   ‫⎝‬     ‫⎠‬     ‫5 ‪gd‬‬

‫2‪V‬‬
   ‫ﺤﻴﺙ ﺃﻥ ‪ l‬ﻁﻭل ﺍﻷﻨﺒﻭﺒﺔ، ‪ d‬ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﻸﻨﺒﻭﺒﺔ،‬
‫‪2g‬‬
                    ‫ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ، ‪ Q‬ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ ﺃﻭ ﺍﻟﻜﻤﻴﺔ‬




                          ‫- ٥٣ -‬
‫‪ f‬ﻤﻌﺎﻤل ﺍﻹﺤﺘﻜﺎﻙ ﻭﺘﻌﺘﻤﺩ ﻗﻴﻤﺘﻪ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴـﺭﻴﺎﻥ ﻓـﻲ‬
‫ﺍﻷﻨﺒﻭﺒﺔ ﺤﻴﺙ ﻴﻭﺠﺩ ﻨﻭﻋﺎﻥ ﻤﻥ ﺍﻟﺴﺭﻴﺎﻥ ﻓﻲ ﺍﻷﻨﺎﺒﻴـﺏ ﻫﻤـﺎ‬
‫ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﺭﻗﺎﺌﻘﻰ ‪ Laminar Flow‬ﻭﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻤﻀـﻁﺭﺏ‬
‫‪ Turbulent Flow‬ﻭﻟﻜﻲ ﻴﺘﻡ ﻨﻘل ﺍﻟﺴﻭﺍﺌل ﺒﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ‬
‫ﺒﺼﻭﺭﺓ ﺇﻗﺘﺼﺎﺩﻴﺔ ﺒﻤﻌﻨﻰ ﺘﺤﻘﻴﻕ ﺃﻗل ﺘﻜﻠﻔﺔ ﻜﻠﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ ﻓﺈﻥ‬
‫ﺫﻟﻙ ﻴﺴﺘﻭﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴـﺎﺕ ﺍﻟﻤﻨﻘﻭﻟـﺔ ﺒـﺎﻟﺨﻁ ﻜﺒﻴـﺭﺓ‬
‫ﻭﺒﺎﻟﺘﺎﻟﻰ ﻴﻜـﻭﻥ ﺍﻟﺴـﺭﻴﺎﻥ ﻤﻀـﻁﺭﺏ ‪Turbuleut FLow‬‬
‫ﻭﻴﺘﺤﺩﺩ ﻨﻭﻉ ﺍﻟﺴﺭﻴﺎﻥ ﻋﻥ ﻁﺭﻴﻕ ﺭﻗﻡ ﺒﺩﻭﻥ ﻭﺤـﺩﺍﺕ ﻴﺴـﻤﻰ‬
‫ﺭﻗﻡ ﺭﻴﻨﻭﻟﺩ ‪ Reynold's Number‬ﻭﻴﺭﻤﺯ ﻟﻪ ﺒـﺎﻟﺭﻤﺯ ‪RN‬‬
                                               ‫ﻭﻫﻭ ﻴﺴﺎﻭﻯ‬
               ‫)‪sp.gr × V (cm / sec) × d (cm‬‬
       ‫= ‪RN‬‬
                        ‫)‪µ ( poise‬‬
           ‫)‪25400 × V (mt / sec) × d (inch‬‬
       ‫=‬
                      ‫) ‪γ (cst‬‬

‫ﺤﻴﺙ ﺃﻥ ‪ sp.gr‬ﻫﻰ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﺴﺎﺌل ﻭﻫﻰ ﺭﻗﻡ ﺒﺩﻭﻥ‬
‫ﻭﺤﺩﺍﺕ ﻭﺘﺴﺎﻭﻯ ﻋﺩﺩﻴﺎ ﻜﺜﺎﻓﺔ ﺍﻟﺴﺎﺌل ﺒﺎﻟﺠﺭﺍﻡ/ ﺴﻨﺘﻴﻤﺘﺭ ﻤﻜﻌﺏ‬
                                   ‫ﹰ‬
           ‫‪ V‬ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﺍﻟﺴﺎﺌل ﺩﺍﺨل ﺍﻷﻨﺒﻭﺒﺔ‬
                 ‫‪ d‬ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﻸﻨﺒﻭﺒﺔ‬


                         ‫- ٦٣ -‬
‫‪ µ‬ﺃﻭ ‪ γ‬ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ )ﺍﻟﻤﻁﻠﻘﺔ( ﺃﻭ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴﺔ‬
‫ﻭﻗﺩ ﻭﺠﺩ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ ﺭﻗﻡ ﺭﻴﻨﻭﻟﺩ ﺃﻗل ﻤـﻥ ٠٠٠٢ ﻜـﺎﻥ‬
‫ﺍﻟﺴﺭﻴﺎﻥ ﺭﻗﺎﺌﻘﻰ )ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﻤﻨﺨﻔﻀﺔ ﻨﺴﺒﻴﺎ( ﻭﻓـﻲ ﻫـﺫﻩ‬
           ‫ﹰ‬
‫ﺍﻟﺤﺎﻟﺔ ﺘﻜﻭﻥ ﺍﻟﻠﺯﻭﺠﺔ ﻫﻰ ﺍﻟﺴﺒﺏ ﺍﻷﻜﺒﺭ ﻟﻤﻘﺎﻭﻤﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻭﻓﻘﺩ‬
                                ‫ﺍﻟﻀﻐﻁ، ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ‬
                                ‫) ‪γ (Cst‬‬
       ‫7870.0 < ) ‪V (mt / sec‬‬
                                ‫)‪d (inch‬‬

  ‫)‪Q(mt٣/hr) < ٠,١٤٣٦γ (cst). d(inch‬‬
                       ‫ﻭﺃﻴﻀﺎ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻴﺴﺎﻭﻯ‬
                                               ‫ﹰ‬
                                ‫‪γlQ‬‬
        ‫7177.2 = ‪h f‬‬
                                ‫4‪d‬‬
             ‫ﺤﻴﺙ ﺃﻥ ‪ hf‬ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﺒﺎﻟﻤﺘﺭ‬
  ‫‪l‬‬                     ‫‪ γ‬ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺒﺎﻟﺴﻨﺘﻰ ﺴﺘﻭﻜﺱ‬
                                      ‫ﻁﻭل ﺍﻷﻨﺒﻭﺒﺔ ﺒﺎﻟﻜﻴﻠﻭﻤﺘﺭ‬
‫‪ Q‬ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ ﺃﻭ ﺍﻟﻜﻤﻴﺔ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴـﺎﻋﺔ،‬
                  ‫‪ d‬ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﻸﻨﺒﻭﺒﺔ ﺒﺎﻟﺒﻭﺼﺔ‬




                         ‫- ٧٣ -‬
‫ﻭﺇﺫﺍ ﻜﺎﻥ ﺭﻗﻡ ﺭﻴﻨﻭﻟﺩ ﺃﻜﺒﺭ ﻤـﻥ ٠٠٠٤ ﻜـﺎﻥ ﺍﻟﺴـﺭﻴﺎﻥ‬
‫ﻤﻀﻁﺭﺏ )ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﻋﺎﻟﻴﺔ ﻨﺴﺒﻴﺎ ﻭﺃﻜﺜﺭ ﺇﻨﺘﻅﺎﻤﺎ(، ﻭﻓـﻲ‬
       ‫ﹰ‬             ‫ﹰ‬
‫ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ ﺍﻟﺴﺒﺏ ﺍﻟﻤﻠﺤﻭﻅ ﺃﻜﺜﺭ ﻟﻤﻘﺎﻭﻤﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻫـﻭ‬
‫ﻨﺘﻴﺠﺔ ﺨﺸﻭﻨﺔ ﺠﺩﺍﺭ ﺍﻷﻨﺒﻭﺒﺔ ﻭﺍﻹﻀﻁﺭﺍﺏ ﻭﻓﻲ ﻫـﺫﻩ ﺍﻟﺤﺎﻟـﺔ‬
                                                      ‫ﻴﻜﻭﻥ‬
                         ‫) ‪γ (Cst‬‬
‫84751.0 > )‪V (mt / sec‬‬
                         ‫)‪d (inch‬‬
‫)‪Q(mt / hr ) > 0.287 γ (cst ). d (inch‬‬
      ‫3‬



                         ‫ﻭﺃﻴﻀﺎ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻴﺴﺎﻭﻯ‬
                                                 ‫ﹰ‬

                         ‫57.1 ‪γ 0.25 l Q‬‬
‫5245.71 = ‪h f‬‬
                               ‫57.4 ‪d‬‬
‫ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓـﻲ ﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬            ‫‪hf‬‬   ‫ﺤﻴﺙ ﺃﻥ‬
                                                      ‫ﺒﺎﻟﻤﺘﺭ‬
‫ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺴﻨﺘﻰ‬        ‫‪γ‬‬
                                                     ‫ﺴﺘﻭﻜﺱ‬
               ‫ﻁﻭل ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﻜﻴﻠﻭﻤﺘﺭ‬         ‫‪l‬‬
‫ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ‬       ‫‪Q‬‬
                                               ‫ﻓﻲ ﺍﻟﺴﺎﻋﺔ‬

                           ‫- ٨٣ -‬
‫ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺒﻭﺼﺔ‬     ‫‪d‬‬

               ‫٢- ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ‪:Minor losses‬‬
            ‫⎞ 2 ‪⎛V‬‬                 ‫⎞ 2 ‪⎛V‬‬
‫ﻭﻫﻰ ﺘﺴﺎﻭﻯ ⎟ ⎜ ‪ hs = K‬ﺤﻴﺙ ﺃﻥ ⎟ ⎜ ﻫﻰ ﻁﺎﻗـﺔ‬
         ‫⎟ ‪⎜ 2g‬‬                ‫⎟ ‪⎜ 2g‬‬
         ‫⎝‬    ‫⎠‬                ‫⎝‬    ‫⎠‬
‫ﺍﻟﺤﺭﻜﺔ، ‪ K‬ﻤﻌﺎﻤل ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻤﺼﺩﺭ ﺍﻟﻔﺎﻗﺩ ﻭﻴﻤﻜـﻥ ﺇﻴﺠـﺎﺯ‬
                       ‫ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻜﻤﺎ ﻓﻲ ﺍﻟﺠﺩﻭل )٢(.‬

  ‫ﻤﻌﺎﻤل ﺍﻟﻔﺎﻗﺩ ‪K‬‬                   ‫ﺍﻟﻔـــــﺎﻗﺩ‬
       ‫٥,٠‬                                  ‫ﻓﻲ ﻤﺩﺨل ﺍﻷﻨﺒﻭﺒﺔ‬
        ‫١‬                               ‫ﻋﻨﺩ ﻤﺨﺭﺝ ﺍﻷﻨﺒﻭﺒﺔ‬
       ‫٥,٠‬                    ‫ﻋﻨﺩ ﺘﻘﻠﻴل ﻤﻘﻁﻊ ﺍﻷﻨﺒﻭﺒﺔ ﻓﺠﺄﺓ‬
      ‫٥٠,٠‬                 ‫ﻋﻨﺩ ﺘﻘﻠﻴل ﻤﻘﻁﻊ ﺍﻷﻨﺒﻭﺒﺔ ﺘﺩﺭﻴﺠﻴﺎ‬
                           ‫ﹰ‬
        ‫١‬                                     ‫ﻓﻲ ﺍﻟﻜﻭﻉ ٠٩‪º‬‬
       ‫٥,٠‬                                    ‫ﻓﻲ ﺍﻟﻜﻭﻉ ٥٤‪º‬‬
       ‫٩,٠‬                                    ‫ﻓﻲ ﺍﻟﻭﺼﻠﺔ ﺘﻴﻪ‬
       ‫٢,٠‬                        ‫ﻓﻲ ﺍﻟﻤﺤﺒﺱ ﺍﻟﻤﻔﺘﻭﺡ ﺘﻤﺎﻤﺎ‬
                                  ‫ﹰ‬


                       ‫ﺠﺩﻭل )٢(‬



                        ‫- ٩٣ -‬
‫ﻭﺘﻭﺠﺩ ﻁﺭﻴﻘﺔ ﺃﺨﺭﻯ ﻟﺤﺴﺎﺏ ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻫﻰ ﻁﺭﻴﻘـﺔ‬
‫ﺍﻷﻁـﻭﺍل ﺍﻟﻤﻜﺎﻓﺌـﺔ ‪ Equivalent Length‬ﺒﻤﻌﻨـﻰ ﺃﻥ ﺃﻯ‬
‫ﻤﺼﺩﺭ ﻤﻥ ﻤﺼﺎﺩﺭ ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻴﻌﻁﻰ ﻓﻲ ﺼﻭﺭﺓ ﻁـﻭل‬
‫ﻤﺴﺘﻘﻴﻡ ﻤﻥ ﺍﻷﻨﺒﻭﺒﺔ ﺒﺸﺭﻁ ﺃﻥ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓـﻲ ﻫـﺫﺍ‬
                    ‫ﺍﻟﻁﻭل ﻴﺴﺎﻭﻯ ﺍﻟﻔﺎﻗﺩ ﺍﻟﺜﺎﻨﻭﻯ ﻭﻫﻭ ﻴﺴﺎﻭﻯ‬
                 ‫2 ‪leq ⎛ V 2 ⎞ 0.81057 f leq Q‬‬
        ‫‪hs = f‬‬       ‫⎜‬     ‫=⎟‬
                  ‫⎟ ‪d ⎜ 2g‬‬
                     ‫⎝‬     ‫⎠‬       ‫5 ‪gd‬‬




                         ‫- ٠٤ -‬
(٣) ‫ ﻟﻤﺼﺎﺩﺭ ﺍﻟﻔﺎﻗﺩ ﺒﺎﻟﻤﺘﺭ ﻜﻤﺎ ﺒﺎﻟﺠﺩﻭل‬leq ‫ﻭﺘﻌﻁﻰ ﻗﻴﻡ‬
                        Welding
       Bends                                           Valves
                        Elbows
      Ratio Of
 Pipe Bend     Long Short Welding
 Size Radius Radius Radius
                           Tee                     Swing
(Inch) To Pipe                    Gate Globe Angle
                                                   Check
        Size
      ٥=‫ﻨﻕ=٦ ﻨﻕ‬                   = ‫ﻨﻕ‬
                    ‫ﻨﻕ=٥,١ﺍﻟﻘﻁﺭ‬
      ‫ﺍﻟﻘﻁﺭ ﺍﻟﻘﻁﺭ‬                 ‫ﺍﻟﻘﻁﺭ‬
  ١   ٠,١٥٠,١٨ ٠,٣٣               ٠,٤٣    ١,١٩ ٠,١٨ ٨,٨٤ ٤,٥٧ ٢,٢٢
١,٢٥ ٠,١٨٠,٢٤ ٠,٤٣                ٠,٥٥    ١,٥٨ ٠,٢٤ ١١,٥٨ ٥,٧٩ ٢,٩٣
 ١,٥ ٠,٢٤٠,٢٧ ٠,٤٩                ٠,٦٤    ١,٨٣ ٠,٢٧ ١٣,٧٢ ٦,٧ ٣,٣٥
  ٢   ٠,٣٠٠,٣٣ ٠,٦٤               ٠,٨٥    ٢,٣٨ ٠,٣٦ ١٧,٣٧ ٨,٨٤ ٤,٢٧
 ٢,٥ ٠,٣٦٠,٤٠ ٠,٧٦                 ١      ٢,٨٣ ٠,٤٣ ٢١,٠٣ ١٠,٣٦ ٥,١٨
  ٣   ٠,٤٦٠,٥٢ ٠,٩٤               ١,٢٥    ٣,٣٥ ٠,٥٥ ٢٥,٩١ ١٣,١١ ٦,٤
  ٤   ٠,٦١٠,٦٧ ١,٢٢               ١,٦٤    ٤,٥٧ ٠,٧٣ ٣٤,١٤ ١٧,٠٧ ٨,٥٣
  ٥   ٠,٧٦٠,٨٥ ١,٥٥               ٢,٠٤    ٥,٧٩ ٠,٨٨ ٤٢,٦٧ ٢١,٣٤١٠,٦٧
  ٦   ٠,٩١ ١          ١,٨٦        ٢,٤٧     ٧    ١,٠٧ ٥١,٢١ ٢٥,٦ ١٢,٨
  ٨   ١,١٩١,٣١ ٢,٤٤               ٣,٣٥    ٩,١٤ ١,٤٣ ٦٧,٦٧ ٣٣,٨٣١٧,٠٧
 ١٠ ١,٤٩١,٦٨ ٣,٠٥                 ٣,٩٦    ١١,٥٨ ١,٨ ٨٤,٧٣ ٤٢,٣٧٢١,٣٤
 ١٢ ١,٧٧١,٩٥ ٣,٦٦                 ٤,٨٨    ١٣,٧٢ ٢,١٣١٠١,١٩ ٥٠,٦ ٢٥,٣
 ١٤ ١,٨٩٢,٠٧ ٣,٩٦                 ٥,٤٩    ١٤,٩٣ ٢,٣٥١١٠,٩٥٥٥,٤٧٢٧,٧٤
 ١٦ ٢,١٦٢,٣٨ ٤,٥٧                 ٦,١     ١٧,٠٧ ٢,٦٨ ١٢٧,١ ٦٣,٤ ٣١,٧


                                     - ٤١ -
‫٨١,٥ ٨٦,٢٤٤,٢ ٨١‬             ‫٧‬      ‫٦٦,٥٣٢٣,١٧٥٩,٢٤١٢٠,٣ ٢,٩١‬
‫٩٧,٥ ٩٩,٢٤٧,٢ ٠٢‬           ‫٢٦,٧‬     ‫٣٩,٩٣٥٥,٩٧ ١,٩٥١ ٥٣,٣ ٤٦,١٢‬
‫٦٦,٣٥٣,٣ ٤٢‬       ‫٧‬        ‫٤١,٩‬     ‫٥٨,٧٤١٧,٥٩٢٧,١٩١٦٩,٣ ١٩,٥٢‬
                              ‫ﺠﺩﻭل )٣(‬

   ‫ﻭﻗﺩ ﻴﺘﻀﺢ ﻤﻥ ﺍﻟﺨﺒﺭﺓ ﺍﻟﻌﻤﻠﻴﺔ ﺃﻥ ﺍﻟﺒﻠﻭﻑ ﻤﻥ ﻨﻭﻉ ,‪Gate‬‬
   ‫‪ Ball, Plug And Butterfly‬ﻟﻬﺎ ﻤﻘﺎﻭﻤﺔ ﻤﻨﺨﻔﻀﺔ ﻟﻠﺴﺭﻴﺎﻥ‬
   ‫ﺃﻤﺎ ﺍﻟﺒﻠﻭﻑ ﺍﻷﺨﺭﻯ ﻤـﻥ ﻨـﻭﻉ ‪ Globe And Angle‬ﻟﻬـﺎ‬
                                         ‫ﻤﻘﺎﻭﻤﺔ ﻤﺭﺘﻔﻌﺔ ﻟﻠﺴﺭﻴﺎﻥ.‬
   ‫ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﻜﻼ ﻤﻥ ﻓﺎﻗـﺩ ﺍﻹﺤﺘﻜـﺎﻙ ﻭﺍﻟﻔﻭﺍﻗـﺩ‬
                               ‫ﹰ‬
                      ‫ﺍﻟﺜﺎﻨﻭﻴﺔ ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﻭﻫﻭ ﻴﺴﺎﻭﻯ‬
                        ‫2 ‪l + leq ⎛ V 2 ⎞ 0.81057 f (l + leq)Q‬‬
    ‫‪ht = h f + hs = f‬‬           ‫⎜‬     ‫=⎟‬
                           ‫⎟ ‪d ⎜ 2g‬‬
                                ‫⎝‬     ‫⎠‬         ‫5 ‪gd‬‬

   ‫ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺨﻁﻭﻁ ﺍﻟﻁﻭﻴﻠﺔ ﺘﻜﻭﻥ ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﺼـﻐﻴﺭﺓ‬
   ‫ﺠﺩﺍ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻔﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻭﺒﺎﻟﺘﺎﻟﻰ ﻴﻤﻜﻥ ﺇﻫﻤﺎﻟﻬﺎ ﺃﻤﺎ ﻓﻲ ﺤﺎﻟﺔ‬
                                                           ‫ﹰ‬
   ‫ﺍﻟﺨﻁﻭﻁ ﺍﻟﻘﺼﻴﺭﺓ ﻤﺜل ﺸﺒﻜﺎﺕ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺩﺍﺨﻠﻴﺔ ﻓﺈﻨﻪ ﻻ ﻴﻤﻜﻥ‬
             ‫ﺇﻫﻤﺎل ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﺇﺫﺍ ﻤﺎ ﻗﻭﺭﻨﺕ ﺒﻔﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ.‬




                               ‫- ٢٤ -‬
 
‫א‬




    - ٤٣ -
‫ﻁﺭﻕ ﻨﻘل ﺍﻟﺒﺘﺭﻭل:‬
‫ﻴﺘﻡ ﻨﻘل ﻤﺨﺘﻠﻑ ﺃﻨﻭﺍﻉ ﺍﻟﺒﺘﺭﻭل ﻭﻤﻨﺘﺠﺎﺘﻪ ﺇﻤﺎ ﻋﻥ ﻁﺭﻴـﻕ‬
‫ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻭ ﺒﺈﺴﺘﺨﺩﺍﻡ ﺴﻴﺎﺭﺍﺕ ﺍﻟﺸﺤﻥ )ﺍﻟﻠـﻭﺍﺭﻯ( ﺃﻭ‬
‫ﺒﺈﺴﺘﺨﺩﺍﻡ ﺼﻬﺎﺭﻴﺞ ﺍﻟﺴـﻜﺔ ﺍﻟﺤﺩﻴـﺩ ﺃﻭ ﺒﺈﺴـﺘﺨﺩﺍﻡ ﺍﻟﻨـﺎﻗﻼﺕ‬
‫ﺍﻟﺒﺤﺭﻴﺔ )ﺍﻟﺴﻔﻥ( ﻭﻴﺘﻤﻴﺯ ﺍﻟﻨﻘل ﺒﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﺒﺈﺴـﺘﻤﺭﺍﺭ‬
‫ﻋﻤﻠﻴﺔ ﺍﻟﻨﻘل ﺒﺼﺭﻑ ﺍﻟﻨﻅﺭ ﻋﻥ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺃﻯ ﻴـﺘﻡ‬
‫ﻨﻘل ﻤﺨﺘﻠﻑ ﺃﻨﻭﺍﻉ ﺍﻟﺴﻭﺍﺌل ﺒﺎﻟﺘﻌﺎﻗﺏ ﺩﺍﺨل ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻟﻴﺱ‬
‫ﻨﻘل ﻨﻭﻉ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﺴﻭﺍﺌل ﻜﻤﺎ ﻴﺘﻡ ﺒﺈﺴﺘﺨﺩﺍﻡ ﺴﻴﺎﺭﺍﺕ ﺍﻟﺸﺤﻥ‬
‫)ﺍﻟﻠﻭﺍﺭﻯ( ﺃﻭ ﺼﻬﺎﺭﻴﺞ ﺍﻟﺴﻜﺔ ﺍﻟﺤﺩﻴﺩ ﺃﻭ ﺍﻟﻨـﺎﻗﻼﺕ ﺍﻟﺒﺤﺭﻴـﺔ‬
                                             ‫)ﺍﻟﺴﻔﻥ(.‬




                      ‫- ٤٤ -‬
‫ﺘﺼﻨﻴﻑ ﺃﻨﻅﻤﺔ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬
‫ﺘﺼﻨﻑ ﺃﻨﻅﻤﺔ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﺨﺎﺼﺔ ﺒﻨﻘل ﺍﻟﺒﺘﺭﻭل ﺇﻟـﻰ‬
                                           ‫ﺜﻼﺜﺔ ﺃﻨﻭﺍﻉ :‬

         ‫١- ﻨﻅﺎﻡ ﺍﻟﺘﺠﻤﻴﻊ ‪:Gathering System‬‬
‫ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﺍﻟﻤﻌﺩﺍﺕ ﺍﻷﺨﺭﻯ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻟﻨﻘل ﺍﻟﺯﻴـﺕ‬
‫ﺍﻟﺨﺎﻡ ﻭﻤﻨﺘﺠﺎﺘﻪ ﻤﻥ ﺍﻵﺒﺎﺭﺍﻟﻤﻨﻔﺭﺩﺓ ﻭﻤﻭﺍﻗﻊ ﺍﻹﻨﺘﺎﺝ ﺍﻷﺨﺭﻯ ﺇﻟﻰ‬
‫ﻤﻭﻗﻊ ﺭﺌﻴﺴﻰ ﻴﺴﻤﻰ ﻨﻅﺎﻡ ﺘﺠﻤﻴﻊ، ﻭﺘﺘﻜﻭﻥ ﺃﻨﻅﻤـﺔ ﺍﻟﺘﺠﻤﻴـﻊ‬
‫ﺃﺴﺎﺴﺎ ﻤﻥ ﻓﺭﻭﻉ ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺘﺴﺭﻯ ﺇﻟﻰ ﻤﺤﻁﺎﺕ ﺨﻁ ﺭﺌﻴﺴﻰ‬
                                          ‫ﹰ‬
‫ﺃﻭ ﻤﻭﺍﻗﻊ ﺃﺨﺭﻯ ﺤﻴﺙ ﻴﺘﻡ ﻨﻘل ﺍﻟﺯﻴﺕ ﻭﻤﻨﺘﺠﺎﺘﻪ ﺇﻟﻰ ﻨﻅﺎﻡ ﺨﻁ‬
‫ﺭﺌﻴﺴﻰ، ﻭﺘﻜﻭﻥ ﻤﻌﻅـﻡ ﺍﻷﻗﻁﺎﺭﺍﻟﺸـﺎﺌﻌﺔ ﻟﻠﺨﻁـﻭﻁ ﺒﺘﻠـﻙ‬
‫ﺍﻟﺘﻔﺭﻴﻌﺎﺕ ﻤﻥ ٤ ﺇﻟﻰ ٢١ ﺒﻭﺼﺔ ﻭﻴﺤﺘﻭﻯ ﻨﻅﺎﻡ ﺍﻟﺘﺠﻤﻴﻊ ﻋﺎﺩﺓ‬
‫ﻋﻠﻰ ﻤﺤﻁﺎﺕ ﻀﺦ ﻟﺘﺠﻤﻴﻊ ﺍﻟﺯﻴﺕ ﻤﻥ ﺒﺌﺭ ﻤﻔﺭﺩ ﻭﻴﻜﻭﻥ ﺨـﻁ‬
‫ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﻤﺴﺘﺨﺩﻡ ﺒﻨﻅﺎﻡ ﺍﻟﺘﺠﻤﻴﻊ ﻗﺼﻴﺭ ﺒﺎﻟﻤﻘﺎﺭﻨـﺔ ﺒﺨﻁـﻭﻁ‬
‫ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻭﻴﺘﺭﺍﻭﺡ ﻤﺩﻯ ﺍﻟﻁﻭل ﻤﻥ ﺃﻤﺘﺎﺭ ﻗﻠﻴﻠﺔ ﺇﻟـﻰ‬
                                       ‫ﻋﺩﺓ ﻜﻴﻠﻭ ﻤﺘﺭﺍﺕ.‬




                       ‫- ٥٤ -‬
‫٢- ﻨﻅﺎﻡ ﺍﻟﺨﻁ ﺍﻟﺭﺌﻴﺴﻰ ‪:Trunk Line System‬‬
‫ﻭﺘﻜﻭﻥ ﺍﻟﻤﺭﺤﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻫﻰ ﻨﻘل ﺍﻟﺯﻴﺕ ﺍﻟﺨﺎﻡ ﻭﻤﻨﺘﺠﺎﺘﻪ ﻋﻥ‬
‫ﻁﺭﻴﻕ ﺨﻁـﻭﻁ ﺃﻨﺎﺒﻴـﺏ ﺭﺌﻴﺴـﻴﺔ ‪Trunk Pipe –Lines‬‬
‫ﻭﻴﺴﺘﺨﺩﻡ ﻨﻅﺎﻡ ﺍﻟﺨﻁ ﺍﻟﺭﺌﻴﺴﻲ ﻟﻨﻘل ﺍﻟﺒﺘﺭﻭل ﻭﻤﻨﺘﺠﺎﺘـﻪ ﻤـﻥ‬
‫ﺍﻵﺒﺎﺭ ﻭ ﻤﻭﺍﻗﻊ ﺍﻹﻨﺘﺎﺝ ﺍﻷﺨـﺭﻯ ﺇﻟـﻰ ﻤﻨـﺎﻁﻕ ﺍﻟﻤﻌﺎﻟﺠـﺔ‬
  ‫ﺃﻭﺍﻟﺘﻜﺭﻴﺭ ﻭﺍﻟﺘﺴﻭﻴﻕ ﻭﺫﻟﻙ ﺒﻜﻤﻴﺎﺕ ﻜﺒﻴﺭﺓ ﻭﻟﻤﺴﺎﻓﺎﺕ ﻁﻭﻴﻠﺔ.‬

    ‫٣- ﺃﻨﻅﻤﺔ ﺍﻟﺘﻭﺯﻴﻊ ‪:Distribution Systems‬‬
‫ﻴﺘﻡ ﻨﻘل ﺍﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﺒﺘﺭﻭﻟﻴﺔ ﻤﻥ ﻤﺼﺎﺩﺭ ﺍﻹﻤﺩﺍﺩ ﻤﺜل ﻤﻌﺎﻤل‬
‫ﺍﻟﺘﻜﺭﻴﺭ ﻭﺍﻟﻤﻭﺍﻨﻰ ﺍﻟﺒﺤﺭﻴﺔ ﺇﻟﻰ ﻤﻨـﺎﻁﻕ ﺍﻹﺴـﺘﻬﻼﻙ ﺃﺴﺎﺴـﺎ‬
‫ﹰ‬
‫ﺒﻭﺍﺴﻁﺔ ﺃﻨﻅﻤﺔ ﺨﻁ ﺍﻟﺘﻭﺯﻴـﻊ ‪Pipe Line Distribution‬‬
‫‪ ،Systems‬ﻭﺘﻜﻭﻥ ﻤﻌﻅﻡ ﺍﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﺒﺘﺭﻭﻟﻴﺔ ﻫـﻰ ﺃﻨـﻭﺍﻉ‬
‫ﺍﻟﺒﻨﺯﻴﻥ ﺍﻟﻤﺨﺘﻠﻔﺔ، ﻭﻗﻭﺩ ﺍﻟﻨﻔﺎﺜـﺎﺕ، ﺍﻟﻜﻴﺭﻭﺴـﻴﻥ، ﺍﻟﺴـﻭﻻﺭ،‬
‫ﺍﻟﻤﺎﺯﻭﺕ ﻭﻜﺫﻟﻙ ﺍﻟﺒﻭﺘﺎﺠﺎﺱ ﺍﻟﻤﺴﺎل ﻭﺘﺨﺘﻠﻑ ﺨﻁﻭﻁ ﺃﻨﺎﺒﻴـﺏ‬
‫ﺍﻟﺘﻭﺯﻴﻊ ﻟﻠﻤﻨﺘﺠﺎﺕ ﻋﻥ ﺨﻁﻭﻁ ﺃﻨﺎﺒﻴﺏ ﺍﻟﺯﻴﺕ ﺍﻟﺨﺎﻡ ﻓـﻲ ﺃﻨﻬـﺎ‬
‫ﻋﺎﺩﺓ ﺘﺒﺩﺃ ﻜﺄﻨﻅﻤﺔ ﺫﺍﺕ ﺴﻌﺎﺕ ﻜﺒﻴﺭﺓ ﻭﺘﺘﻔﺭﻉ ﺇﻟﻰ ﺃﻨﻅﻤـﺔ ﺫﺍﺕ‬
                  ‫ﺴﻌﺎﺕ ﺃﺼﻐﺭ ﻜﺈﻤﺩﺍﺩﺍﺕ ﻟﻠﻤﻭﺍﻗﻊ ﺍﻟﻤﺨﺘﻠﻔﺔ.‬



                       ‫- ٦٤ -‬
‫ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻼﺯﻡ ﻟﻤﺸﺭﻭﻉ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬
‫ﻴﺴﺘﻬﻠﻙ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻼﺯﻡ ﻟﻠﻤﺸﺭﻭﻉ ﺃﺴﺎﺴﺎ ﻓـﻲ ﺘﻜـﺎﻟﻴﻑ‬
            ‫ﹰ‬
    ‫ﺇﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﺃﻴﻀﺎ ﺘﻜﺎﻟﻴﻑ ﺇﻨﺸﺎﺀ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ.‬
                             ‫ﹰ‬

                   ‫١- ﺘﻜﺎﻟﻴﻑ ﺇﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬
‫ﻴﻌﺘﺒﺭ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻓـﻲ ﺇﻨﺸـﺎﺀ ﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬
‫)ﺩﻭﻻﺭ/ﻁﻥ ﺃﻭ ﺩﻭﻻﺭ/ ﻜﻴﻠﻭﻤﺘﺭ( ﻴﺘﻨﺎﺴﺏ ﻤﻊ ﻭﺯﻥ ﻤﻭﺍﺴـﻴﺭ‬
‫ﺍﻟﺨﻁ ﻭﻫﻭ ﻴﺴﺎﻭﻯ ﺜﻤﻥ ﺍﻟﻤﻭﺍﺴﻴﺭ = ﺃ × ﻭﺯﻥ ﺍﻟﻤﻭﺍﺴﻴﺭ، ﺤﻴﺙ‬
‫ﺃﻥ ﺃ ﻤﻌﺎﻤل ﻭﺃﻥ ﻭﺯﻥ ﺍﻟﻤﻭﺍﺴﻴﺭ ﻴﻌﺘﻤﺩ ﻋﻠـﻰ ﻗﻁـﺭ ﻭﺴـﻤﻙ‬
                                 ‫ﻭﻁﻭل ﻫﺫﻩ ﺍﻟﻤﻭﺍﺴﻴﺭ.‬

                  ‫٢- ﺘﻜﺎﻟﻴﻑ ﺇﻨﺸﺎﺀ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ:‬
‫ﻴﻌﺘﺒﺭ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻓﻲ ﺇﻨﺸـﺎﺀ ﻤﺤﻁـﺔ ﻟﻠﻀـﺦ‬
‫)ﺩﻭﻻﺭ/ ﺤﺼﺎﻥ( ﻴﺘﻨﺎﺴﺏ ﻤﻊ ﻗﺩﺭﺓ ﻫﺫﻩ ﺍﻟﻤﺤﻁﺔ ﻭﻫﻭ ﻴﺴـﺎﻭﻯ‬
                             ‫ﺍﻟﺜﻤﻥ ﺍﻷﺴﺎﺴﻰ ﻟﻠﻤﻀﺨﺎﺕ.‬




                     ‫- ٧٤ -‬
‫ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻤﺸﺭﻭﻉ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ:‬
   ‫ﺘﻨﻘﺴﻡ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ ﺇﻟﻰ ﺍﻟﺒﻨﻭﺩ ﺍﻵﺘﻴﺔ :‬
‫ﻤﺼﺎﺭﻴﻑ ﺍﻟﺘﺸـﻐﻴل ﻭﺍﻟﺼـﻴﺎﻨﺔ ﻟﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬           ‫١-‬
‫ﻭﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﻭﺘﺸﻤل ﺇﺴﺘﻬﻼﻙ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺭﺒـﺎﺌﻲ‬
‫ﻭﺍﻟﻤﻴﺎﻩ ﻭﻗﻁﻊ ﺍﻟﻐﻴﺎﺭ ﻭﺍﻟﻭﻗﻭﺩ ﻭﺍﻟﺯﻴﻭﺕ، ﻭﺘﻜـﺎﻟﻴﻑ‬
         ‫ﺃﻋﻤﺎل ﺍﻟﺼﻴﺎﻨﺔ ﺍﻟﺘﻲ ﺘﺘﻡ ﻋﻥ ﻁﺭﻴﻕ ﺍﻟﻐﻴﺭ.‬
                              ‫ﺍﻟﻤﺭﺘﺒﺎﺕ ﻭﺍﻷﺠﻭﺭ.‬    ‫٢-‬
               ‫ﺍﻟﻀﺭﺍﺌﺏ ﻭﺍﻟﺘﺄﻤﻴﻨﺎﺕ ﻭﻤﺎ ﺸﺎﺒﻪ ﺫﻟﻙ.‬   ‫٣-‬
‫ﻤﺼﺎﺭﻴﻑ ﺍﻹﻫﻼﻙ ﺍﻟﺴﻨﻭﻴﺔ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻤﺤﻁـﺎﺕ‬          ‫٤-‬
‫ﺍﻟﻀﺦ ﻭﺘﻌﺭﻑ ﺒﺄﻨﻬﺎ ﻨﺴﺒﺔ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻹﻨﺸﺎﺀ‬
‫ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻭ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﺇﻟﻰ ﺍﻟﻌﻤﺭ ﺍﻹﻓﺘﺭﺍﻀﻰ‬
‫ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻭ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﺤﻴﺙ ﻴـﺘﻡ ﺤﺴـﺎﺏ‬
‫ﻤﺼﺎﺭﻴﻑ ﺍﻹﻫﻼﻙ ﺍﻟﺴﻨﻭﻴﺔ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺘﻘﺴﻴﻡ ﺭﺃﺱ‬
‫ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻹﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﻋﻠـﻰ ﺍﻟﻌﻤـﺭ‬
‫ﺍﻹﻓﺘﺭﺍﻀﻰ ﻟﻠﺨﻁ )ﺤﻭﺍﻟﻰ ٣٣ ﻋﺎﻤـﺎ( ﻭﻜـﺫﻟﻙ ﻴـﺘﻡ‬
              ‫ﹰ‬
‫ﺤﺴﺎﺏ ﻤﺼﺎﺭﻴﻑ ﺍﻹﻫﻼﻙ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻤﺤﻁﺎﺕ ﺍﻟﻀـﺦ‬
‫ﺒﺘﻘﺴﻴﻡ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻹﻨﺸﺎﺀ ﻤﺤﻁﺎﺕ ﺍﻟﻀـﺦ‬
‫ﻋﻠﻰ ﺍﻟﻌﻤﺭ ﺍﻹﻓﺘﺭﺍﻀﻰ ﻟﻠﻤﻀﺨﺎﺕ )ﺤﻭﺍﻟﻰ ٥٢ ﻋﺎﻤﺎ(.‬
  ‫ﹰ‬
‫ﺃﻯ ﻤﺼﺭﻭﻓﺎﺕ ﺃﺨﺭﻯ ﻤﺜل ﺍﻟﻔﺎﺌﺩﺓ ﻋﻠﻰ ﺭﺃﺱ ﺍﻟﻤﺎل‬         ‫٥-‬
                                       ‫ﺍﻟﻤﻘﺘﺭﺽ.‬
                       ‫- ٨٤ -‬
‫ﻭﺒﺫﻟﻙ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺘﻜﻠﻔﺔ ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﻭﻫﻰ ﺘﺴﺎﻭﻯ‬
‫ﺇﺠﻤﺎﻟﻰ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ‬
                                     ‫ﺘﻜﻠﻔﺔ ﺍﻟﻨﻘل )ﺩﻭﻻﺭ/ﻁﻥ(‬
             ‫)ﺩﻭﻻﺭ(‬
                                               ‫=‬
‫ﻜﻤﻴﺔ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭﻟﺔ ﻓﻲ ﺍﻟﻌﺎﻡ )ﻁﻥ(‬

    ‫ﻭﺒﻨﺎﺀ ﻋﻠﻰ ﻤﺎ ﺴﺒﻕ ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺴﻌﺭ ﻨﻘل ﺍﻟﺒﺘـﺭﻭل ﺒﺨـﻁ‬
    ‫ﺍﻷﻨﺎﺒﻴﺏ ﺒﻀﺭﺏ ﺘﻜﻠﻔﺔ ﺍﻟﻨﻘل ﻓﻲ ﻤﻌﺎﻤل ﺒﺤﻴﺙ ﻻ ﻴﺘﻌﺩﻯ ﺴﻌﺭ‬
    ‫ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﺒﺎﻟﻁﺭﻕ ﺍﻷﺨﺭﻯ ﻭﺘﻌﺘﻤﺩ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻋﻠـﻰ‬
                         ‫ﺃﺴﻌﺎﺭ ﺍﻟﻨﻘل ﻟﻠﺸﺭﻜﺎﺕ ﺍﻷﺨﺭﻯ ﺍﻟﻤﻨﺎﻓﺴﺔ‬

                       ‫ﺃﺴﺱ ﺇﺨﺘﻴﺎﺭ ﻗﻁﺭ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ:‬
    ‫ﻴﻌﺘﻤﺩ ﺇﺨﺘﻴﺎﺭ ﻗﻁﺭ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻋﻠﻰ ﻋﻤل ﺩﺭﺍﺴﺔ ﺘﺸـﻤل‬
                                                      ‫ﺍﻵﺘﻲ:‬
    ‫١- ﺤﺴﺎﺏ ﺘﻜﺎﻟﻴﻑ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ، ﻭﻫﻰ ﻜﻤـﺎ ﺒﺎﻟﺸـﻜل‬
              ‫)١١( ﻤﻨﺤﻨﻰ ١ ﺘﺯﺩﺍﺩ ﺒﺯﻴﺎﺩﺓ ﻗﻁﺭ ﺍﻟﺨﻁ.‬
    ‫٢- ﺤﺴﺎﺏ ﺘﻜﺎﻟﻴﻑ ﻭﺤﺩﺍﺕ ﺍﻟﻀﺦ ﻭﻫﻰ ﻜﻤﺎ ﻨﺭﻯ ﻤﻨﺤﻨﻰ‬
                             ‫٢ ﺘﻘل ﺒﺯﻴﺎﺩﺓ ﻗﻁﺭ ﺍﻟﺨﻁ.‬




                            ‫- ٩٤ -‬
‫ﻭﺒﺠﻤﻊ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ١، ٢ ﻨﺤﺼل ﻋﻠـﻰ ﺍﻟﺘﻜـﺎﻟﻴﻑ ﺍﻟﻜﻠﻴـﺔ‬
‫ﺍﻟﺴﻨﻭﻴﺔ ﻤﻨﺤﻨﻰ ٣ ﻭﺍﻟﻘﻁﺭ ﺍﻷﻤﺜل ﺇﻗﺘﺼﺎﺩﻴﺎ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻫـﻭ‬
                ‫ﹰ‬
‫ﺍﻟﻘﻁﺭ ﺍﻟﺫﻯ ﻟﻪ ﺃﻗل ﺘﻜﻠﻔﺔ ﻜﻠﻴﺔ ﻭﻗﺩ ﻭﺠﺩ ﺃﻥ ﺍﻟﺴﺭﻋﺔ ﺍﻟﻤﻨﺎﺴـﺒﺔ‬
‫ﻟﻠﺴﻭﺍﺌل ﻓﻲ ﺍﻷﻨﺎﺒﻴﺏ ﻓﻲ ﻫـﺫﻩ ﺍﻟﺤﺎﻟـﺔ ﺘﺘـﺭﺍﻭﺡ ﺒـﻴﻥ ١:٣‬
                                              ‫ﻤﺘﺭ/ﺜﺎﻨﻴﺔ.‬
‫ﻭﻴﺘﻀﺢ ﻤﻥ ﺍﻟﺨﺒﺭﺓ ﺍﻟﻌﻤﻠﻴـﺔ ﺃﻥ ﺍﻟﺴـﺭﻋﺔ ﺘﻘﺘـﺭﺏ ﻤـﻥ‬
‫١ﻤﺘﺭ/ﺜﺎﻨﻴﺔ ﻟﻠﺴﻭﺍﺌل ﻤﺭﺘﻔﻌﺔ ﺍﻟﻠﺯﻭﺠﺔ ﻭﺃﻴﻀـﺎ ﺘﻘﺘـﺭﺏ ﻤـﻥ‬
           ‫ﹰ‬
‫٣ﻤﺘﺭ/ﺜﺎﻨﻴﺔ ﻟﻠﺴﻭﺍﺌل ﻤﻨﺨﻔﻀﺔ ﺍﻟﻠﺯﻭﺠﺔ ﻭﻴﻌﺘﺒﺭ ﻫـﺫﺍ ﺍﻟﻤـﺩﻯ‬
‫ﻟﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﺍﻟﺴﻭﺍﺌل ﺩﺍﺨل ﺍﻷﻨﺎﺒﻴﺏ ﻫﻭ ﺍﻟﻘﻴﺩ ﻟﺭﻓﻊ ﻜﻔـﺎﺀﺓ‬
                                           ‫ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ.‬
‫ﻭﻋﻨﺩ ﺇﺨﺘﻴﺎﺭ ﻗﻁﺭ ﺨﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﻴﺠـﺏ ﺃﻥ ﻴﺅﺨـﺫ ﻓـﻲ‬
‫ﺍﻹﻋﺘﺒﺎﺭ ﻤﻌﺎﻤل ﺍﻟﺨﺩﻤـﺔ ‪ Service Factor‬ﻟﺨﻁـﺔ ﺍﻟﻨﻘـل‬
‫ﺍﻟﺴﻨﻭﻴﺔ ﻭﻫﻭ ﻴﻜﻭﻥ ﻓﻲ ﺤﺩﻭﺩ ٢٨% ﺒﻤﻌﻨﻰ ﺃﻥ ﻴﺘﻡ ﻨﻘل ﺍﻟﻜﻤﻴﺔ‬
‫ﺍﻟﻤﻁﻠﻭﺒﺔ ﺴﻨﻭﻴﺎ ﺨﻼل ٠٠٣ ﻴﻭﻡ ﻓﻘﻁ ﻭﺫﻟﻙ ﺤﺘـﻰ ﻻ ﻴـﺅﺜﺭ‬
                                  ‫ﹰ‬
‫ﺇﻴﻘﺎﻑ ﺍﻟﺨﻁ ﻷﻯ ﺴﺒﺏ ﻋﻠﻰ ﺘﺤﻘﻴﻕ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟـﺔ ﺴـﻨﻭﻴﺎ‬
‫ﹰ‬
‫ﻭﻟﺫﻟﻙ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺘﺴﺎﻭﻯ‬




                        ‫- ٠٥ -‬
‫ﺸﻜل )١١(‬

            ‫6 01 × ) ‪(million ton / year‬‬
       ‫=‪Q‬‬
                  ‫‪7200 × sp.gr‬‬

‫ﺤﻴﺙ ﺃﻥ ‪ sp.gr‬ﻫﻰ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺒﺎﻟﺨﻁ‬
‫ﻭﺃﻴﻀﺎ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌـﺏ ﻓـﻲ ﺍﻟﺴـﺎﻋﺔ‬
                                                ‫ﹰ‬
                                 ‫ﺘﺴﺎﻭﻯ 2‪. Q = ١,٨٢٤ Di‬‬
  ‫ﺤﻴﺙ ﺃﻥ ‪ V‬ﻫﻰ ﺴﺭﻋﺔ ﺍﻟﺴﺎﺌل ﺩﺍﺨل ﺍﻟﺨﻁ ﺒﺎﻟﻤﺘﺭ/ﺜﺎﻨﻴﺔ.‬

                         ‫- ١٥ -‬
‫‪ Di‬ﻫﻭ ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺒﻭﺼﺔ، ﻭﻤﻤﺎ ﺴﺒﻕ‬
‫ﻴﺘﻀﺢ ﺃﻨﻪ ﻟﻜﻲ ﻴﺘﻡ ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﺒﺼﻭﺭﺓ ﺇﻗﺘﺼـﺎﺩﻴﺔ ﺒﻤﻌﻨـﻰ‬
‫ﺘﺤﻘﻴﻕ ﺃﻗل ﺘﻜﻠﻔﺔ ﻜﻠﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ ﻴﻜﻭﻥ ﺍﻟﺤﺩ ﺍﻷﺩﻨـﻰ ﻟﻠﻜﻤﻴـﺔ‬
‫ﺍﻟﻤﻨﻘﻭﻟﺔ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺘﺴـﺎﻭﻯ 2‪Qmin = 1.824 Di‬‬
‫ﻭﺃﻴﻀﺎ ﺒﻬﺩﻑ ﺭﻓﻊ ﻜﻔﺎﺀﺓ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻴﻜﻭﻥ ﺍﻟﺤـﺩ ﺍﻷﻗﺼـﻰ‬
                                            ‫ﹰ‬
       ‫ﻟﻠﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺘﺴﺎﻭﻯ 2‪. Qmax = 5.472 Di‬‬

‫ﺍﻟﻌﻭﺍﻤل ﺍﻟﻤﺅﺜﺭﺓ ﻋﻠﻰ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﻜﻠﻴﺔ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل‬
                                          ‫ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬
‫ﻴﺘﻀﺢ ﻤﻤﺎ ﺴﺒﻕ ﺃﻥ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺘﻨﺨﻔﺽ ﺒﺯﻴﺎﺩﺓ‬
‫ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺴﻨﻭﻴﺎ ﻭﺃﻥ ﻤﺴﺎﻓﺔ ﺍﻟﻨﻘل ﻟﻬﺎ ﺘﺄﺜﻴﺭ ﻗﻠﻴل ﺠـﺩﺍ،‬
 ‫ﹰ‬                                   ‫ﹰ‬
‫ﻭﻗﺩ ﺘﺨﺘﻠﻑ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺒﺈﺨﺘﻼﻑ ﻤﻭﺍﺼﻔﺎﺕ ﺍﻟﺴﺎﺌل‬
‫ﺍﻟﻤﻨﻘﻭل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻨﺫﻜﺭ ﻋﻠﻰ ﺴـﺒﻴل ﺍﻟﻤﺜـﺎل ﺍﻟﻌﻭﺍﻤـل‬
                                                     ‫ﺍﻵﺘﻴﺔ:‬
‫١- ﺘﺼﺒﺢ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺃﻗل ﻤﺎ ﻴﻤﻜﻥ ﻋﻨﺩ ﻨﻘل‬
     ‫ﺴﺎﺌل ﻭﺍﺤﺩ ﺫﻭ ﻟﺯﻭﺠﺔ ﻤﻨﺨﻔﻀﺔ ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ.‬




                         ‫- ٢٥ -‬
‫٢- ﺘﺯﺩﺍﺩ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﺍﻟـﺫﻯ‬
‫ﻴﻨﻘل ﺴﻭﺍﺌل ﻤﺘﻌﺩﺩﺓ ﺒﺴـﺒﺏ ﺍﻟﺘﺭﻜﻴﺒـﺎﺕ ﺍﻹﻀـﺎﻓﻴﺔ‬
                             ‫ﻭﺍﻟﺨﻁﻭﻁ ﺍﻟﻔﺭﻋﻴﺔ.‬
‫٣- ﺘﺯﺩﺍﺩ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﻤﻌﺯﻭل‬
‫ﺤﺭﺍﺭﻴﺎ ﺒﺴﺒﺏ ﺃﻋﺒﺎﺀ ﺘﻜﺎﻟﻴﻑ ﺍﻟﻌﺯل ﺍﻟﺤﺭﺍﺭﻯ ﻟﻠﺨﻁ‬
                                     ‫ﹰ‬
‫ﻭﺘﻜﺎﻟﻴﻑ ﺯﻴﺎﺩﺓ ﻋﻤﻕ ﺍﻟﺨﻁ ﺘﺤﺕ ﺍﻷﺭﺽ ﻋﻥ ﺍﻟﻌﻤﻕ‬
‫ﺍﻟﻁﺒﻴﻌﻰ ﻭﺘﻜﺎﻟﻴﻑ ﺘﺴﺨﻴﻥ ﺍﻟﺴﺎﺌل ﻭﺃﻴﻀـﺎ ﺇﺭﺘﻔـﺎﻉ‬
        ‫ﹰ‬
               ‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﻼﺯﻤﺔ ﻟﻀﺦ ﺍﻟﺴﺎﺌل ﺍﻟﻠﺯﺝ.‬

                             ‫ﺘﺼﻤﻴﻡ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬
    ‫ﻟﺘﺼﻤﻴﻡ ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﻴﺠﺏ ﺃﻭﻻ ﺘﺤﺩﻴﺩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻵﺘﻴﺔ :‬
                           ‫ﹰ‬
‫١- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﻤﺩﻯ ﻟﻠﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﺃﻯ ﺍﻟﻜﻤﻴـﺔ‬
‫ﺍﻟﻤﺒﺩﺌﻴ ـﺔ ﻭﺍﻟﻘﺼ ـﻭﻯ ‪Initial And Ultimate‬‬
                       ‫ـ‬        ‫ـ‬
                          ‫‪Throughput‬‬
‫٢- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻀﻐﻁ ﺍﻵﻤﻥ ﺍﻟﺫﻯ ﻴﺘﺤﻤﻠﻪ ﻤﻌـﺩﻥ ﺨـﻁ‬
‫ﺍﻷﻨﺎﺒﻴﺏ ﻭﻓﻲ ﺃﻏﻠﺏ ﺍﻷﺤﻴﺎﻥ ﻴﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻀﻐﻁ ﻓـﻲ‬
                           ‫ﺤﺩﻭﺩ ٠٧ﻜﺠﻡ/ﺴﻡ٢.‬




                       ‫- ٣٥ -‬
‫٣- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻀﻐﻁ ﻋﻨﺩ ﻨﻬﺎﻴـﺔ ﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﺃﻯ‬
‫ﺍﻟﻀﻐﻁ ﻋﻨﺩ ﻤﺤﻁﺔ ﺍﻹﺴﺘﻼﻡ ﻭﻫﻭ ﻴﻜﻭﻥ ﻓﻲ ﺤـﺩﻭﺩ‬
                                   ‫٢ﻜﺠﻡ/ﺴﻡ٢.‬
‫٤- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﻁﻭل ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻯ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻤﺤﻁﺔ‬
                        ‫ﺍﻟﺘﺩﻓﻴﻊ ﻭﻤﺤﻁﺔ ﺍﻹﺴﺘﻼﻡ.‬

                                    ‫ﺨﻁﻭﺍﺕ ﺍﻟﺘﺼﻤﻴﻡ :‬
‫١- ﻴﺘﻡ ﺤﺴﺎﺏ ﻤﺩﻯ ﻷﻗﻁﺎﺭ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺘـﻲ ﺘﺴـﺘﻭﻋﺏ‬
‫ﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬـﺎ ﺃﻯ ﺍﻟﺤـﺩ ﺍﻷﺩﻨـﻰ‬
‫ﻭﺍﻷﻗﺼﻰ ﻷﻗﻁﺎﺭ ﺍﻟﺨﻁﻭﻁ، ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ‬
‫ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺘﺴﺎﻭﻯ 2‪Q = 1.842V Di‬‬
‫ﻓﻴﻜﻭﻥ ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺒﻭﺼﺔ ﻴﺴﺎﻭﻯ‬

‫= ‪ Di‬ﺤﻴﺙ ﺃﻥ ‪ V‬ﻫﻰ ﺴﺭﻋﺔ ﺍﻟﺴـﺎﺌل‬
                                         ‫‪Q‬‬
                                      ‫‪1.824V‬‬
‫ﺩﺍﺨل ﺍﻟﺨﻁ ﺒﺎﻟﻤﺘﺭ/ﺜﺎﻨﻴﺔ، ﻭﻹﻴﺠﺎﺩ ﺍﻟﺤﺩ ﺍﻷﺩﻨﻰ ﻟﻠﻘﻁﺭ‬
‫ﺍﻟ ـﺩﺍﺨﻠﻰ ﻨﻀ ـﻊ ﺍﻟﻜﻤﻴ ـﺔ ﺍﻟﻘﺼ ـﻭﻯ ‪Ultimate‬‬
           ‫ـ‬       ‫ـ‬        ‫ـ‬         ‫ـ‬
‫‪ Throughput‬ﻭﺃﻴﻀﺎ ‪ V=٣mt/sec‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‬
                      ‫ﹰ‬
                                         ‫ﺍﻟﺴﺎﺒﻘﺔ‬
                       ‫‪Qult‬‬
    ‫= ‪Minimum Di‬‬
                    ‫3 × 428.1‬

                       ‫- ٤٥ -‬
‫ﻭﻜﺫﻟﻙ ﻹﻴﺠﺎﺩ ﺍﻟﺤﺩ ﺍﻷﻗﺼﻰ ﻟﻠﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻨﻀﻊ ﺍﻟﻜﻤﻴـﺔ‬
‫ـﺎ ٥,١=‪V‬‬
      ‫ـﻭﻯ ‪ Ultimate Throughput‬ﻭﺃﻴﻀـ ﹰ‬
                                    ‫ﺍﻟﻘﺼـ‬
                             ‫‪ mt/sec‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ‬
                       ‫‪Qult‬‬
   ‫= ‪Maximum Di‬‬
                    ‫5.1× 428.1‬

‫٢- ﻴﺘﻡ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﺃﻯ ﺘﻘﺭﻴﺒﺎ ﻓﺎﻗـﺩ ﺍﻟﻀـﻐﻁ‬
             ‫ﹰ‬
‫ﺍﻟﻤﺭﺘﺒﻁ ﺒﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﻭﺫﻟﻙ ﻟﻤـﺩﻯ‬
‫ﺍﻷﻗﻁﺎﺭ ﺍﻟﺘﻲ ﺘﻡ ﺇﺨﺘﻴﺎﺭﻫﺎ ﻓﻲ ﺍﻟﺨﻁﻭﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻋـﻥ‬
‫ﻁﺭﻴﻕ ﻤﻌﺎﺩﻟﺔ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜـﺎﻙ ﺁﺨـﺫﺍ ﻓـﻲ‬
    ‫ﹰ‬
                            ‫ﺍﻹﻋﺘﺒﺎﺭ ﺍﻟﻤﻌﻁﻴﺎﺕ.‬




                      ‫- ٥٥ -‬
‫٣- ﻴﺘﻡ ﺘﺴﺠﻴل ﻨﺘﺎﺌﺞ ﺍﻟﺤﺴﺎﺒﺎﺕ ﻓﻲ ﺠﺩﻭل ﻜﺎﻵﺘﻲ :‬
 ‫ﺭﺃﺱ‬
 ‫ﺍﻟﻤﺎل‬                                ‫ﻓﺎﻗﺩ‬      ‫ﺃﻗل‬
         ‫ﺘﻜﺎﻟﻴﻑ‬             ‫ﺍﻟﻜﻤﻴﺔ‬
‫ﺍﻟﻼﺯﻡ‬             ‫ﺘﻜﺎﻟﻴﻑ‬     ‫ﺇﺠﻬﺎﺩ ﺍﻟﻀﻐﻁ‬
         ‫ﺇﻨﺸﺎﺀ‬             ‫ﺍﻟﻤﻨﻘﻭﻟﺔ‬        ‫ﺍﻟﻘﻁﺭ‬
‫ﻹﻨﺸﺎﺀ‬         ‫ﺇﻨﺸﺎﺀ‬           ‫ﺨﻀﻭﻉ ﻋﻠﻰ‬
        ‫ﻤﺤﻁﺎﺕ‬         ‫ﺒﺎﻟﻤﺘﺭ‬              ‫ﺴﻤﻙ ﺍﻟﺩﺍﺨﻠﻰ‬
  ‫ﺨﻁ‬           ‫ﺨﻁ‬             ‫ﻟﻤﻌﺩﻥ ﻁﻭل‬               ‫ﻗﻁﺭ ﺍﻟﺨﻁ‬
        ‫ﺍﻟﻀﺦ‬          ‫ﺍﻟﻤﻜﻌﺏ‬               ‫ﺍﻟﺨﻁ ﻟﻠﺨﻁ‬
‫ﺍﻷﻨﺎﺒﻴﺏ‬       ‫ﺍﻷﻨﺎﺒﻴﺏ‬         ‫ﺍﻟﻤﻭﺍﺴ ﺍﻟﺨﻁ‬
        ‫-١‪α(P‬‬          ‫ﻓﻲ‬                   ‫‪Di‬‬
‫ﻭﻤﺤﻁﺎ‬         ‫‪α Di‬‬            ‫ﻴﺭ ‪(P١- min‬‬
         ‫)٢‪P‬‬          ‫ﺍﻟﺴﺎﻋﺔ‬
  ‫ﺕ‬                           ‫)٢‪P‬‬   ‫‪σy‬‬
‫ﺍﻟﻀﺦ‬




                                             ‫- ٦٥ -‬
‫ﻭﻴﻤﻜﻥ ﺍﻟﺘﺤﻜﻡ ﻓﻲ ﺍﻟﻌﻭﺍﻤل ﺍﻟﻤﺘﻐﻴﺭﺓ ﻤﺜل ﻗﻁﺭ ﺍﻟﺨﻁ ﻭﻓﺎﻗﺩ‬
‫ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﻁﻭل ﺍﻟﺨﻁ ﺒﻬﺩﻑ ﺇﻴﺠﺎﺩ ﺃﻗل ﻗﻴﻤﺔ ﻤﻤﻜﻨﺔ ﻟـﺭﺃﺱ‬
‫ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺨﺩﻡ ﻹﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﻋﻠﻤـﺎ‬
‫ﹰ‬
‫ﺒﺄﻥ ﻤﻌﻅﻡ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺨﺩﻡ ﻴﺴﺘﻬﻠﻙ ﻓـﻲ ﺇﻨﺸـﺎﺀ ﺨـﻁ‬
‫ﺍﻷﻨﺎﺒﻴﺏ ﻨﻔﺴﻪ، ﻭﻗﺩ ﻴﺘﻀﺢ ﺃﻨﻪ ﻟﺘﺼﻤﻴﻡ ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺒﺄﻗل ﺭﺃﺱ‬
‫ﻤﺎل ﻓﺈﻨﻪ ﻴﺠﺏ ﺇﺨﺘﻴﺎﺭ ﺍﻟﻤﻭﺍﺴﻴﺭ ﺫﺍﺕ ﺍﻷﻗﻁﺎﺭ ﺍﻟﺼﻐﻴﺭﺓ ﻭﻓـﻲ‬
‫ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻓﺈﻥ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﻗﺩ ﺘﻜﻭﻥ ﻤﺘﻘﺎﺭﺒﺔ ﻭﻫﺫﺍ ﻴﺤﻘـﻕ‬
‫ﺃﻋﻠﻰ ﺇﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻹﺴﺘﺜﻤﺎﺭﺍﺕ ﺍﻟﻤﺩﻓﻭﻋﺔ ﻓﻲ ﺃﻯ ﻭﻗـﺕ ﻓـﻭﺭ‬
‫ﻀﺦ ﻫﺫﻩ ﺍﻹﺴﺘﺜﻤﺎﺭﺍﺕ ﻭﻴﺠﺏ ﺃﻥ ﻨﺘﻼﻗﻰ ﻀﺦ ﺃﻯ ﺇﺴﺘﺜﻤﺎﺭﺍﺕ‬
‫ﻏﻴﺭ ﻀﺭﻭﺭﻴﺔ ﻤﺒﻜﺭﺍ ﺤﻴﺙ ﺃﻨﻪ ﻴﺘﺴﺒﺏ ﻓﻲ ﻋﺩﻡ ﺍﻹﺴﺘﻔﺎﺩﺓ ﻤﻥ‬
                                 ‫ﹰ‬
                           ‫ﻫﺫﻩ ﺍﻹﺴﺘﺜﻤﺎﺭﺍﺕ ﻋﺩﺓ ﺴﻨﻭﺍﺕ.‬

                      ‫ﻤﺜﺎل ﻋﻠﻰ ﺘﺼﻤﻴﻡ ﺨﻁ ﺃﻨﺎﺒﻴﺏ :‬
‫ﻤﻁﻠﻭﺏ ﻨﻘل ﺴﺎﺌل ﻟﻤﺴﺎﻓﺔ ﻗﺩﺭﻫﺎ ٠٩١ﻜﻴﻠﻭ ﻤﺘـﺭ ﻭﺒﻜﻤﻴـﺔ‬
‫ﻗﺩﺭﻫﺎ ٢ ﻤﻠﻴﻭﻥ ﻁﻥ ﺴﻨﻭﻴﺎ ﺴﻭﻑ ﺘﺯﺩﺍﺩ ﻤﺴﺘﻘﺒﻼ ﺇﻟﻰ ٥ ﻤﻠﻴﻭﻥ‬
            ‫ﹰ‬                ‫ﹰ‬
                                            ‫ﻁﻥ ﺴﻨﻭﻴﺎ.‬
                                             ‫ﹰ‬




                       ‫- ٧٥ -‬
‫ﺍﻟﺤل : ﻨﺤﺴﺏ ﺃﻭﻻ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﺒﺩﺌﻴﺔ ﻭﺍﻟﻘﺼﻭﻯ ﺍﻟﻤﻁﻠـﻭﺏ‬
                                  ‫ﹰ‬
‫ﻨﻘﻠﻬﺎ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺒﻔﺭﺽ ﺃﻥ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻁﻠـﻭﺏ‬
                                        ‫6 01 × 2‬
     ‫‪Q Initial‬‬   ‫= ‪= 2 × 10 ton / year‬‬
                         ‫6‬
                                                 ‫ﻨﻘﻠﻪ ﻫﻭ ﺍﻟﻤﺎﺀ.‬
                                       ‫‪7200sp.gr‬‬

   ‫‪Qinitial= ٢٧٧,٧٧ mt٣/hr‬‬
                                     ‫6 01 × 5‬
‫= ‪QUltimate = 5 × 10 6 ton / year‬‬             ‫‪= 694.44mt 3 / hr‬‬
                                    ‫‪7200sp.gr‬‬


‫ﺜﻡ ﻨﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﺩﻨﻰ ﻭﺍﻷﻗﺼﻰ ﻷﻗﻁﺎﺭ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺘـﻲ‬
                             ‫ﺘﺴﺘﻭﻋﺏ ﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ‬
                 ‫44. 496‬
‫= ‪min .D i‬‬               ‫‪= 11 .265 inch‬‬
                  ‫274. 5‬
                  ‫44. 496‬
‫= ‪max .D i‬‬                ‫‪= 15 .93 inch‬‬
                   ‫637. 2‬



‫ﻭﻤﻤﺎ ﺴﺒﻕ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺃﺩﻨﻰ ﻭﺃﻗﺼﻰ ﻗﻁﺭ ﻟﻨﻘل ﻫﺫﺍ ﺍﻟﻤـﺩﻯ‬
‫ﻤﻥ ﺍﻟﻜﻤﻴﺎﺕ ﻴﺴﺎﻭﻯ٢١، ٦١ ﺒﻭﺼﺔ ﻋﻠﻰ ﺍﻟﺘـﻭﺍﻟﻰ، ﻭﺒـﺫﻟﻙ‬
‫ﻴﻤﻜﻥ ﺇﺨﺘﻴﺎﺭ ٣ ﺃﻗﻁﺎﺭ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﻼﺯﻡ ﻟﻨﻘل ﻫﺫﺍ ﺍﻟﻤـﺩﻯ‬
‫ﻤﻥ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﻭﻫﺫﻩ ﺍﻷﻗﻁﺎﺭ ﻫﻰ ٢١ ﺒﻭﺼـﺔ،‬
                                          ‫٤١ ﺒﻭﺼﺔ ﻭ٦١ ﺒﻭﺼﺔ.‬

                               ‫- ٨٥ -‬
‫: ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺒﻘﻁﺭ ٢١ ﺒﻭﺼﺔ ﺒﻤﺤﻁﺔ ﻀﺦ ﻭﺍﺤﺩﺓ‬                ‫ﺃﻭﻻ‬
                                                       ‫ﹰ‬
‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ ﻭﻴـﺘﻡ ﺇﻀـﺎﻓﺔ ﻤﺤﻁـﺔ ﻀـﺦ‬
‫ﻤﺴﺎﻋﺩﺓ ﻓﻲ ﻤﻨﺘﺼﻑ ﺍﻟﻁﻭل ﺘﻘﺭﻴﺒﺎ ﻓﻴﻤﺎ ﺒﻌﺩ ﺜﻡ ﺒﻌـﺩ‬
                 ‫ﹰ‬
‫ﺫﻟﻙ ﻴﺘﻡ ﺇﻀﺎﻓﺔ ﻋﺩﺩ ٢ ﻤﺤﻁﺔ ﻀﺦ ﻤﺴﺎﻋﺩﺓ ﻋﻠـﻰ‬
‫ﻤﺴﺎﻓﺔ ﺭﺒﻊ ﻁﻭل ﺍﻟﺨﻁ ﺘﻘﺭﻴﺒﺎ ﻤﻥ ﺒﺩﺍﻴﺘـﻪ ﻭﻨﻬﺎﻴﺘـﻪ‬
                    ‫ﹰ‬
                                ‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ‬
‫ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﺘﻡ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﺃﻯ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ‬
             ‫ﺍﻟﻤﺭﺘﺒﻁ ﺒﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﻜﺎﻵﺘﻲ :‬
‫ﻟﻠﺨﻁ ٢١ ﺒﻭﺼﺔ ‪ Standard weight‬ﺴـﻤﻙ ﺍﻟﺨـﻁ =‬
                                              ‫٥٧٣,٠ ﺒﻭﺼﺔ‬
  ‫‪Di=١٢,٧٥ – ٢ (٠,٣٧٥) = ١٢// and L = ١٩٠ kmt‬‬
                  ‫١( ﻟﻠﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ ‪QI=٢٧٧,٧٧ m٣/hr‬‬
       ‫77.772‬
‫=‪V‬‬               ‫‪= 1.057mt / sec‬‬
     ‫2 )21(428.1‬

‫ﺒﺘﻁﺒﻴﻕ ﻤﻌﺎﺩﻟﺔ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻟﻠﺴﺭﻴﺎﻥ ﺍﻟﻤﻀﻁﺭﺏ‬
                                               ‫ﺩﺍﺨل ﺍﻷﻨﺎﺒﻴﺏ‬
                  ‫57.1 77.772)091( 52.01‬
‫× 5245.71 = ‪h f‬‬                          ‫‪= 471.2mt‬‬
                           ‫57.4 21‬


                          ‫- ٩٥ -‬
‫ﻭﺒﺫﻟﻙ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓﻲ ﺼـﻭﺭﺓ ﻀـﻐﻁ ﻴﺴـﺎﻭﻯ‬
                                   ‫‪sp.gr‬‬
                         ‫× 2.174‬         ‫2 ‪= 47.12kg / cm‬‬
                                    ‫01‬
‫ﻭﻴﺘﻀﺢ ﻤﻤﺎ ﺴﺒﻕ ﺃﻨﻪ ﻴﻜﻔﻲ ﺘﺭﻜﻴﺏ ﻤﺤﻁﺔ ﻀﺦ ﻭﺍﺤﺩﺓ ﻓﻲ‬
                     ‫ﺒﺩﺍﻴﺔ ﺍﻟﺨﻁ ﻭﺫﻟﻙ ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ.‬
             ‫٢( ﻟﻠﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ ‪Qu = ٦٩٤,٤٤ m٣/hr‬‬
                         ‫ﻨﻜﺭﺭ ﻨﻔﺱ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺴﺎﺒﻘﺔ:‬
  ‫‪V = ٢,٦٤ mt/sec‬‬
  ‫٢‪hf = ٢٣٤,٢ kg/cm‬‬
‫ﻭﺤﻴﺙ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ ﻴﺘﻌﺩﻯ ﺍﻟﻀﻐﻁ ﺍﻵﻤﻥ ﺍﻟﺫﻯ ﻴﺘﺤﻤﻠﻪ‬
‫ﻤﻌﺩﻥ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ، ﻟﺫﻟﻙ ﻴﻜﻭﻥ ﻋﺩﺩ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﺍﻟﻤﻁﻠﻭﺒﺔ‬
‫ﻭﻤﻤـﺎ ﺴـﺒﻕ‬          ‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ ﻴﺴﺎﻭﻯ 643.3 =‬
              ‫2.432‬
               ‫07‬
‫ﻴﺘﻀﺢ ﺃﻨﻪ ﻴﺠﺏ ﺘﺭﻜﻴﺏ ٤ ﻤﺤﻁﺎﺕ ﻀﺦ ﻋﻠﻰ ﻁـﻭل ﺍﻟﺨـﻁ‬
                               ‫ﻭﺫﻟﻙ ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ.‬
‫: ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺒﻘﻁﺭ ٤١ ﺒﻭﺼﺔ ﺒﻤﺤﻁﺔ ﻀﺦ ﻭﺍﺤﺩﺓ‬              ‫ﺜﺎﻨﻴﺎ‬
                                                     ‫ﹰ‬
‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ ﺜﻡ ﺒﻌﺩ ﺫﻟﻙ ﻴﺘﻡ ﺇﻀﺎﻓﺔ ﻤﺤﻁـﺔ‬
‫ﻀﺦ ﻤﺴﺎﻋﺩﺓ ﻓﻲ ﻤﻨﺘﺼﻑ ﻁﻭل ﺍﻟﺨﻁ ﺘﻘﺭﻴﺒﺎ ﻟﻨﻘـل‬
      ‫ﹰ‬
                                ‫ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ.‬

                       ‫- ٠٦ -‬
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968
5968

More Related Content

What's hot

Unit i- properties of fluid
Unit i- properties of fluidUnit i- properties of fluid
Unit i- properties of fluidsubhash kumar
 
Drilling engineering laboratory manual by Muhammed Jamal Awl
Drilling engineering laboratory manual by Muhammed Jamal AwlDrilling engineering laboratory manual by Muhammed Jamal Awl
Drilling engineering laboratory manual by Muhammed Jamal AwlMuhammed Fuad Al-Barznji
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityM.T.H Group
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanicsabrish shewa
 
Fluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer ConceptFluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer ConceptAddisu Dagne Zegeye
 
080118 chapter 7 flow measurements
080118 chapter 7 flow measurements080118 chapter 7 flow measurements
080118 chapter 7 flow measurementsBinu Karki
 
S3 Minor Losses Presentation
S3 Minor Losses PresentationS3 Minor Losses Presentation
S3 Minor Losses Presentationno suhaila
 
venturi and orifices meter
venturi and orifices meterventuri and orifices meter
venturi and orifices meterAryanChaurasia3
 
Centrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid LaboratoryCentrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid LaboratorySaif al-din ali
 
Pumps and types of pumps in detail
Pumps and types of pumps in detailPumps and types of pumps in detail
Pumps and types of pumps in detailFARRUKH SHEHZAD
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsMohsin Siddique
 
hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami Louy Alhamy
 

What's hot (20)

Unit i- properties of fluid
Unit i- properties of fluidUnit i- properties of fluid
Unit i- properties of fluid
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Darcy’s law & chezy’s law
Darcy’s law & chezy’s lawDarcy’s law & chezy’s law
Darcy’s law & chezy’s law
 
Drilling engineering laboratory manual by Muhammed Jamal Awl
Drilling engineering laboratory manual by Muhammed Jamal AwlDrilling engineering laboratory manual by Muhammed Jamal Awl
Drilling engineering laboratory manual by Muhammed Jamal Awl
 
Friction factor
Friction factorFriction factor
Friction factor
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative Permeability
 
Centrifugal Pump
Centrifugal PumpCentrifugal Pump
Centrifugal Pump
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 
Fluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer ConceptFluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer Concept
 
080118 chapter 7 flow measurements
080118 chapter 7 flow measurements080118 chapter 7 flow measurements
080118 chapter 7 flow measurements
 
S3 Minor Losses Presentation
S3 Minor Losses PresentationS3 Minor Losses Presentation
S3 Minor Losses Presentation
 
venturi and orifices meter
venturi and orifices meterventuri and orifices meter
venturi and orifices meter
 
Notches and weir
Notches and weirNotches and weir
Notches and weir
 
Centrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid LaboratoryCentrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid Laboratory
 
Pumps and types of pumps in detail
Pumps and types of pumps in detailPumps and types of pumps in detail
Pumps and types of pumps in detail
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flows
 
Mud density
Mud densityMud density
Mud density
 
Pitot tube
Pitot tubePitot tube
Pitot tube
 
hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami hydro chapter_3 by louy Al hami
hydro chapter_3 by louy Al hami
 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumps
 

Viewers also liked (10)

5950
59505950
5950
 
642
642642
642
 
715
715715
715
 
709
709709
709
 
718
718718
718
 
fluid-mechanics
fluid-mechanicsfluid-mechanics
fluid-mechanics
 
fluid mechanics- pressure measurement
fluid mechanics- pressure measurementfluid mechanics- pressure measurement
fluid mechanics- pressure measurement
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Fluid statics
Fluid staticsFluid statics
Fluid statics
 
Pressure measurement id Mitesh Kuamr
Pressure measurement id Mitesh KuamrPressure measurement id Mitesh Kuamr
Pressure measurement id Mitesh Kuamr
 

More from kotob arabia (20)

1086
10861086
1086
 
960
960960
960
 
764
764764
764
 
6487
64876487
6487
 
6205
62056205
6205
 
942
942942
942
 
96
9696
96
 
5962
59625962
5962
 
763
763763
763
 
6486
64866486
6486
 
745
745745
745
 
6204
62046204
6204
 
6435
64356435
6435
 
5961
59615961
5961
 
6182
61826182
6182
 
959
959959
959
 
941
941941
941
 
594
594594
594
 
762
762762
762
 
744
744744
744
 

5968

  • 1.
  • 3. ‫ﻃﺒﻘﺎ ﻟﻘﻮﺍﻧﲔ ﺍﳌﻠﻜﻴﺔ ﺍﻟﻔﻜﺮﻳﺔ‬ ‫א‬ ‫א‬ ‫א‬ ‫.‬ ‫אא‬ ‫א‬ ‫)ﻋـﱪ ﺍﻻﻧﱰﻧـﺖ ﺃﻭ‬ ‫א‬ ‫אא‬ ‫ﻟﻠﻤﻜﺘﺒــﺎﺕ ﺍﻻﻟﻜﱰﻭﻧﻴــﺔ ﺃﻭ ﺍﻷﻗــﺮﺍﺹ ﺍﳌﺪﳎــﺔ ﺃﻭ ﺍﻯ‬ ‫א‬ ‫ﻭﺳﻴﻠﺔ ﺃﺧﺮﻯ (‬ ‫א‬ ‫א‬ ‫.‬ ‫.‬ ‫א א‬
  • 4. ‫‪‬‬ ‫:ﺍﻟﻨﻅﺭﻴﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ﻓﻲ ﺍﻟﺘﺼﻤﻴﻤﺎﺕ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴﺔ - ٦ -‬ ‫ﺍﻟﺒﺎﺏ ﺍﻷﻭل‬ ‫: ﺘﺼﻤﻴﻡ ﺨﻁﻭﻁ ﺃﻨﺎﺒﻴﺏ ﻨﻘل ﺍﻟﺒﺘﺭﻭل .......... - ٣٤ -‬ ‫ﺍﻟﺒﺎﺏ ﺍﻟﺜﺎﻨﻲ‬ ‫ﺍﻟﺒﺎﺏ ﺍﻟﺜﺎﻟﺙ : ﺘﻁﺒﻴﻘﺎﺕ ﻋﻠﻰ ﺍﻟﺘﺼﻤﻴﻤﺎﺕ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴﺔ ...... - ٧٧ -‬ ‫ﺍﻟﺒﺎﺏ ﺍﻟﺭﺍﺒﻊ : ﺘﺼﻤﻴﻡ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ ................... - ٢١١ -‬ ‫-٣-‬
  • 6. ‫‪‬‬ ‫ﻤﻨﺫ ﻋﺩﺓ ﺴﻨﻭﺍﺕ ﻭﺍﻟﺤﺎﺠﺔ ﻤﺎﺴﺔ ﺇﻟـﻰ ﺒﺤـﺙ ﻤﺘﺨﺼـﺹ‬ ‫ﻴﺘﻨﺎﻭل ﻤﻭﻀﻭﻉ ﺍﻟﺘﺼﻤﻴﻤﺎﺕ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴﺔ ﻟﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬ ‫ﻭﺘﻁﺒﻴﻘﺎﺘﻬﺎ ﻓﻲ ﻤﺠﺎل ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﻭﻗﺩ ﺃﻋﺩﺩﺕ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﺁﻤﻼ‬ ‫ﹰ‬ ‫ﺃﻥ ﻴﻭﻀﺢ ﺍﻟﻤﻭﻀﻭﻋﺎﺕ ﺍﻟﺘﻲ ﻗﺩ ﺘﻜﻭﻥ ﻤﺒﻬﻤﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺠﺎل‬ ‫ﻜﻤﺎ ﺃﻥ ﺇﺤﺘﻭﺍﺀ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﻋﻠﻰ ﺒﻌﺽ ﺍﻟﻤﻌﺎﺩﻻﺕ ﻭﺍﻟﺠـﺩﺍﻭل‬ ‫ﻭﺍﻟﻘﻭﺍﻋ ـﺩ ﺍﻟﻬﻴﺩﺭﻭﻟﻴﻜﻴ ـﺔ ﺍﻟﻤﺴ ـﺘﻨﺘﺠﺔ ﺒﻤﻌﺭﻓﺘ ـﻰ ﻭﺍﻷﻤﺜﻠ ـﺔ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ﻭﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺘﻭﻀﻴﺤﻴﺔ ﻭﺍﻟﺘﻲ ﺤﺎﻭﻟـﺕ ﺠﺎﻫـﺩﺍ ﺃﻥ ﺃﺠﻌﻠﻬـﺎ‬ ‫ﹰ‬ ‫ﻤﺒﺴﻁﺔ ﺤﺘﻰ ﻴﺘﺴﻨﻰ ﻟﻜل ﺩﺍﺭﺱ ﺃﻭ ﻤﺘﺨﺼﺹ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺠﺎل‬ ‫ﺃﻥ ﻴﺘﻨﺎﻭﻟﻬﺎ ﺒﻜل ﺴﻼﺴﺔ ﻭﻴﺴﺭ ﺁﻤﻼ ﻤﻥ ﺍﷲ ﻋﺯ ﻭﺠل ﺃﻥ ﻴﻌﻭﺩ‬ ‫ﹰ‬ ‫ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﺒﺎﻟﻨﻔﻊ ﻋﻠﻰ ﺠﻤﻴﻊ ﺍﻟﻤﻬﺘﻤﻴﻥ ﺒﻬﺫﺍ ﺍﻟﻤﺠﺎل.‬ ‫-٥-‬
  • 7.   ‫א‬ ‫א‬ ‫א‬ ‫א‬ ‫א‬ ‫א‬ -٦-
  • 8. ‫ﺍﻟﻜﺜﺎﻓﺔ )‪:(Density‬‬ ‫ﻭﻫﻰ ﺘﻌﺒﺭ ﻋﻥ ﻜﺘﻠﺔ ﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ ﻤﻥ ﺍﻟﻤﺎﺩﺓ ﻭﻴﺭﻤﺯ ﻟﻬـﺎ‬ ‫ﺒﺎﻟﺭﻤﺯ ‪ ρ‬ﻭﻭﺤﺩﺘﻬﺎ ﻫﻰ ﻜﺘﻠﺔ ﺍﻟﺠﺭﺍﻡ ﻟﻜل ﺴـﻨﺘﻴﻤﺘﺭ ﻤﻜﻌـﺏ‬ ‫)ﺠﻡ/ﺴﻡ٣( ﻭﺘﻌﺘﻤﺩ ﻜﺜﺎﻓﺔ ﺍﻟﺴﺎﺌل ﻋﻠﻰ ﻨﻭﻋﻪ ﻭﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ،‬ ‫ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺀ ﺘﺴﺎﻭﻯ ١ﺠﻡ/ﺴﻡ٣ ﻋﻨﺩ ٦,٥١‪º‬ﻡ.‬ ‫ﺍﻟﻭﺯﻥ ﺍﻟﻨﻭﻋﻰ )‪:(Specific weight‬‬ ‫ﻭﻫﻭ ﻴﻌﺒﺭ ﻋﻥ ﻭﺯﻥ ﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ ﻤﻥ ﺍﻟﻤﺎﺩﺓ ﻭﻴﺭﻤﺯ ﻟـﻪ‬ ‫ﺒﺎﻟﺭﻤﺯ ‪ w‬ﻭﻭﺤﺩﺘﻪ ﻫﻰ ﻗﻭﺓ ﺍﻟﺠﺭﺍﻡ ﻟﻜـل ﺴـﻨﺘﻴﻤﺘﺭ ﻤﻜﻌـﺏ‬ ‫)ﺠﻡ/ﺴﻡ٣( ﻤﻊ ﻤﻼﺤﻅﺔ ﺃﻥ ‪ w = ρg‬ﺤﻴﺙ ﺃﻥ ‪ g‬ﻫﻰ ﻋﺠﻠـﺔ‬ ‫ﺍﻟﺠﺎﺫﺒﻴﺔ ﺍﻷﺭﻀﻴﺔ ﻭﺘﺴﺎﻭﻯ ٧٦٠٨,٩ ﻤﺘﺭ/ﺜﺎﻨﻴﺔ٢.‬ ‫-٧-‬
  • 9. ‫ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ )‪:(Specific Gravity‬‬ ‫ﻭﺘﻌﺭﻑ ﺒﺄﻨﻬﺎ ﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺩﺓ ﺃﻭ ﻭﺯﻨﻬـﺎ ﺍﻟﻨـﻭﻋﻰ‬ ‫ﻭﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺀ ﺃﻭ ﻭﺯﻨﻪ ﺍﻟﻨﻭﻋﻰ ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ sp.gr‬ﻭﻫﻰ‬ ‫ﻨﺴﺒﺔ ﺒﺩﻭﻥ ﻭﺤﺩﺍﺕ، ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻤـﺎﺀ‬ ‫ﺘﺴﺎﻭﻯ ١ ﻭﻟﻠﺯﺌﺒﻕ ﺘﺴـﺎﻭﻯ ٦,٣١ ﻭﻓـﻲ ﺍﻟﻨﻅـﺎﻡ ﺍﻟﻤﺘـﺭﻯ‬ ‫ﻟﻠﻭﺤﺩﺍﺕ )ﺴﻨﺘﻴﻤﺘﺭ – ﺠﺭﺍﻡ – ﺜﺎﻨﻴﺔ( ﺘﻜﻭﻥ ﺍﻟﻜﺜﺎﻓـﺔ ﺍﻟﻨﺴـﺒﻴﺔ‬ ‫ﺘﺴﺎﻭﻯ ﺍﻟﻜﺜﺎﻓﺔ ﻋﺩﺩﻴﺎ.‬ ‫ﹰ‬ ‫ﺍﻟﻀﻐﻁ )‪:(Pressure‬‬ ‫ﻴﻌﺭﻑ ﺍﻟﻀﻐﻁ ﺒﺄﻨﻪ ﺍﻟﻘﻭﺓ ﺍﻟﻤﺅﺜﺭﺓ ﻋﻠﻰ ﻭﺤـﺩﺓ ﺍﻟﻤﺴـﺎﺤﺔ‬ ‫ﻭﺘﻜﻭﻥ ﺍﻟﻘﻭﺓ ﻤﺘﻌﺎﻤﺩﺓ ﻋﻠﻰ ﺍﻟﻤﺴﺎﺤﺔ ﻭﻭﺤﺩﺘﻪ ﻫـﻰ ﻜﻴﻠـﻭﺠﺭﺍﻡ‬ ‫ﻟﻜل ﺴﻨﺘﻴﻤﺘﺭ ﻤﺭﺒﻊ )ﻜﺠﻡ/ﺴﻡ٢( ﻭﻓﻲ ﺤﺎﻟﺔ ﻭﺠﻭﺩ ﺴﺎﺌﻠﻴﻥ ﻟﻬـﻡ‬ ‫ﻜﺜﺎﻓﺔ ١، ٥,٠ ﻜﻤﺎ ﺒﺎﻟﺸﻜل )١( ﻓﺈﻥ ﺍﻟﺴﺎﺌل ﺫﻭ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻷﻗـل‬ ‫ﻻﺒﺩ ﺃﻥ ﻴﺼﻌﺩ ﺇﻟﻰ ﺇﺭﺘﻔﺎﻉ ﻋﻤﻭﺩ ﺃﻋﻠﻰ ﻟﻜﻲ ﻴﻭﻟﺩ ﻨﻔﺱ ﺍﻟﻀﻐﻁ‬ ‫ﻋﻨﺩ ﻨﻔﺱ ﺍﻟﻤﺴﺘﻭﻯ ﻤﺜل ﺍﻟﺴﺎﺌل ﺍﻷﺜﻘل ﻭﻴﻜﻭﻥ ﺍﻟﻀـﻐﻁ ﻋﻨـﺩ‬ ‫ﺃﺴﻔل ﺍﻟﻌﻤﻭﺩ ‪ H‬ﻟﻜل ﺴﺎﺌل ﻴﺴﺎﻭﻯ ﻭﺯﻥ ﺍﻟﺴﺎﺌل ﻓـﻭﻕ ﻨﻘﻁـﺔ‬ ‫ﻗﻴﺎﺱ ﺍﻟﻀﻐﻁ ﻤﻘﺴﻭﻤﺎ ﻋﻠﻰ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁـﻊ ‪ A‬ﻋﻨـﺩ ﻨﻔـﺱ‬ ‫ﹰ‬ ‫ﺃﻯ ﻴﺴﺎﻭﻯ ‪ WH‬ﻭﺒﺫﻟﻙ ﻴﻤﻜﻨﻨﺎ ﺍﻟﺘﻌﺒﻴﺭ ﻋـﻥ‬ ‫ﺍﻟﻨﻘﻁﺔ‬ ‫‪AHW‬‬ ‫‪A‬‬ ‫-٨-‬
  • 10. ‫ﺍﻟﻀﻐﻁ ﺒﺩﻻﻟﺔ ﺇﺭﺘﻔﺎﻉ ﻋﻤﻭﺩ ﺴﺎﺌل ﻤﻌﻴﻥ ﻭﻫـﻭ ﻤـﺎ ﻴﺴـﻤﻰ‬ ‫‪ Head‬ﺃﻭ ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ‪ Pressure Energy‬ﻭﻭﺤﺩﺘﻪ ﻫـﻰ‬ ‫ﻜﺠﻡ.ﻤﺘﺭ/ﻜﺠﻡ ﺃﻯ ﺍﻟﻤﺘﺭ ﻤﻊ ﻤﻼﺤﻅﺔ ﺃﻥ )‪ (Head‬ﺒـﺎﻟﻤﺘﺭ =‬ ‫ﺍﻟﻀﻐﻁ ﺒﺎﻟﻜﺠﻡ/ﺴﻡ٢×٠١/ ‪Sp.gr‬‬ ‫ﺸﻜل )١(‬ ‫-٩-‬
  • 11. ‫ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ ﻴﺴﺎﻭﻯ ٣٠,١ﻜﺠﻡ/ﺴﻡ٢‬ ‫ﻋﻨﺩ ﻤﺴﺘﻭﻯ ﺴﻁﺢ ﺍﻟﺒﺤﺭ ﻭﻫﻭ ﻴﺴﺎﻭﻯ ﺍﻟﻀﻐﻁ ﺍﻟﻨﺎﺘﺞ ﻤﻥ ﻭﺯﻥ‬ ‫01 × 30.1‬ ‫ﺃﻯ ٣,٠١ ﻤﺘﺭ ﻭﻴﺴﺎﻭﻯ ﺃﻴﻀﺎ‬ ‫ﹰ‬ ‫ﻋﻤﻭﺩ ﻤﺎﺀ ﺇﺭﺘﻔﺎﻋﻪ‬ ‫1‬ ‫ـﻪ‬ ‫ـﻕ ﺇﺭﺘﻔﺎﻋـ‬ ‫ـﻭﺩ ﺯﺌﺒـ‬ ‫ـﻐﻁ ﺍ ـﺎﺘﺞ ـﻥ ﻭﺯﻥ ﻋﻤـ‬ ‫ﻤـ‬ ‫ﻟﻨـ‬ ‫ﺍﻟﻀـ‬ ‫01 × 30.1‬ ‫ﺃﻯ ٦٧ﺴﻡ.‬ ‫‪= 0.76 mt‬‬ ‫6.31‬ ‫ﺍﻟﻀﻐﻭﻁ ﺍﻟﻌﻴﺎﺭﻴﺔ ﻭﺍﻟﻤﻁﻠﻘﺔ:‬ ‫ﺸﻜل )٢(‬ ‫- ٠١ -‬
  • 12. ‫ﻜﻤﺎ ﻴﺘﻀﺢ ﻤﻥ ﺸﻜل )٢( ﺃﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻌﻴـﺎﺭﻯ ) ‪Gage‬‬ ‫‪ (pressure‬ﻫﻭ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻨﺴـﻭﺏ ﺇﻟـﻰ ﺍﻟﻀـﻐﻁ ﺍﻟﺠـﻭﻯ‬ ‫)‪ (Atmospheric pressure‬ﺒﺈﻋﺘﺒﺎﺭ ﺃﻥ ﺍﻟﻀـﻐﻁ ﺍﻟﺠـﻭﻯ‬ ‫ﻴﺴﺎﻭﻯ ﺼﻔﺭ ﻓﻬﻭ ﺇﻤﺎ ﺃﻋﻠﻰ ﻤﻥ ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ ﻓﻴﺴﻤﻰ ﻀﻐﻁ‬ ‫)‪ (pressure‬ﺃﻭ ﺃﻗل ﻤﻥ ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ ﻓﻴﺴـﻤﻰ ﺘﻔﺭﻴـﻎ ﺃﻭ‬ ‫ﺨﻠﺨﻠﺔ )‪ (vacuum‬ﻭﻴﻘﺎﺱ ﻫﺫﺍ ﺍﻟﻀﻐﻁ ﺒﻭﺍﺴﻁﺔ ﺃﺠﻬﺯﺓ ﻤﺜـل‬ ‫ﺍﻟﻤ ـﺎﻨﻭﻤﺘﺭﺍﺕ ﻭﺃﻨﺒﻭﺒ ـﺔ ﺒ ـﻭﺭﺩﻭﻥ ﺃﻤ ـﺎ ﺍﻟﻀ ـﻐﻁ ﺍﻟﻤﻁﻠ ـﻕ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ ـ‬ ‫ـ‬ ‫)‪ (Absolute pressure‬ﻓﻬﻭ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﺼـﻔﺭ‬ ‫ﺍﻟﻤﻁﻠﻕ ﺤﻴﺙ ﺃﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻁﻠـﻕ = ﺍﻟﻀـﻐﻁ ﺍﻟﻌﻴـﺎﺭﻯ +‬ ‫ﺍﻟﻀﻐﻁ ﺍﻟﺠﻭﻯ.‬ ‫ﻀﻐﻁ ﺍﻟﺒﺨﺎﺭ )‪:(Vapor pressure‬‬ ‫ﻭﻴﻌﺭﻑ ﺒﺄﻨﻪ ﺍﻟﻀﻐﻁ ﺍﻟﺫﻯ ﻋﻨﺩﻩ ﻴﺘﺤﻭل ﺍﻟﺴﺎﺌل ﺇﻟﻰ ﺒﺨـﺎﺭ‬ ‫ﻭﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﻭﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ ﻭﻴﺘﻡ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻨـﻪ‬ ‫ﺒﺎﻟﻘﻴﻡ ﺍﻟﻤﻁﻠﻘﺔ ﻟﻠﻀﻐﻭﻁ، ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻀﻐﻁ ﺍﻟﺒﺨﺎﺭ ﻟﻠﻤﺎﺀ‬ ‫ـﺔ )٦,٣٢‪º‬ﻡ( ـﺎﻭﻯ‬ ‫ﻴﺴـ‬ ‫ـﺭﺍﺭﺓ ﺍﻟﻌﺎﺩﻴـ‬ ‫ـﺎﺕ ﺍﻟﺤـ‬ ‫ـﺩ ﺩﺭﺠـ‬ ‫ﻋﻨـ‬ ‫٣٠,٠ﻜﺠﻡ/ﺴﻡ٢ ﻤﻁﻠﻕ ﻤﻌﻨﻰ ﺫﻟﻙ ﺃﻨﻪ ﻟﻭ ﺘﻡ ﺨﻠﺨﻠﺔ ﺍﻟﻔﺭﺍﻍ ﻓﻭﻕ‬ ‫ﺴﻁﺢ ﺍﻟﻤﺎﺀ ﺤﺘﻰ ﻴﺼل ﺍﻟﻀﻐﻁ ﺇﻟﻰ ﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻓـﺈﻥ ﺍﻟﻤـﺎﺀ‬ ‫ﻴﺘﺒﺨﺭ ﻋﻨﺩ ﺩﺭﺠﺎﺕ ﺍﻟﺤﺭﺍﺭﺓ ﺍﻟﻌﺎﺩﻴﺔ.‬ ‫- ١١ -‬
  • 13. ‫ﺸﻜل )٣(‬ ‫ﺃﻗﺼﻰ ﻀﻐﻁ ﺴﺎﻟﺏ:‬ ‫ﻜﻤﺎ ﻴﺘﻀﺢ ﻤﻥ ﺸﻜل )٣( ﺃﻨﻪ ﺇﺫﺍ ﺘﻡ ﻋﻤـل ﺨﻠﺨﻠـﺔ ﻓـﻲ‬ ‫ﺍﻷﻨﺒﻭﺒﺔ ﺍﻟﺭﺃﺴﻴﺔ ﻓﺈﻥ ﺍﻟﻤﺎﺀ ﻴﺼﻌﺩ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﺒﺘﺄﺜﻴﺭ ﺍﻟﻀـﻐﻁ‬ ‫ﺍﻟﺠﻭﻯ ﺤﺘﻰ ﻴﺼل ﺇﻟﻰ ﺤﺩ ﻤﻌﻴﻥ ﻴﻜﻭﻥ ﺍﻟﻀﻐﻁ ﻋﻨﺩﻩ ﻴﺴـﺎﻭﻯ‬ ‫ﻀﻐﻁ ﺍﻟﺒﺨﺎﺭ ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﺍﻹﺭﺘﻔﺎﻉ ﻤﻥ ﺴﻁﺢ ﺍﻟﺴﺎﺌل ﺒﺎﻹﻨـﺎﺀ‬ ‫ﺤﺘﻰ ﻫﺫﺍ ﺍﻟﺤﺩ ﺒﺄﻗﺼﻰ ﻀﻐﻁ ﺴﺎﻟﺏ )ﻓﻲ ﺼﻭﺭﺓ ‪ (Head‬ﻭﻫﻭ‬ ‫]30.0 − 30.1[ × 01‬ ‫ﻟﻠﻤـﺎﺀ ﻋﻨـﺩ ﺩﺭﺠـﺎﺕ‬ ‫ﻴﺴﺎﻭﻯ ‪= 10 mt‬‬ ‫1‬ ‫ﺍﻟﺤﺭﺍﺭﺓ ﺍﻟﻌﺎﺩﻴﺔ.‬ ‫- ٢١ -‬
  • 14. ‫ﺍﻟﻠﺯﻭﺠﺔ )‪:(Viscosity‬‬ ‫ﻴﻁﻠﻕ ﺇﺴﻡ ﺍﻟﻤﻭﺍﺌﻊ ﻋﻠﻰ ﺍﻟﺴﻭﺍﺌل ﻭﺍﻟﻐﺎﺯﺍﺕ ﻭﺘﺴﻤﻰ ﺨﺎﺼﻴﺔ‬ ‫ﺍﻟﺴﺎﺌل ﺍﻟﺘﻲ ﺘﻭﻟﺩ ﻤﻘﺎﻭﻤﺔ ﻟﻘﻭﻯ ﺍﻟﻘﺹ ﻓﻲ ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻠﺯﻭﺠـﺔ‬ ‫ﻭﺇﺫﺍ ﺘﻡ ﻤلﺀ ﺍﻟﻔﺭﺍﻍ ﺒﻴﻥ ﺴﻁﺤﻴﻥ ﻤﺴﺘﻭﻴﻴﻥ ﺒﺴﺎﺌل ﻓﻴﻠﺯﻡ ﻗـﻭﺓ‬ ‫ﻟﻜﻲ ﻴﺘﺤﺭﻙ ﺇﺤﺩﻯ ﺍﻟﺴﻁﺤﻴﻥ ﺒﺴﺭﻋﺔ ﺜﺎﺒﺘﺔ ﺒﺎﻟﻨﺴـﺒﺔ ﻟﻶﺨـﺭ‬ ‫ﻭﺘﺘﻐﻴﺭ ﺴﺭﻋﺔ ﺍﻟﺴﺎﺌل ﺨﻁﻴﺎ ﺒﻴﻥ ﺍﻟﺴﻁﺤﻴﻥ ﻭﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﺍﻟﻘـﻭﺓ‬ ‫ﹰ‬ ‫ﻟﻜل ﻭﺤﺩﺓ ﻤﺴﺎﺤﺔ )ﺇﺠﻬﺎﺩ ﺍﻟﻘﺹ( ﺇﻟﻰ ﺍﻟﺴﺭﻋﺔ ﻟﻜـل ﻭﺤـﺩﺓ‬ ‫ﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﺴﻁﺤﻴﻥ )ﻤﻌﺩل ﺍﻟﻘﺹ( ﺘﻜﻭﻥ ﻤﻘﻴـﺎﺱ ﻟﺯﻭﺠـﺔ‬ ‫ﺍﻟﺴﺎﺌل ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﺃﻭ ﺍﻟﻤﻁﻠﻘﺔ ﻭﺍﻟﺴﻭﺍﺌل ﺍﻟﺘﻲ ﺘﺘﻨﺎﺴـﺏ ﻓﻴﻬـﺎ‬ ‫ﺇﺠﻬﺎﺩﺍﺕ ﺍﻟﻘﺹ ﻤﻊ ﻤﻌﺩﻻﺕ ﺍﻟﻘﺹ ﺘﻜﻭﻥ ﻟﻬﺎ ﻤﻌﺎﻤﻼﺕ ﻟﺯﻭﺠﺔ‬ ‫ﺜﺎﺒﺘﺔ ﻋﻨﺩ ﻀﻐﻁ ﻭﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﻤﺤﺩﺩﻴﻥ ﻭﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﺇﺴـﻡ‬ ‫ﺍﻟﺴـﻭﺍﺌل ﺍﻟﺤﻘﻴﻘﻴـﺔ ‪ Newtonian Liquids‬ﻭﻓﻴﻬـﺎ ﺘﺯﻴـﺩ‬ ‫ﺍﻟﻠﺯﻭﺠﺔ ﻭﻤﻘﺎﻭﻤﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻤﻊ ﻨﻘﺹ ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ.‬ ‫ﻭﺘﻜﻭﻥ ﻭﺤـﺩﺓ ﺍﻟﻠﺯﻭﺠـﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴـﺔ ﺃﻭ ﺍﻟﻤﻁﻠﻘـﺔ ﻫـﻰ‬ ‫ﺩﺍﻴﻥ.ﺜﺎﻨﻴﺔ/ﺴﻡ٢ ﻭﺘﺴـﻤﻰ ﺒـﻭﻴﺯ )‪ (poise‬ﻭﺘﺴـﺎﻭﻯ ﻋـﺩﺩﻴﺎ‬ ‫ﹰ‬ ‫ﺠﻡ/ﺴﻡ.ﺜﺎﻨﻴﺔ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺸﺎﺌﻊ ﻟﻠﺯﻭﺠﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﺃﻭ ﺍﻟﻤﻁﻠﻘـﺔ‬ ‫× ‪Centipoise‬‬ ‫ﻴﻜﻭﻥ ﺴﻨﺘﻰ ﺒﻭﻴﺯ )١/٠٠١ﺒﻭﻴﺯ( ﺤﻴﺙ ﺃﻥ‬ ‫‪.١٠-٣ = N.sec/m٢ = Pa.sec‬‬ ‫- ٣١ -‬
  • 15. ‫‪N – Newton‬‬ ‫٢‪Pa – Pascal = N/m‬‬ ‫ﻭﺃﺤﻴﺎﻨﺎ ﻴﻌﺒﺭ ﻋﻥ ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺒﺎﻟﻠﺯﻭﺠـﺔ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴـﺔ‬ ‫ﹰ‬ ‫ﻭﻫﻰ ﺘﺴﺎﻭﻯ ﺍﻟﻠﺯﻭﺠﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﻤﻘﺴﻭﻤﺔ ﻋﻠﻰ ﺍﻟﻜﺜﺎﻓﺔ )‪(w/g‬‬ ‫ﻭﻭﺤ ـﺩﺘﻬﺎ ﺍﻟﻤﺘﺭﻴ ـﺔ ﻫ ـﻰ ﺴ ـﻡ٢/ﺜﺎﻨﻴ ـﺔ ﻭﺘﺴ ـﻤﻰ ﺴ ـﺘﻭﻙ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ ـ ـ‬ ‫ـ‬ ‫)‪ (stoke‬ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﺸﺎﺌﻊ ﻟﻠﺯﻭﺠﺔ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴﺔ ﻴﻜـﻭﻥ ﺴـﻨﺘﻰ‬ ‫ﺴﺘﻭﻙ )١/٠٠١ ﺴﺘﻭﻙ( ﺤﻴﺙ ﺃﻥ‬ ‫‪Centistoke = mm٢/sec‬‬ ‫‪Centistoke × ١٠-٦ = m٢/sec‬‬ ‫ﻭﺘﻌﺘﻤﺩ ﺍﻟﻠﺯﻭﺠﺔ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﻭﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ، ﻋﻠـﻰ‬ ‫ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻟﺯﻭﺠﺔ ﺍﻟﻤـﺎﺀ ﺘﺴـﺎﻭﻯ ٣١١٠,٠ ﺒـﻭﻴﺯ ﻋﻨـﺩ‬ ‫٦,٥١‪º‬ﻡ ﻭﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻤﺘﺭﻯ ﻟﻠﻭﺤﺩﺍﺕ )ﺴﻡ.ﺠﻡ.ﺜﺎﻨﻴﺔ( ﺘﻜـﻭﻥ‬ ‫ﺍﻟﻠﺯﻭﺠﺔ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴﺔ ﺒﺎﻟﺴﻨﺘﻰ ﺴﺘﻭﻙ = ﺍﻟﻠﺯﻭﺠﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﺃﻭ‬ ‫ﺍﻟﻤﻁﻠﻘﺔ ﺒﺎﻟﺴﻨﺘﻰ ﺒﻭﻴﺯ/‪ Sp.gr‬ﻭﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻟﻤﺘﺭﻴﺔ‬ ‫ﺇﻟﻰ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻹﻨﺠﻠﻴﺯﻴﺔ )ﻗـﺩﻡ – ﺭﻁـل – ﺜﺎﻨﻴـﺔ( ﻴﻜـﻭﻥ‬ ‫ﺭﻁل.ﺜﺎﻨﻴﺔ/ﻗﺩﻡ٢ = ٥٥٨٨٠٢٠٠٠٠,٠ ﺴﻨﺘﻰ ﺒﻭﻴﺯ.‬ ‫ﻗﺩﻡ٢/ﺜﺎﻨﻴﺔ = ٩٣٦٧٠١,٠ ﺴﻨﺘﻰ ﺴﺘﻭﻙ.‬ ‫- ٤١ -‬
  • 16. ‫ﻭﺍﻟﻤﺎﺌﻊ ﺍﻟﻤﺜﺎﻟﻰ ﻫﻭ ﺍﻟﻤﺎﺌﻊ ﺍﻟﺫﻯ ﻨﻌﺘﺒﺭﻩ ﺨﺎل ﻤﻥ ﺍﻟﻠﺯﻭﺠـﺔ‬ ‫ﻭﺘﺴﻬﻴﻼ ﻟﺩﺭﺍﺴﺔ ﺍﻟﻤﻌﺎﺩﻻﺕ ﻨﻌﺘﺒﺭ ﺍﻟﻤﺎﺌﻊ ﻤﺜﺎﻟﻴﺎ ﺒﺈﻫﻤﺎل ﺘـﺄﺜﻴﺭ‬ ‫ﹰ‬ ‫ﹰ‬ ‫ﺍﻟﻠﺯﻭﺠﺔ ﺜﻡ ﺇﺩﺨﺎل ﻤﻌﺎﻤﻼﺕ ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﺘﻲ ﻴـﺘﻡ ﺍﻟﺤﺼـﻭل‬ ‫ﻋﻠﻴﻬﺎ ﻤﻥ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻌﻤﻠﻴﺔ.‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ )‪:(Continuity Equation‬‬ ‫ﺸﻜل )٤(‬ ‫- ٥١ -‬
  • 17. ‫ﺘﺭﺒﻁ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺒﻴﻥ ﺍﻟﺴﺭﻋﺔ ﺍﻟﻤﺘﻭﺴـﻁﺔ ‪ V‬ﺍﻟﻌﻤﻭﺩﻴـﺔ‬ ‫ﻋﺒﺭ ﻤﻘﻁﻊ ﻓﻲ ﺃﻨﺒﻭﺒﺔ ﻭﺒﻴﻥ ﺍﻟﻤﺴﺎﺤﺔ ‪ A‬ﻟﻬﺫﺍ ﺍﻟﻤﻘﻁـﻊ ﻭﻜﻤـﺎ‬ ‫ﻴﺘﻀﺢ ﻤﻥ ﺸﻜل )٤( ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )١( ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻤﺴﺎﺤﺔ ١‪A‬‬ ‫ﻭﺍﻟﺴﺭﻋﺔ ١‪ V‬ﻭﻜﺜﺎﻓﺔ ﺍﻟﻤﺎﺌﻊ ١‪ ρ‬ﺘﻜﻭﻥ ﻜﺘﻠﺔ ﺍﻟﻤﺎﺌﻊ ﺍﻟﻤﺎﺭ ﻓـﻲ‬ ‫ﺍﻟﺜﺎﻨﻴﺔ ﺍﻟﻭﺍﺤﺩﺓ ﺨﻼل ﻫﺫﺍ ﺍﻟﻤﻘﻁﻊ ﻫﻰ ١‪ ρ١A١V‬ﻓﻠـﻭ ﺘﻐﻴـﺭ‬ ‫ﺍﻟﻤﻘﻁﻊ ﺇﻟﻰ )٢( ﻭﻜﺎﻨﺕ ﻤﺴﺎﺤﺘﻪ ٢‪ A‬ﻓﻼﺒﺩ ﺃﻥ ﻴﺤﺩﺙ ﺘﻐﻴﺭ ﻓﻲ‬ ‫ﻗﻴﻡ ٢‪ ρ٢,V‬ﻟﺘﻅل ﺍﻟﻜﺘﻠﺔ ﺜﺎﺒﺘﺔ ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﻭﺍﺌﻊ ﺍﻟﻐﻴﺭ ﻗﺎﺒﻠـﺔ‬ ‫ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل ﻟﻡ ﺘﺘﻐﻴﺭ ﺍﻟﻜﺜﺎﻓﺔ ﺃﻯ ﺘﻅل ﺜﺎﺒﺘﺔ ﺃﻯ ﺃﻥ‬ ‫ﻤﻘﺩﺍﺭ ﺜﺎﺒﺕ = ٢‪A١V١=A٢V‬‬ ‫ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﻘﺩﺍﺭ ﺍﻟﺜﺎﺒﺕ ﺇﺴﻡ ﻤﻌـﺩل ﺍﻟﺴـﺭﻴﺎﻥ ﺃﻭ‬ ‫ﺍﻟﻜﻤﻴﺔ )‪ (Flow Rate‬ﻭﻴﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ‪ Q‬ﻭﻴﻌـﺭﻑ ﺒﺄﻨـﻪ‬ ‫ﺤﺠﻡ ﺍﻟﺴﺎﺌل ﺍﻟﻤﺎﺭ ﻓﻲ ﻭﺤﺩﺓ ﺍﻟﺯﻤﻥ ﻭﻭﺤﺩﺘﻪ ﻫﻰ ﻤﺘﺭ٣/ﺴﺎﻋﺔ.‬ ‫ﺍﻟﻁﺎﻗﺔ )‪:(Energy‬‬ ‫ﺘﻜﻭﻥ ﻁﺎﻗﺔ ﺍﻟﻤﻭﺍﺌﻊ ﺍﻟﻐﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل ﻓﻲ‬ ‫ﺜﻼﺙ ﺼﻭﺭ ﻫﻰ ﺴﺭﻋﺔ، ﻀﻐﻁ ﻭﺇﺭﺘﻔﺎﻉ ﻭﻴﺘﻡ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻨﻬﺎ ﻓﻲ‬ ‫ﺼﻭﺭﺓ ﻁﺎﻗﺔ ﻟﻭﺤﺩﺓ ﺍﻷﻭﺯﺍﻥ ﻭﻭﺤﺩﺘﻬﺎ ﻫﻰ ﻜﺠﻡ.ﻤﺘﺭ/ﻜﺠـﻡ ﺃﻭ‬ ‫ﺍﻟﻤﺘﺭ ﻋﻴﺎﺭﻯ ﺃﻭ ﻤﻁﻠﻕ.‬ ‫- ٦١ -‬
  • 18. ‫ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ )‪:(Velocity Head‬‬ ‫2‪V‬‬ ‫( ﻭﻭﺤـﺩﺘﻬﺎ ﻫـﻰ‬ ‫ﻭﻴﻌﺒﺭ ﻋﻨﻬﺎ ﻓﻲ ﺼﻭﺭﺓ ﺴـﺭﻋﺔ )‬ ‫‪2g‬‬ ‫ﻜﺠﻡ.ﻤﺘﺭ/ﻜﺠﻡ ﺃﻯ ﺍﻟﻤﺘﺭ ﻭﺴـﺭﻋﺔ ﺍﻟﺴـﻭﺍﺌل ﻓـﻲ ﺍﻷﻨﺎﺒﻴـﺏ‬ ‫ﻭﺍﻟﻘﻨﻭﺍﺕ ﺍﻟﻤﻔﺘﻭﺤﺔ ﺘﺘﻐﻴﺭ ﻋﺒﺭ ﺃﻯ ﻤﻘﻁﻊ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻤﺠـﺭﻯ‬ ‫ﻭﻟﺫﻟﻙ ﻓﺈﻨﻪ ﻤﻥ ﺍﻟﺩﻗﺔ ﺍﻟﻜﺎﻓﻴﺔ ﺃﻥ ﻨﺴﺘﺨﺩﻡ ﺍﻟﺴﺭﻋﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ‪V‬‬ ‫ﺍﻟﻤﺤﺴﻭﺒﺔ ﺒﻘﺴﻤﺔ ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ ﻋﻠﻰ ﻤﺴﺎﺤﺔ ﻤﻘﻁﻊ ﺍﻟﻤﺠﺭﻯ.‬ ‫ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ )‪:(Pressure Head‬‬ ‫‪10 4 P‬‬ ‫ﻭﻭﺤﺩﺘﻬﺎ‬ ‫ﻭﻴﻌﺒﺭ ﻋﻨﻬﺎ ﻓﻲ ﺼﻭﺭﺓ ‪ Head‬ﻭﺘﺴﺎﻭﻯ‬ ‫‪w‬‬ ‫ﺍﻟﻤﺘﺭ ﺤﻴﺙ ﺃﻥ ‪ P‬ﺍﻟﻀﻐﻁ ﺒﺎﻟﻜﺠﻡ/ﺴﻡ٢، ‪ w‬ﺍﻟـﻭﺯﻥ ﺍﻟﻨـﻭﻋﻰ‬ ‫ﻟﻠﺴﺎﺌل ﺒﺎﻟﻜﺠﻡ/ﻤﺘﺭ٣.‬ ‫ﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ )‪:(Elevation Head‬‬ ‫ﻭﻴﻌﺒﺭ ﻋﻨﻬﺎ ﺒﺎﻹﺭﺘﻔﺎﻉ ‪ Z‬ﻋـﻥ ﻤﺴـﺘﻭﻯ ﻗﻴﺎﺴـﻲ ﻤﻌـﻴﻥ‬ ‫‪ Datum Plane‬ﻭﻋﺎﺩﺓ ﻴﻜﻭﻥ ﻤﺴﺘﻭﻯ ﺴﻁﺢ ﺍﻟﺒﺤﺭ ﻭﻭﺤﺩﺘﻬﺎ‬ ‫ﺍﻟﻤﺘﺭ.‬ ‫- ٧١ -‬
  • 19. ‫ﻨﻅﺭﻴﺔ ﺒﺭﻨﻭﻟﻠﻰ )‪:(Bernoulli's Equation‬‬ ‫ﻨﻅﺭﻴﺔ ﺒﺭﻨﻭﻟﻠﻰ ﻟﻠﻤﻭﺍﺌﻊ ﺍﻟﻐﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل‬ ‫ﺘﻨﺹ ﻋﻠﻰ ﺃﻨﻪ ﻓﻲ ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻤﺴﺘﻘﺭ ‪ Steady Flow‬ﺒـﺩﻭﻥ‬ ‫ﻓﻭﺍﻗﺩ )ﻤﺎﺌﻊ ﻤﺜﺎﻟﻰ( "ﺍﻟﻁﺎﻗﺔ ﻋﻨﺩ ﺃﻯ ﻨﻘﻁﺔ ﺘﺴـﺎﻭﻯ ﻤﺠﻤـﻭﻉ‬ ‫ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ ﻭﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ﻭﻁﺎﻗﺔ ﺍﻟﻭﻀـﻊ ﻭﻴﻜـﻭﻥ ﻫـﺫﺍ‬ ‫ﺍﻟﻤﺠﻤﻭﻉ ﺜﺎﺒﺕ ﻋﻠﻰ ﻁﻭل ﺨﻁ ﺍﻟﺴﺭﻴﺎﻥ ﻓﻲ ﺍﻟﻤﺠﺭﻯ" ﻭﻫـﺫﻩ‬ ‫ﺍﻟﻁﺎﻗﺔ ﺘﺴﺎﻭﻯ‬ ‫4‬ ‫2‬ ‫‪10 P V‬‬ ‫=‪H‬‬ ‫+‬ ‫‪+z‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫ﻭﻋﻨﺩ ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻤﺴﺘﻘﺭ ﻟﻠﻤﺎﺌﻊ ﺍﻟﻤﺜﺎﻟﻰ ﻴﻤﻜـﻥ ﻟﻠﻁﺎﻗـﺔ ﺃﻥ‬ ‫ﺘﺘﻐﻴﺭ ﻤﻥ ﺼﻭﺭﺓ ﻷﺨﺭﻯ ﻓﺈﺫﺍ ﺯﺍﺩﺕ ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ ﺇﻨﺨﻔﻀـﺕ‬ ‫ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ﺃﻭ ﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ ﻭﺴﻭﻑ ﻨﻭﻀﺢ ﺘﻁﺒﻴﻘﺎﺕ ﻨﻅﺭﻴﺔ‬ ‫ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺒﻌﺽ ﺤﺎﻻﺕ ﺍﻟﺴﺭﻴﺎﻥ ﻓﻲ ﺃﺠﻬﺯﺓ ﻗﻴﺎﺱ ﻤﻌـﺩل‬ ‫ﺍﻟﺴﺭﻴﺎﻥ )ﺍﻟﻜﻤﻴﺔ(.‬ ‫- ٨١ -‬
  • 20. ‫١- ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ )‪:(Orifice Meter‬‬ ‫ﺸﻜل )٥(‬ ‫- ٩١ -‬
  • 21. ‫ﻴﺘﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻤﻘﻴﺎﺱ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ D‬ﻴﻜـﻭﻥ‬ ‫ﺃﻜﺒﺭ ﻤﻥ ٥ﺴﻡ ﻭﻤﺭﻜﺏ ﺒﻬﺎ ﻗﺭﺹ ﺒﻪ ﻓﺘﺤﺔ ﻗﻁﺭﻫﺎ ‪ d‬ﺃﺼـﻐﺭ‬ ‫ﻤﻥ ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒﺔ ﻭﻻ ﻴﻘل ﻋﻥ ٦ﻤﻡ ﻜﻤﺎ ﺒﺎﻟﺸﻜل )٥( ﺒﺤﻴـﺙ‬ ‫ﻓﻲ ﺤـﺩﻭﺩ ٢,٠ – ٨,٠ ﻭﻻ ﺘﺯﻴـﺩ‬ ‫ﺘﻜﻭﻥ ﻨﺴﺒﺔ ﺍﻷﻗﻁﺎﺭ‬ ‫‪d‬‬ ‫‪D‬‬ ‫2‬ ‫ﻨﺴﺒﺔ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁﻊ ⎞ ⎛ ﻋـﻥ ٧,٠، ﺒﺘﻁﺒﻴـﻕ ﻤﻌﺎﺩﻟـﺔ‬ ‫‪d‬‬ ‫⎟ ⎜‬ ‫⎠‪⎝D‬‬ ‫ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺍﻟﻨﻘﻁﺘﻴﻥ )١(، )٢( ﻭﺇﻋﺘﺒﺎﺭ ﺍﻟﻤﺎﺌﻊ ﻤﺜﺎﻟﻴﺎ‬ ‫ﹰ‬ ‫ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ)١(= ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ)٢(= ﺜﺎﺒﺕ‬ ‫2‪10 4 P‬‬ ‫22‪V‬‬ ‫21‪10 4 P1 V‬‬ ‫+‬ ‫= 2‪+ Z‬‬ ‫+‬ ‫1‪+ Z‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫ﻤﻊ ﺃﺨﺫ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻘﻴﺎﺴﻰ ﻫﻭ ﻤﺤـﻭﺭ ﺍﻷﻨﺒﻭﺒـﺔ ﻭﺇﻫﻤـﺎل‬ ‫ﺍﻟﺴﺭﻋﺔ ١‪ V‬ﺒﺈﻋﺘﺒﺎﺭﻫﺎ ﺃﻗل ﺒﻜﺜﻴﺭ ﻤﻥ ٢‪V‬‬ ‫) 2 ‪V22 10 4 ( p1 − p‬‬ ‫=‬ ‫‪= H1 − H 2 = h‬‬ ‫‪2g‬‬ ‫‪w‬‬ ‫‪V 2 = 2 gh‬‬ ‫ﻭﺇﺫﺍ ﺘﻜﻠﻤﻨﺎ ﻋﻥ ﺘﺄﺜﻴﺭ ﺍﻟﻠﺯﻭﺠﺔ ﻴﺘﺒﻴﻥ ﺃﻨﻪ ﻋﻨﺩ ﺴﺭﻴﺎﻥ ﺍﻟﻤﺎﺌﻊ‬ ‫ﻴﻀﻴﻊ ﺠﺯﺀ ﻤﻥ ﺍﻟﻁﺎﻗﺔ ﻋﻥ ﻁﺭﻴﻕ ﺍﻹﺤﺘﻜـﺎﻙ ﺍﻟﻨﺎﺸـﺊ ﻤـﻥ‬ ‫ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺃﻯ ﺃﻨﻪ ﺇﺫﺍ ﺘﻡ ﻗﻴﺎﺱ ﺍﻟﺴﺭﻋﺔ ٢‪ V‬ﻟﻭﺠﺩﻨﺎ ﺃﻨﻬـﺎ‬ ‫ﻷﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ )٢( ﺘﻜﻭﻥ ﺃﻗـل‬ ‫ﺃﻗل ﻤﻥ ‪2 gh‬‬ ‫- ٠٢ -‬
  • 22. ‫ﻤﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ )١( ﻨﺘﻴﺠﺔ ﻓﻘﺩ ﺠﺯﺀ ﻤﻨﻬﺎ ﺒﺈﺤﺘﻜﺎﻙ‬ ‫ﺍﻟﻤﺎﺌﻊ ﻤﻊ ﺠﺩﺭﺍﻥ ﺍﻟﻤﻘﻴﺎﺱ ﻋﻨﺩ ﺨﺭﻭﺠﻪ ﻤﻥ ﺍﻟﻔﺘﺤـﺔ، ﺤﻴـﺙ‬ ‫ﻴﻨﺘﻘل ﺍﻟﺴﺎﺌل ﻤﻥ ﻨﻘﻁﺔ ﺇﻟﻰ ﺃﺨﺭﻯ ﻨﺘﻴﺠﺔ ﻓﺭﻕ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴـﺔ‬ ‫ﺒﻴﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ‬ ‫ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﺍﻟﺴﺭﻋﺔ ٢‪ V‬ﺘﺴﺎﻭﻯ ‪ K V 2 gh‬ﺤﻴـﺙ ‪Kv‬‬ ‫ﻴﺴﻤﻰ ﻤﻌﺎﻤل ﺍﻟﺴﺭﻋﺔ ﻭﻫﻭ ﺃﻗل ﻤﻥ ١ ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌـﺩل‬ ‫ﺍﻟﺴﺭﻴﺎﻥ )ﺍﻟﻜﻤﻴﺔ( ‪ Q‬ﺍﻟﻤﺎﺭ ﺨﻼل ﺍﻟﻔﺘﺤﺔ ﻤﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ‬ ‫٢‪ Q = A٢V‬ﺤﻴﺙ ﺃﻥ ﺍﻟﺴﺭﻋﺔ ﺘﻜﻭﻥ ﻋﻤﻭﺩﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺴـﺎﺤﺔ‬ ‫ﻋﻨﺩ ﺍﻹﻨﻜﻤﺎﺵ ﺃﻯ ﻋﻨﺩ ﺍﻟﻨﻘﻁـﺔ )٢( ﻭﻟـﻴﺱ ﻋﻨـﺩ ﺍﻟﻔﺘﺤـﺔ‬ ‫‪ Orifice‬ﺫﺍﺘﻬﺎ ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﻤﺴﺎﺤﺔ ﻤﻘﻁﻊ ﺍﻹﻨﻜﻤﺎﺵ ٢‪ A‬ﺃﻗل‬ ‫‪π‬‬ ‫ﻤﻥ ﻤﺴﺎﺤﺔ ﻤﻘﻁﻊ ﺍﻟﻔﺘﺤﺔ ﻨﻔﺴﻬﺎ 2 ‪d‬‬ ‫4‬ ‫‪π‬‬ ‫‪A2 = K C‬‬ ‫2‪d‬‬ ‫4‬ ‫ﺤﻴﺙ ﺃﻥ ‪ Kc‬ﻴﺴﻤﻰ ﻤﻌﺎﻤل ﺇﻨﻜﻤﺎﺵ ﻤﻘﻁﻊ ﺍﻟﺴﺭﻴﺎﻥ ﻭﻫـﻭ‬ ‫ﺃﻗل ﻤﻥ ١ ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ ﺨﻼل ﺍﻟﻔﺘﺤﺔ ﺘﺴﺎﻭﻯ‬ ‫‪π‬‬ ‫‪π‬‬ ‫‪Q = KC‬‬ ‫‪d 2 K V 2 gh = K d‬‬ ‫‪d 2 2 gh‬‬ ‫4‬ ‫4‬ ‫)١(‬ ‫- ١٢ -‬
  • 23. ‫ﺤﻴﺙ ﺃﻥ ‪ Kd‬ﻫﻭ ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ﻭﻴﺴﺎﻭﻯ ‪ KvKc‬ﻭﻴﻜﻭﻥ‬ ‫ﺃﻗل ﻤﻥ ١ ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻤـﻥ ﺍﻟﺘﺠـﺎﺭﺏ‬ ‫ﺍﻟﻤﻌﻤﻠﻴﺔ ﻭﻟﺘﺴﻬﻴل ﺍﻟﺤﺴﺎﺒﺎﺕ ﻴﻤﻜﻥ ﺇﻋﺘﺒﺎﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻬﺫﺍ‬ ‫ﺍﻟﻤﻌﺎﻤل ﺘﺴﺎﻭﻯ ٦٩٥,٠، ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻴﺘﻡ ﻗﻴـﺎﺱ ﺍﻟﻜﻤﻴـﺔ‬ ‫ﺒﻤﻌﺭﻓﺔ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺒﻴﻥ ﻗﺒل ﻭﺒﻌﺩ ﺍﻟﻔﺘﺤﺔ ﻭﻴﺘـﺭﺍﻭﺡ ﻀـﻐﻁ‬ ‫ﺍﻟﻨﻔﺙ ‪ Jet‬ﺍﻟﺨﺎﺭﺝ ﻤﻥ ﺍﻟﻔﺘﺤﺔ ﺒﻴﻥ ﺃﻗل ﻗﻴﻤﺔ ﻟﻪ ﻋﻨﺩ ﺍﻹﻨﻜﻤﺎﺵ‬ ‫ﻭﺃﻗﺼﻰ ﻗﻴﻤﺔ ﻟﻪ ﺒﻌﺩ ﺤﻭﺍﻟﻰ ٤ ﺃﻭ ٥ ﺃﻤﺜﺎل ﺍﻟﻘﻁـﺭ ‪ D‬ﺒﻌـﺩ‬ ‫ﺍﻟﻔﺘﺤﺔ ﻓﻲ ﺇﺘﺠﺎﻩ ﺍﻟﺴﺭﻴﺎﻥ.‬ ‫ﻭﺍﻟﻌﻴﺏ ﺍﻷﺴﺎﺴﻰ ﻟﻠﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ ﺒﺎﻟﻤﻘﺎﺭﻨﺔ ﺒﺎﻟﻤﻘﻴﺎﺱ ﺫﻭ‬ ‫ﺍﻟﻔﻭﻫﺔ ﺃﻭ ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﻫﻭ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ ﻜﺒﻴـﺭ ﻭﻤـﻥ‬ ‫ﻨﺎﺤﻴﺔ ﺃﺨﺭﻯ ﻓﺈﻨﻪ ﻏﻴﺭ ﻤﺭﺘﻔﻊ ﺍﻟﺜﻤﻥ ﻭﺒﺈﻤﻜﺎﻨﻪ ﻗﻴـﺎﺱ ﺍﻟﻜﻤﻴـﺔ‬ ‫ﺒﺩﻗﺔ، ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻟﺤﺴﺎﺏ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘـﺎﺱ ﻋﺒـﺭ‬ ‫ﺍﻟﻔﺘﺤﺔ ‪ Orifice‬ﻟﺨﻁ ﺃﻨﺎﺒﻴﺏ ﻗﻁﺭﻩ ٢١ ﺒﻭﺼﺔ ﻭﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ‬ ‫ﺤﻭﺍﻟﻰ ٠٠٤ ﻤﺘﺭ ﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ :‬ ‫ﻨﻔﺘﺭﺽ ﺃﻥ ﻗﻁﺭ ﺍﻟﻔﺘﺤﺔ ﻴﺴﺎﻭﻯ ٥٧٦,٠ ﻗﻁـﺭ ﺍﻟﺨـﻁ ﺃﻯ‬ ‫ﻴﺴﺎﻭﻯ ٨ ﺒﻭﺼﺔ، ﺒﺘﻁﺒﻴﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺭﻗﻡ )١( ﻭﺇﻋﺘﺒـﺎﺭ = ‪Kd‬‬ ‫‪π‬‬ ‫‪Q = Kd‬‬ ‫‪d 2 2 gh‬‬ ‫٦٩٥,٠‬ ‫4‬ ‫- ٢٢ -‬
  • 24. ‫⎞ 45.2 × 8 ⎛ ‪π‬‬ ‫2‬ ‫٦٨٦,١ = ‪2 × 9.8h , h‬‬ ‫004‬ ‫⎜ 695.0 =‬ ‫⎟‬ ‫0063‬ ‫⎠ 001 ⎝ 4‬ ‫‪mt‬‬ ‫ﻭﺒﻔﺭﺽ ﺃﻥ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺯﻴﺕ ﻜﺜﺎﻓﺘﻪ ٢٨٨,٠ ﺠﻡ/ ﺴﻡ٣‬ ‫ﻴﻜﻭﻥ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘﺎﺱ ﻋﺒﺭ ﺍﻟﻔﺘﺤﺔ ﻴﺴﺎﻭﻯ‬ ‫288.0‬ ‫× 686.1 = ‪∆P‬‬ ‫2 ‪= 0.148 kg / cm‬‬ ‫01‬ ‫ﻭﻋﻨﺩ ﺇﺨﺘﻴﺎﺭ ﻤﻘﻴﺎﺱ ﺍﻟﻔﺘﺤﺔ ﻴﺠﺏ ﻤﺭﺍﻋﺎﺓ ﺍﻟﺤـﺩ ﺍﻷﻗﺼـﻰ‬ ‫ﻟﻠﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻟﻠﻀﻐﻁ ﻋﺒﺭ ﺍﻟﻤﻘﻴﺎﺱ ‪ Head loss‬ﺤﻴﺙ ﻴﺠﺏ ﺃﻥ‬ ‫ﻴﻜﻭﻥ ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻟﻠﻀﻐﻁ ﺃﻗل ﻤﺎ ﻴﻤﻜﻥ ﻭﻴﻨﺒﻐﻰ ﺃﻻ ﺘﺼل ﻗﻴﻤﺔ‬ ‫ﻫﺫﺍ ﺍﻟﻔﺎﻗﺩ ﺇﻟﻰ ٥٢,٠ ﻜﺠﻡ/ﺴﻡ٢ ﺒﺄﻯ ﺤﺎل ﻤـﻥ ﺍﻷﺤـﻭﺍل ﻷﻥ‬ ‫ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺤﺩﻭﺙ ﻓﻘﺩ ﻜﺒﻴﺭ ﻨﺴﺒﻴﺎ ﻓﻲ ﻁﺎﻗﺔ ﺍﻟﺴﺎﺌل ﻤﻘﺎﺒل ﻗﻴﺎﺱ‬ ‫ﹰ‬ ‫ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ.‬ ‫ﻤﻠﺤﻭﻅﺔ: ﻴﻤﻜﻥ ﺘﻁﺒﻴﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺭﻗﻡ )١( ﻓﻲ ﺤﺎﻟﺔ ﻗﻴـﺎﺱ‬ ‫ﺍﻟﻜﻤﻴﺔ ﻟﻠﻤﻭﺍﺌﻊ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻼﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﻐﺎﺯﺍﺕ ﺒﺸﺭﻁ ﺃﻻ ﺘﺯﻴﺩ‬ ‫ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﺍﻟﻐﺎﺯ ﻋﻥ ٠٠١ ﻤﺘﺭ ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ ﺤﻴﺙ ﺃﻨﻪ ﻋﻨـﺩ‬ ‫ﻫﺫﻩ ﺍﻟﺴﺭﻋﺔ ﺘﺘﻐﻴﺭ ﻜﺜﺎﻓﺔ ﺍﻟﻐﺎﺯ ﺘﻐﻴﺭ ﻁﻔﻴﻑ ﺠﺩﺍ ﺃﻯ ﺃﻨﻪ ﻴﻤﻜﻥ‬ ‫ﹰ‬ ‫ﺇﻫﻤﺎل ﺘﺄﺜﻴﺭ ﺇﻨﻀﻐﺎﻁﻴﺔ ﺍﻟﻐﺎﺯ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻭﺇﻋﺘﺒﺎﺭ ﺍﻟﻐـﺎﺯ‬ ‫ﻜﻤﺎﺌﻊ ﻏﻴﺭ ﻗﺎﺒل ﻟﻺﻨﻀﻐﺎﻁ ﻤﺜل ﺍﻟﺴﻭﺍﺌل.‬ ‫- ٣٢ -‬
  • 26. ‫٢- ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﻭﻫﺔ)‪:(Flow-Nozzle Meter‬‬ ‫ﻴﺘﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻤﻘﻴﺎﺱ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ D‬ﻴﻜـﻭﻥ‬ ‫ﺃﻜﺒﺭ ﻤﻥ ٥ﺴﻡ ﻭﻤﺭﻜﺏ ﺩﺍﺨﻠﻬﺎ ﺃﻨﺒﻭﺒﺔ ﻗﺼﻴﺭﺓ ﻤﺘﻐﻴﺭﺓ ﺍﻟﻤﻘﻁـﻊ‬ ‫ﺒﺈﻨﺘﻅﺎﻡ ﻭﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ d‬ﻜﻤﺎ ﺒﺎﻟﺸﻜل )٦( ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻨﺴﺒﺔ‬ ‫2‬ ‫⎞ ⎛ ﻓﻲ ﺤﺩﻭﺩ ٢,٠ ﺇﻟﻰ ٥٥,٠، ﺒﺘﻁﺒﻴـﻕ‬ ‫ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁﻊ‬ ‫‪d‬‬ ‫⎟ ⎜‬ ‫⎠‪⎝D‬‬ ‫ﻤﻌﺎﺩﻟﺔ ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺍﻟﻨﻘﻁﺘﻴﻥ )١(، )٢( ﻤﻊ ﻭﻀـﻊ ﺘـﺄﺜﻴﺭ‬ ‫ﺍﻟﻠﺯﻭﺠﺔ ﻓﻲ ﺍﻹﻋﺘﺒﺎﺭ.‬ ‫21‪10 4 P1 V‬‬ ‫22‪10 4 P2 V‬‬ ‫+‬ ‫= 1‪+ Z‬‬ ‫+‬ ‫‪+ Z2 + hf‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫ﺤﻴﺙ ﺃﻥ ‪ hf‬ﻫﻭ ﺍﻟﻔﺎﻗﺩ ﺒﺎﻹﺤﺘﻜﺎﻙ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺘـﻴﻥ )١(، )٢(‬ ‫ﻤـﻊ ﺇﻋﺘﺒـﺎﺭ ﺍﻟﻤﺴـﺘﻭﻯ ﺍﻟﻘﻴﺎﺴـﻰ ﻫـﻭ ﻤﺤـﻭﺭ ﺍﻷﻨﺒﻭﺒـﺔ‬ ‫ـ‬ ‫ـ‬ ‫ـ ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫22‪10 4 P1 V12 10 4 P2 V‬‬ ‫+‬ ‫=‬ ‫+‬ ‫‪+ hf‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫‪w‬‬ ‫‪2g‬‬ ‫ﺒﺈﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ ٢‪ A١V١=A٢V‬ﻭﺇﺩﺨﺎل ﻤﻌﺎﻤل‬ ‫ﺍﻟﺴﺭﻋﺔ ‪ KV‬ﻟﻴﺤل ﻤﺤل ﺍﻟﻔﺎﻗﺩ ﺒﺎﻻﺤﺘﻜﺎﻙ ‪hf‬‬ ‫) ‪10 4 P1 (V2 / K V‬‬ ‫) ‪10 4 P2 (V2 / K V‬‬ ‫2‬ ‫2‪⎛ A‬‬ ‫⎞‬ ‫2‬ ‫2‬ ‫+‬ ‫⎜‬ ‫‪⎜A‬‬ ‫= ⎟‬ ‫⎟‬ ‫+‬ ‫‪w‬‬ ‫‪2g‬‬ ‫1 ⎝‬ ‫⎠‬ ‫‪w‬‬ ‫‪2g‬‬ ‫- ٥٢ -‬
  • 27. ‫) 2‪10 4 (P1 − P‬‬ ‫⎤ ⎞ 2‪V22 ⎡ ⎛ A‬‬ ‫2‬ ‫=‬ ‫‪⎢1 − ⎜ ⎟ ⎥ = H 1 − H 2 = h‬‬ ‫⎥ ⎠ 1‪2 gK v2 ⎢ ⎜ A‬‬ ‫⎟‬ ‫⎝ ⎣‬ ‫‪w‬‬ ‫⎦‬ ‫‪2 gh‬‬ ‫‪V2 = K v‬‬ ‫‪⎡ ⎛A‬‬ ‫⎞‬ ‫2‬ ‫⎤‬ ‫2 ⎜ − 1⎢‬ ‫⎜‬ ‫⎟‬ ‫⎟‬ ‫⎥‬ ‫1‪⎢ ⎝ A‬‬ ‫⎣‬ ‫⎠‬ ‫⎥‬ ‫⎦‬ ‫ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ )ﺍﻟﻜﻤﻴﺔ( ‪ Q‬ﺍﻟﻤـﺎﺭ ﺨـﻼل‬ ‫ﺍﻟﻔﻭﻫﺔ ﻤﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻹﺴﺘﻤﺭﺍﺭ‬ ‫‪π‬‬ ‫= 2‪Q = A2V‬‬ ‫2 ‪d 2V‬‬ ‫4‬ ‫‪π‬‬ ‫‪2 gh‬‬ ‫. ‪= Kd‬‬ ‫2‪d‬‬ ‫4‬ ‫⎤ 4⎞ ‪⎡ ⎛ d‬‬ ‫⎥ ⎟ ⎜ − 1⎢‬ ‫⎥ ⎠‪⎢ ⎝D‬‬ ‫⎣‬ ‫⎦‬ ‫ﺤﻴﺙ ﺃﻥ ‪ Kd=KV‬ﻭﻫﻭ ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ﻭﻴﻜﻭﻥ ﺃﻗل ﻤﻥ‬ ‫١ ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻤﻥ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻌﻤﻠﻴﺔ ﻭﻓﻲ‬ ‫ﻤﻌﻅﻡ ﺍﻷﺤﻴﺎﻥ ﻟﺘﺴﻬﻴل ﺍﻟﺤﺴﺎﺒﺎﺕ ﻴﻤﻜﻥ ﺇﻋﺘﺒﺎﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ‬ ‫ﻟﻬﺫﺍ ﺍﻟﻤﻌﺎﻤل ﺘﺘـﺭﺍﻭﺡ ﺒـﻴﻥ ٥٣٩,٠ ﻟﻸﻗﻁـﺎﺭ ﻭﺍﻟﺴـﺭﻋﺎﺕ‬ ‫ﺍﻟﺼﻐﻴﺭﺓ ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )٢( ﺇﻟﻰ ٨٨٩,٠ ﻟﻸﻗﻁﺎﺭ ﻭﺍﻟﺴـﺭﻋﺎﺕ‬ ‫ﺍﻟﻜﺒﻴﺭﺓ ﻨﺴﺒﻴﺎ ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )٢( ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻴﻤﻜـﻥ ﻗﻴـﺎﺱ‬ ‫ﹰ‬ ‫ﺍﻟﻜﻤﻴﺔ ﺒﻤﻌﺭﻓﺔ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺒﻴﻥ ﻗﺒل ﻤﺩﺨل ﺍﻟﻔﻭﻫـﺔ ﻭﻋﻨـﺩ‬ ‫ﻤﺨﺭﺠﻬﺎ.‬ ‫- ٦٢ -‬
  • 28. ‫ﻭﺍﻟﺭﺴﻡ ﺒﺎﻟﺸﻜل )٦( ﻴﻭﻀﺢ ﺘﻐﻴﺭ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻤﻊ ﺍﻟﻁﻭل‬ ‫ﻟﻜﻤﻴﺔ ﻤﻌﻴﻨﺔ ﺨﻼل ﺍﻟﻔﻭﻫﺔ ﺒﺈﻋﺘﺒـﺎﺭ ﺃﻥ ﺍﻟﻤﺴـﺘﻭﻯ ﺍﻟﻘﻴﺎﺴـﻰ‬ ‫ﺍﻟﻤﻨﺎﺴﺏ ﻫﻭ ﻤﺤﻭﺭ ﺍﻟﻔﻭﻫﺔ ﻭﻨﺤﺩﺩ ﺍﻷﻁﻭﺍل ﻋﻠﻴﻪ ﺃﻤﺎ ﺍﻟﻤﺤـﻭﺭ‬ ‫ﺍﻟﺭﺃﺴﻰ ﻓﻴﻤﺜل ﺼﻭﺭ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻓﻌﻨﺩ ﺍﻟﻨﻘﻁـﺔ )١( ﻨﺒـﺩﺃ‬ ‫1‪10 4 P‬‬ ‫ﻭﻨﻀـﻴﻑ‬ ‫ﺒﺘﻭﻗﻴﻊ ﻤﺴﺎﻓﺔ ﺭﺃﺴﻴﺔ ﺘﻤﺜل ﻁﺎﻗﺔ ﺍﻟﻀـﻐﻁ‬ ‫‪w‬‬ ‫2‪V‬‬ ‫ﺇﻟﻴﻬﺎ ﻤﺴﺎﻓﺔ ﺃﺨﺭﻯ ﺘﻤﺜل ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ 1 ﻓﻨﺤﺼـل ﻋﻠـﻰ‬ ‫‪2g‬‬ ‫ﻨﻘﻁﺔ ﺘﻤﺜل ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻨﻘﻁﺔ )١( ﻭﻨﻜـﺭﺭ ﺫﻟـﻙ ﻋﻨـﺩ‬ ‫ﺍﻟﻨﻘﻁﺔ )٢( ﻓﻨﺤﺼل ﻋﻠﻰ ﻨﻘﻁﺔ ﺃﺨﺭﻯ ﺘﻤﺜل ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ‬ ‫ﻨﻘﻁﺔ )٢( ﻭﻨﻜﺭﺭ ﻫﺫﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻋﻨﺩ ﺃﻭﻀﺎﻉ ﻤﺨﺘﻠﻔﺔ ﻋﻠﻰ ﻁﻭل‬ ‫ﺍﻟﻤﻘﻴﺎﺱ ﻭﺫﻟﻙ ﺒﻤﻘﻴﺎﺱ ﺭﺴﻡ ﻤﻌﻴﻥ ﻭﺒﺘﻭﺼـﻴل ﻫـﺫﻩ ﺍﻟـﻨﻘﻁ‬ ‫ﻨﺤﺼل ﻋﻠﻰ ﺨﻁ ﻴﻤﺜل ﺘﻐﻴﺭ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴـﺔ ﺨـﻼل ﺍﻟﻔﻭﻫـﺔ‬ ‫ﻭﻴﻁﻠﻕ ﻋﻠﻴﻪ ﺇﻨﺤـﺩﺍﺭ ﺍﻟﻁﺎﻗـﺔ ‪(E.G) Energy Gradient‬‬ ‫ﻭﺘﻜﻭﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻋﻨﺩ ﻤﺨﺭﺝ ﺍﻟﻔﻭﻫﺔ ﺃﻗل ﻤﻨﻬﺎ ﻋﻨﺩ ﻤﺩﺨﻠﻬﺎ‬ ‫ﺒﻤﻘﺩﺍﺭ ‪ hf‬ﻭﺇﺫﺍ ﺘﻡ ﺘﻭﺼﻴل ﻨﻘﻁ ﺘﻭﻗﻴﻊ ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ ﻨﺤﺼـل‬ ‫ﻋﻠﻰ ﺨﻁ ﻴﻤﺜل ﺘﻐﻴﺭ ﺍﻟﻀﻐﻁ ﺨﻼل ﺍﻟﻔﻭﻫـﺔ ﻭﻴﻁﻠـﻕ ﻋﻠﻴـﻪ‬ ‫ﺇﻨﺤﺩﺍﺭ ﺍﻟﻀﻐﻁ ‪ (H.G) Hydraulic Gradient‬ﻭﻴﺘﻀﺢ ﺃﻥ‬ ‫ﺇﻨﺤﺩﺍﺭ ﺍﻟﻀﻐﻁ ﻴﻨﺨﻔﺽ ﻋﻥ ﺇﻨﺤﺩﺍﺭ ﺍﻟﻁﺎﻗﺔ ﺒﻘﺩﺭ ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ‬ ‫- ٧٢ -‬
  • 29. ‫2‪V‬‬ ‫ﻋﻨﺩ ﻫﺫﻩ ﺍﻟﻨﻘﻁﺔ ﻭﻨﻼﺤﻅ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ﻋﺒﺭ ﺍﻟﻤﻘﻴـﺎﺱ‬ ‫‪2g‬‬ ‫ﻴﺴﺎﻭﻯ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ ﻋﺒﺭ ﺍﻟﻤﻘﻴﺎﺱ ﻭﺫﻟﻙ ﻟﺘﺴـﺎﻭﻯ ﺍﻟﺴـﺭﻋﺔ‬ ‫ﻭﻜﺫﻟﻙ ﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ ﻋﻨﺩ ﻤﺩﺨل ﻭﻤﺨﺭﺝ ﺍﻟﻤﻘﻴـﺎﺱ ﻭﻴﺴـﺒﺏ‬ ‫ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﻭﻫﺔ ﻓﺎﻗﺩ ﻀﻐﻁ ﺃﻜﺒﺭ ﻤﻥ ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﻭﺃﻗل‬ ‫ﻤﻥ ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ.‬ ‫٣- ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ‪:Venturi Meter‬‬ ‫ﺸﻜل )٧(‬ ‫- ٨٢ -‬
  • 30. ‫ﻴﺘﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻤﻘﻴﺎﺱ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻗﻁﺭﻫﺎ ﺍﻟﺩﺍﺨﻠﻰ ‪ D‬ﻴﻜـﻭﻥ‬ ‫ﺃﻜﺒﺭ ﻤﻥ ٥ ﺴﻡ ﻭﻴﻅل ﻴﺼﻐﺭ ﺤﺘﻰ ﻴﺼل ﺇﻟﻰ ﺍﻟﻘﻁـﺭ ‪ d‬ﺜـﻡ‬ ‫ﻴﻜﺒﺭ ﺍﻟﻘﻁﺭ ﺘﺩﺭﻴﺠﻴﺎ ﻟﻴﺼل ﺇﻟﻰ ﻗﻴﻤﺘﻪ ﺍﻷﺼﻠﻴﺔ ﻜﻤـﺎ ﺒﺎﻟﺸـﻜل‬ ‫ﹰ‬ ‫2‬ ‫)٧( ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻨﺴﺒﺔ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﻁـﻊ ⎞ ⎛ ﻓـﻲ ﺤـﺩﻭﺩ‬ ‫‪d‬‬ ‫⎟ ⎜‬ ‫⎠‪⎝D‬‬ ‫٥٠,٠ ﺇﻟﻰ ٥٥,٠.‬ ‫ﺒﺘﻁﺒﻴﻕ ﻤﻌﺎﺩﻟﺔ ﺒﺭﻨﻭﻟﻠﻰ ﻋﻠﻰ ﺍﻟﻨﻘﻁﺘﻴﻥ )١(، )٢( ﻤﻊ ﻭﻀﻊ‬ ‫ﺘﺄﺜﻴﺭ ﺍﻟﻠﺯﻭﺠﺔ ﻓﻲ ﺍﻹﻋﺘﺒﺎﺭ ﻭﺇﺴـﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟـﺔ ﺍﻹﺴـﺘﻤﺭﺍﺭ‬ ‫ﻭﺇﺩﺨﺎل ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ‪ Kd‬ﻟﻴﺤل ﻤﺤل ﺍﻟﻔﺎﻗﺩ ﺒﺎﻹﺤﺘﻜﺎﻙ ‪hf‬‬ ‫ﻜﻤﺎ ﺘﻡ ﻟﻠﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﻭﻫﺔ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﻜﻤﻴـﺔ ‪ Q‬ﺍﻟﻤـﺎﺭﺓ‬ ‫ﺨﻼل ﺍﻟﻔﻨﺸﻭﺭﻯ‬ ‫‪π‬‬ ‫‪2 gh‬‬ ‫‪Q = Kd‬‬ ‫2‪d‬‬ ‫4‬ ‫⎤ 4⎞ ‪⎡ ⎛ d‬‬ ‫⎥ ⎟ ⎜ − 1⎢‬ ‫⎥ ⎠‪⎢ ⎝D‬‬ ‫⎣‬ ‫⎦‬ ‫ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻴﺘﻡ ﻗﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﺒﻤﻌﺭﻓﺔ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺒـﻴﻥ‬ ‫ﻗﺒل ﺒﺩﺍﻴﺔ ﺘﺼﻐﻴﺭ ﺍﻟﻘﻁﺭ ﻭﻋﻨﺩ ﺃﻗل ﻗﻁﺭ ﻭﻴﻤﻜﻥ ﺭﺴﻡ ﺇﻨﺤـﺩﺍﺭ‬ ‫ﺍﻟﻁﺎﻗﺔ ﻭﺍﻟﻀﻐﻁ ﻭﻴﺘﻀﺢ ﻤﻨﻪ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ‪ hf‬ﺘﻘﺎﺒل ﺇﺴﺘﺨﺩﺍﻡ‬ ‫ﺍﻟﻤﻌﺎﻤل ‪ ،kd‬ﻭﻴﺴﺒﺏ ﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﻓﺎﻗﺩ ﻀﻐﻁ ﺼﻐﻴﺭ ﺠﺩﺍ‬ ‫ﹰ‬ ‫ﻭﻴﺘﺭﺍﻭﺡ ﻤﻌﺎﻤل ﺍﻟﺘﺼﺭﻴﻑ ﻟﻤﻘﻴﺎﺱ ﻓﻨﺸﻭﺭﻯ ﺒﻴﻥ ﻗﻴﻤﺔ ﺘﻘﺭﻴﺒﻴﺔ‬ ‫ﻗﺩﺭﻫﺎ ٥٣٩,٠ ﻟﻸﻗﻁﺎﺭ ﻭﺍﻟﺴﺭﻋﺎﺕ ﺍﻟﺼﻐﻴﺭﺓ ﻋﻨﺩ ﺍﻟﻤﻘﻁﻊ )٢(‬ ‫- ٩٢ -‬
  • 31. ‫ﺇﻟﻰ ٨٨٩,٠ ﻟﻸﻗﻁﺎﺭ ﻭﺍﻟﺴﺭﻋﺎﺕ ﺍﻟﻜﺒﻴﺭﺓ ﻨﺴﺒﻴﺎ ﻋﻨﺩ ﺍﻟﻤﻘﻁـﻊ‬ ‫ﹰ‬ ‫)٢( ﻭﻟﺘﺴﻬﻴل ﺍﻟﺤﺴﺎﺒﺎﺕ ﻴﻤﻜﻥ ﺇﻋﺘﺒﺎﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴـﺔ ﻟﻬـﺫﺍ‬ ‫ﺍﻟﻤﻌﺎﻤـل ﺘﺴـﺎﻭﻯ ٨٩,٠ – ٩٩,٠ ﻭﺘﻜـﻭﻥ ﻗﻴﻤـﺔ ﻤﻌﺎﻤـل‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ﺍﻟﺘﺼﺭﻴﻑ ﻟﻠﻬﻭﺍﺀ ﺤﻭﺍﻟﻰ ٩٩,٠‬ ‫ﻭﺍﻟﺠﺩﻭل ﺭﻗﻡ )١( ﻴﻭﻀﺢ ﻤﻘﺎﺭﻨﺔ ﻟﻘﻴﻤـﺔ ﺍﻟﻔﺎﻗـﺩ ﺍﻟﻜﻠـﻰ‬ ‫ﻟﻠﻀﻐﻁ ﻋﺒﺭ ﺍﻟﻤﻘﻴﺎﺱ ﻭﺫﻟﻙ ﻟﻸﻨﻭﺍﻉ ﺍﻟﺜﻼﺜﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻷﺠﻬـﺯﺓ‬ ‫ﻗﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﻭﺫﻟﻙ ﺒﺈﻋﺘﺒﺎﺭ ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘﺎﺱ ﻤﻘﺩﺍﺭ ﺜﺎﺒـﺕ‬ ‫ﻭﻴﺴﺎﻭﻯ ٠٣ﺴﻡ ﺯﺌﺒﻕ )٤,٠ﻜﺠﻡ/ﺴﻡ٢(.‬ ‫ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ‬ ‫ﻓﺭﻕ ﺍﻟﻀﻐﻁ‬ ‫ﻨﺴﺒﺔ‬ ‫ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻟﻠﻀﻐﻁ ﻋﺒﺭ‬ ‫ﻟﻠﻀﻐﻁ ﻋﺒﺭ‬ ‫ﺍﻟﻤﻘﺎﺱ ﻋﻨﺩ‬ ‫ﺍﻷﻗﻁﺎﺭ‬ ‫ﻨﻭﻉ‬ ‫ﺍﻟﻤﻘﻴﺎﺱ ﻜﻨﺴﺒﺔ ﻤﺌﻭﻴﺔ ﻤﻥ‬ ‫ﺍﻟﻤﻘﻴﺎﺱ‬ ‫ﺍﻟﻤﺂﺨﺫ ﺍﻟﻤﻼﺌﻤﺔ‬ ‫‪d‬‬ ‫ﺍﻟﻤﻘﻴﺎﺱ‬ ‫ﻓﺭﻕ ﺍﻟﻀﻐﻁ ﺍﻟﻤﻘﺎﺱ‬ ‫) (‬ ‫)٢‪(kg/cm‬‬ ‫)٢‪(kg/cm‬‬ ‫‪D‬‬ ‫٦١٢,٠‬ ‫٤٥%‬ ‫٤,٠‬ ‫٥٧٦,٠‬ ‫ﺫﻭ ﺍﻟﻔﺘﺤﺔ‬ ‫‪orifice‬‬ ‫٨١,٠‬ ‫٥٤%‬ ‫٤,٠‬ ‫٢٥٦,٠‬ ‫ﺫﻭ ﺍﻟﻔﻭﻫﺔ‬ ‫-‪Flow‬‬ ‫‪Nozzle‬‬ ‫٤٠,٠‬ ‫٠١%‬ ‫٤,٠‬ ‫٥,٠-‬ ‫ـﻭﺭﻯ‬‫ﻓﻨﺸـ‬ ‫٥٧٦,٠‬ ‫‪Venturi‬‬ ‫ﺠﺩﻭل )١(‬ ‫- ٠٣ -‬
  • 32. ‫ﺃﻁﻭﺍل ﺍﻷﻨﺎﺒﻴﺏ ﻗﺒل ﺃﺠﻬﺯﺓ ﺍﻟﻘﻴﺎﺱ ﻭﺒﻌﺩﻫﺎ:‬ ‫ﻋﻨﺩ ﺇﺴﺘﺨﺩﺍﻡ ﺃﺠﻬﺯﺓ ﻟﻘﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺎﺭﺓ ﻓﻲ ﺍﻷﻨﺎﺒﻴﺏ ﻴﺠﺏ‬ ‫ﺃﻥ ﻴﺴﺒﻕ ﺍﻟﺠﻬﺎﺯ ﻁﻭل ﻤﺴﺘﻘﻴﻡ ﻤﻥ ﺍﻷﻨﺒﻭﺒـﺔ ‪Straight Run‬‬ ‫ﻟﻀﻤﺎﻥ ﺇﻨﺘﻅﺎﻡ ﺍﻟﺴﺭﻴﺎﻥ ﻗﺒل ﺍﻟﺠﻬـﺎﺯ ﻭﺨﺎﺼـﺔ ﺇﺫﺍ ﺇﺤﺘـﻭﺕ‬ ‫ﺍﻷﻨﺒﻭﺒﺔ ﻋﻠﻰ ﺘﺭﻜﻴﺒﺎﺕ ﻤﺜل ﺍﻷﻜـﻭﺍﻉ، ﺍﻟﺘﻴﻬـﺎﺕ ﻭﺍﻟﻤﺤـﺎﺒﺱ‬ ‫ﻭﻜﺫﻟﻙ ﻴﺠﺏ ﺃﻥ ﻴﻠﻰ ﺍﻟﺠﻬﺎﺯ ﻁﻭل ﻤﺴﺘﻘﻴﻡ ﻤﻥ ﺍﻷﻨﺒﻭﺒﺔ ﻭﺫﻟـﻙ‬ ‫ﺤﺘﻰ ﻻ ﺘﺅﺜﺭ ﺍﻟﻀﻐﻭﻁ ﺍﻟﺨﻠﻔﻴﺔ ‪ Back pressure‬ﻋﻠﻰ ﺩﻗـﺔ‬ ‫ﺘﺘﺭﺍﻭﺡ ﺒـﻴﻥ‬ ‫ﺍﻟﺠﻬﺎﺯ ﻭﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻨﺴﺒﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﻟﻸﻗﻁﺎﺭ‬ ‫‪d‬‬ ‫‪D‬‬ ‫٢٥٦,٠ – ٥٧٦,٠ ﻴﻜﻭﻥ ﺍﻟﻁﻭل ﺍﻟﻤﺴـﺘﻘﻴﻡ ﺍﻟﺘﻘﺭﻴﺒـﻰ ﻗﺒـل‬ ‫ﺍﻟﻤﻘﻴﺎﺱ ﺫﻭ ﺍﻟﻔﺘﺤﺔ ‪ orifice‬ﻴﺴﺎﻭﻯ ٠٢ ﻤﺜل ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒـﺔ‬ ‫)‪ (٢٠ D‬ﻭﻴﻜﻭﻥ ﺍﻟﻁﻭل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺘﻘﺭﻴﺒﻰ ﻗﺒـل ﺍﻟﻤﻘﻴـﺎﺱ ﺫﻭ‬ ‫ﺍﻟﻔﻭﻫﺔ ‪ Flow-Nozzle‬ﻭﻗﺒل ﻤﻘﻴـﺎﺱ ﻓﻨﺸـﻭﺭﻯ ‪Venturi‬‬ ‫ﻴﺴﺎﻭﻯ ٠٣ ﻤﺜل ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒﺔ )‪ (٣٠D‬ﻭﺫﻟﻙ ﻓﻲ ﺃﺴﻭﺃ ﺤﺎﻟـﺔ‬ ‫‪ Worst Case‬ﻤﻥ ﺃﻨﻭﺍﻉ ﺍﻟﺘﺭﻜﻴﺒﺎﺕ ﻭﻓﻲ ﺃﻏﻠﺏ ﺍﻷﺤﻴﺎﻥ ﻴﻜﻭﻥ‬ ‫ﺍﻟﻁﻭل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺘﻘﺭﻴﺒﻰ ﺒﻌﺩ ﺍﻟﺠﻬﺎﺯ ﻴﺴﺎﻭﻯ ﺨﻤﺴـﺔ ﺃﻤﺜـﺎل‬ ‫ﻗﻁﺭ ﺍﻷﻨﺒﻭﺒﺔ )‪ (٥D‬ﻭﺫﻟﻙ ﻟﻜل ﺃﺠﻬﺯﺓ ﺍﻟﻘﻴﺎﺱ ﺍﻟﺴﺎﺒﻘﺔ.‬ ‫- ١٣ -‬
  • 33. ‫٤- ﺃﻨﺒﻭﺒﺔ ‪:Pitot‬‬ ‫ﺸﻜل )٨(‬ ‫ﺸﻜل )٩(‬ ‫- ٢٣ -‬
  • 34. ‫ﺘﺘﻜﻭﻥ ﺃﻨﺒﻭﺒﺔ ‪ Pitot‬ﻤﻥ ﺃﻨﺒﻭﺒﺔ ﻋﻠﻰ ﻫﻴﺌﺔ ﺯﺍﻭﻴـﺔ ﻗﺎﺌﻤـﺔ‬ ‫ﻭﻋﻨﺩﻤﺎ ﻴﻐﻤﺭ ﺍﻟﺠﺯﺀ ﺍﻟﻤﺜﻨﻰ ﺠﺯﺌﻴﺎ ﺘﺤﺕ ﺍﻟﻤﺎﺀ ﻭﻴﻭﺠﻪ ﻤﺒﺎﺸﺭﺓ‬ ‫ﹰ‬ ‫ﻹﺘﺠﺎﻩ ﺍﻟﺴﺭﻴﺎﻥ ‪ Flow‬ﻓﺈﻨﻪ ﻴﺒﻴﻥ ﺴﺭﻋﺔ ﺍﻟﺴـﺭﻴﺎﻥ ﺒﺎﻟﻤﺴـﺎﻓﺔ‬ ‫ﺍﻟﺘﻲ ﻴﺭﺘﻔﻌﻬﺎ ﺍﻟﻤﺎﺀ ﻓﻲ ﺍﻟﺠﺯﺀ ﺍﻟﺭﺃﺴﻰ ﻤﻥ ﺍﻷﻨﺒﻭﺒﺔ ﻋﻥ ﺴﻁﺢ‬ ‫2‪V‬‬ ‫ﻜﻤﺎ ﻫﻭ‬ ‫ﺍﻟﻤﺎﺀ ﺤﻴﺙ ﺃﻥ ﻫﺫﻩ ﺍﻟﻤﺴﺎﻓﺔ ﺘﺴﺎﻭﻯ ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ‬ ‫‪2g‬‬ ‫ﺒﺎﻟﺸﻜل )٨(.‬ ‫ﻭﺍﻟﺸﻜل ﺍﻟﻤﺘﻜﺎﻤل ﻟﻬﺫﻩ ﺍﻷﻨﺒﻭﺒﺔ ﻴﻌﺭﻑ ﺒﺈﺴﻡ ‪Pitot-Static‬‬ ‫ﻜﻤﺎ ﺒﺎﻟﺸﻜل )٩( ﻭﻫﻰ ﺘﺘﻜﻭﻥ ﻤﻥ ﺠﺯﺌﻴﻥ ﺃﺴﺎﺴﻴﻴﻥ ﻤﻨﻔﺼـﻠﻴﻥ‬ ‫ﻭﻤﺘﻭﺍﺯﻴﻴﻥ ﺃﺤﺩﻫﻡ ﻴﺒﻴﻥ ﻤﺠﻤﻭﻉ ﺍﻟﻀﻐﻁ ﺍﻟﻜﻠﻰ )ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ(‬ ‫ﻭﺍﻵﺨﺭ ﻴﺒﻴﻥ ﺍﻟﻀﻐﻁ ﺍﻹﺴﺘﺎﺘﻴﻜﻰ )ﻁﺎﻗﺔ ﺍﻟﻀﻐﻁ( ﻓﻘـﻁ ﻭﻴـﺘﻡ‬ ‫ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻀﻐﻁ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻰ )ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜـﺔ( ﺒﻁـﺭﺡ‬ ‫ﺍﻟﻀﻐﻁ ﺍﻹﺴﺘﺎﺘﻴﻜﻰ ﻤﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻜﻠﻰ ﺤﻴﺙ ﺃﻥ ﺃﻨﺒﻭﺒﺔ -‪Pitot‬‬ ‫‪ static‬ﺘﻘﻴﺱ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻀﻐﻁ ﺍﻟﻜﻠﻰ ﻭﺍﻟﻀﻐﻁ ﺍﻹﺴـﺘﺎﺘﻴﻜﻰ‬ ‫ﻋﻨﺩ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ﻭﺘﺴﺘﺨﺩﻡ ﺍﻟﻤﺎﻨﻭﻤﺘﺭﺍﺕ ﺒﺼﻭﺭﺓ ﺸﺎﺌﻌﺔ ﻟﻘﻴﺎﺱ‬ ‫ﻫﺫﻩ ﺍﻟﻀﻐﻭﻁ.‬ ‫- ٣٣ -‬
  • 35. ‫ﻭﻴﻭﻀﺢ ﺸﻜل )٠١( ﺇﺴﺘﺨﺩﺍﻡ ﺃﻨﺒﻭﺒﺔ ‪ Pitot-Static‬ﻟﻘﻴﺎﺱ‬ ‫ﺍﻟﻜﻤﻴﺔ )ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ( ﻓـﻲ ﺍﻟﻘﻨـﻭﺍﺕ ﺍﻟﻤﻔﺘﻭﺤـﺔ ﻟﻠﺴـﺭﻴﺎﻥ‬ ‫ﺍﻟﻤﻨﺨﻔﺽ ﺍﻟﺴﺭﻋﺔ ﺤﻴﺙ ﺃﻨﻪ ﻴﺼﻌﺏ ﻗﻴﺎﺱ ﺇﺭﺘﻔﺎﻉ ﺍﻟﻤﺎﺀ ﻓـﻲ‬ ‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﻓﻭﻕ ﺴﻁﺢ ﺍﻟﻤﺎﺀ ﺍﻟﻤﺘﺩﻓﻕ ﻭﻴﺘﻡ ﺫﻟﻙ ﺒﺘﻭﺼﻴل ﻁﺭﻓﻲ‬ ‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﺒﺒﻌﺽ ﻤﻥ ﺃﻋﻠﻰ ﺒﻭﺍﺴﻁﺔ ﻭﺼﻠﺔ ﻋﻠﻰ ﺸﻜل ﺤـﺭﻑ‬ ‫‪ T‬ﻭﻴﻭﺼل ﺍﻟﻁﺭﻑ ﺍﻟﺜﺎﻟﺙ ﻟﻬﺎ ﺒﺨﻁ ﻴﻤﻜﻥ ﺘﻭﻟﻴﺩ ﺨﻠﺨﻠﺔ ﺠﺯﺌﻴﺔ‬ ‫ﺒﻪ ﻭﺒﻌﺩ ﺃﺨﺫ ﺍﻟﻬﻭﺍﺀ ﻤﻥ ﺃﻨﺒﻭﺒﺔ ‪ Pitot‬ﻴﺭﺘﻔﻊ ﺍﻟﻤﺎﺀ ﻷﻋﻠﻰ ﺇﻟﻰ‬ ‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﺤﺘﻰ ﺍﻹﺭﺘﻔﺎﻉ ﺍﻟﻤﻘﺘﺭﺡ ﻟﺘﺴﻬﻴل ﺍﻟﻘﺭﺍﺀﺓ ﺜﻡ ﻴﻐﻠﻕ ﺨﻁ‬ ‫ﺍﻟﺨﻠﺨﻠﺔ ﻭﺘﺅﺜﺭ ﺍﻟﺨﻠﺨﻠﺔ ﺍﻟﺠﺯﺌﻴـﺔ ﺒﺎﻟﺘﺴـﺎﻭﻯ ﻋﻠـﻰ ﻁﺭﻓـﻲ‬ ‫ﺍﻟﻤﺎﻨﻭﻤﺘﺭ ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻟﻡ ﻴﺘﻐﻴﺭ ﻓﺭﻕ ﺍﻟـ ‪.Head‬‬ ‫ﺸﻜل )٠١(‬ ‫- ٤٣ -‬
  • 36. ‫ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ﻓﻲ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬ ‫ﻴﻨﻘﺴﻡ ﻓﺎﻗﺩ ﺍﻟﻁﺎﻗﺔ ﻓﻲ ﺍﻷﻨﺎﺒﻴﺏ ﺇﻟﻰ ﻨﻭﻋﻴﻥ ﻫﻤﺎ :‬ ‫١- ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻨﺘﻴﺠﺔ ﺇﺠﻬﺎﺩﺍﺕ ﺍﻟﻘﺹ ﺍﻟﻠﺯﺝ ﺩﺍﺨـل‬ ‫ﺍﻟﺴﺎﺌل ﻭﺍﻹﻀﻁﺭﺍﺏ ﻋﻨﺩ ﺠﺩﺍﺭ ﺍﻷﻨﺒﻭﺒﺔ.‬ ‫٢- ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻨﺘﻴﺠﺔ ﻭﺠﻭﺩ ﺘﻐﻴﺭ ﻓـﻲ ﺴـﺭﻋﺔ ﺃﻭ‬ ‫ﺇﺘﺠﺎﻩ ﺍﻟﺴﺭﻴﺎﻥ ﻭﻨﻼﺤﻅ ﺃﻥ ﺘﻘﻠﻴل ﺍﻟﺴﺭﻋﺔ ﻴﺘﺴﺒﺏ ﻓﻲ‬ ‫ﻓﺎﻗﺩ ﻀﻐﻁ ﺃﻋﻠﻰ ﻤﻥ ﺯﻴﺎﺩﺓ ﺍﻟﺴﺭﻋﺔ.‬ ‫١- ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ‪:Friction Head Loss‬‬ ‫ﻴﻌﺘﻤﺩ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﺍﻟﻤـﺎﺭ‬ ‫ﻭﺴﺭﻋﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻭﺃﺒﻌﺎﺩ ﺍﻷﻨﺒﻭﺒﺔ ﻭﺍﻟﻤـﺎﺩﺓ ﺍﻟﻤﺼـﻨﻭﻉ ﻤﻨﻬـﺎ‬ ‫ﺍﻷﻨﺒﻭﺒﺔ ﻭﻫﻭ ﻴﺴﺎﻭﻯ.‬ ‫‪l‬‬ ‫2 ‪⎛ V 2 ⎞ 0.81057 flQ‬‬ ‫‪hf = f‬‬ ‫⎜‬ ‫= ⎟ ‪⎜ 2g‬‬ ‫⎟‬ ‫‪d‬‬ ‫⎝‬ ‫⎠‬ ‫5 ‪gd‬‬ ‫2‪V‬‬ ‫ﺤﻴﺙ ﺃﻥ ‪ l‬ﻁﻭل ﺍﻷﻨﺒﻭﺒﺔ، ‪ d‬ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﻸﻨﺒﻭﺒﺔ،‬ ‫‪2g‬‬ ‫ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ، ‪ Q‬ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ ﺃﻭ ﺍﻟﻜﻤﻴﺔ‬ ‫- ٥٣ -‬
  • 37. ‫‪ f‬ﻤﻌﺎﻤل ﺍﻹﺤﺘﻜﺎﻙ ﻭﺘﻌﺘﻤﺩ ﻗﻴﻤﺘﻪ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﺴـﺭﻴﺎﻥ ﻓـﻲ‬ ‫ﺍﻷﻨﺒﻭﺒﺔ ﺤﻴﺙ ﻴﻭﺠﺩ ﻨﻭﻋﺎﻥ ﻤﻥ ﺍﻟﺴﺭﻴﺎﻥ ﻓﻲ ﺍﻷﻨﺎﺒﻴـﺏ ﻫﻤـﺎ‬ ‫ﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﺭﻗﺎﺌﻘﻰ ‪ Laminar Flow‬ﻭﺍﻟﺴﺭﻴﺎﻥ ﺍﻟﻤﻀـﻁﺭﺏ‬ ‫‪ Turbulent Flow‬ﻭﻟﻜﻲ ﻴﺘﻡ ﻨﻘل ﺍﻟﺴﻭﺍﺌل ﺒﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ‬ ‫ﺒﺼﻭﺭﺓ ﺇﻗﺘﺼﺎﺩﻴﺔ ﺒﻤﻌﻨﻰ ﺘﺤﻘﻴﻕ ﺃﻗل ﺘﻜﻠﻔﺔ ﻜﻠﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ ﻓﺈﻥ‬ ‫ﺫﻟﻙ ﻴﺴﺘﻭﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴـﺎﺕ ﺍﻟﻤﻨﻘﻭﻟـﺔ ﺒـﺎﻟﺨﻁ ﻜﺒﻴـﺭﺓ‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻰ ﻴﻜـﻭﻥ ﺍﻟﺴـﺭﻴﺎﻥ ﻤﻀـﻁﺭﺏ ‪Turbuleut FLow‬‬ ‫ﻭﻴﺘﺤﺩﺩ ﻨﻭﻉ ﺍﻟﺴﺭﻴﺎﻥ ﻋﻥ ﻁﺭﻴﻕ ﺭﻗﻡ ﺒﺩﻭﻥ ﻭﺤـﺩﺍﺕ ﻴﺴـﻤﻰ‬ ‫ﺭﻗﻡ ﺭﻴﻨﻭﻟﺩ ‪ Reynold's Number‬ﻭﻴﺭﻤﺯ ﻟﻪ ﺒـﺎﻟﺭﻤﺯ ‪RN‬‬ ‫ﻭﻫﻭ ﻴﺴﺎﻭﻯ‬ ‫)‪sp.gr × V (cm / sec) × d (cm‬‬ ‫= ‪RN‬‬ ‫)‪µ ( poise‬‬ ‫)‪25400 × V (mt / sec) × d (inch‬‬ ‫=‬ ‫) ‪γ (cst‬‬ ‫ﺤﻴﺙ ﺃﻥ ‪ sp.gr‬ﻫﻰ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﺴﺎﺌل ﻭﻫﻰ ﺭﻗﻡ ﺒﺩﻭﻥ‬ ‫ﻭﺤﺩﺍﺕ ﻭﺘﺴﺎﻭﻯ ﻋﺩﺩﻴﺎ ﻜﺜﺎﻓﺔ ﺍﻟﺴﺎﺌل ﺒﺎﻟﺠﺭﺍﻡ/ ﺴﻨﺘﻴﻤﺘﺭ ﻤﻜﻌﺏ‬ ‫ﹰ‬ ‫‪ V‬ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﺍﻟﺴﺎﺌل ﺩﺍﺨل ﺍﻷﻨﺒﻭﺒﺔ‬ ‫‪ d‬ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﻸﻨﺒﻭﺒﺔ‬ ‫- ٦٣ -‬
  • 38. ‫‪ µ‬ﺃﻭ ‪ γ‬ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ )ﺍﻟﻤﻁﻠﻘﺔ( ﺃﻭ ﺍﻟﻜﻴﻨﻤﺎﺘﻴﻜﻴﺔ‬ ‫ﻭﻗﺩ ﻭﺠﺩ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ ﺭﻗﻡ ﺭﻴﻨﻭﻟﺩ ﺃﻗل ﻤـﻥ ٠٠٠٢ ﻜـﺎﻥ‬ ‫ﺍﻟﺴﺭﻴﺎﻥ ﺭﻗﺎﺌﻘﻰ )ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﻤﻨﺨﻔﻀﺔ ﻨﺴﺒﻴﺎ( ﻭﻓـﻲ ﻫـﺫﻩ‬ ‫ﹰ‬ ‫ﺍﻟﺤﺎﻟﺔ ﺘﻜﻭﻥ ﺍﻟﻠﺯﻭﺠﺔ ﻫﻰ ﺍﻟﺴﺒﺏ ﺍﻷﻜﺒﺭ ﻟﻤﻘﺎﻭﻤﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻭﻓﻘﺩ‬ ‫ﺍﻟﻀﻐﻁ، ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ‬ ‫) ‪γ (Cst‬‬ ‫7870.0 < ) ‪V (mt / sec‬‬ ‫)‪d (inch‬‬ ‫)‪Q(mt٣/hr) < ٠,١٤٣٦γ (cst). d(inch‬‬ ‫ﻭﺃﻴﻀﺎ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻴﺴﺎﻭﻯ‬ ‫ﹰ‬ ‫‪γlQ‬‬ ‫7177.2 = ‪h f‬‬ ‫4‪d‬‬ ‫ﺤﻴﺙ ﺃﻥ ‪ hf‬ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﺒﺎﻟﻤﺘﺭ‬ ‫‪l‬‬ ‫‪ γ‬ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺒﺎﻟﺴﻨﺘﻰ ﺴﺘﻭﻜﺱ‬ ‫ﻁﻭل ﺍﻷﻨﺒﻭﺒﺔ ﺒﺎﻟﻜﻴﻠﻭﻤﺘﺭ‬ ‫‪ Q‬ﻤﻌﺩل ﺍﻟﺴﺭﻴﺎﻥ ﺃﻭ ﺍﻟﻜﻤﻴﺔ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴـﺎﻋﺔ،‬ ‫‪ d‬ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﻸﻨﺒﻭﺒﺔ ﺒﺎﻟﺒﻭﺼﺔ‬ ‫- ٧٣ -‬
  • 39. ‫ﻭﺇﺫﺍ ﻜﺎﻥ ﺭﻗﻡ ﺭﻴﻨﻭﻟﺩ ﺃﻜﺒﺭ ﻤـﻥ ٠٠٠٤ ﻜـﺎﻥ ﺍﻟﺴـﺭﻴﺎﻥ‬ ‫ﻤﻀﻁﺭﺏ )ﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﻋﺎﻟﻴﺔ ﻨﺴﺒﻴﺎ ﻭﺃﻜﺜﺭ ﺇﻨﺘﻅﺎﻤﺎ(، ﻭﻓـﻲ‬ ‫ﹰ‬ ‫ﹰ‬ ‫ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ ﺍﻟﺴﺒﺏ ﺍﻟﻤﻠﺤﻭﻅ ﺃﻜﺜﺭ ﻟﻤﻘﺎﻭﻤﺔ ﺍﻟﺴﺭﻴﺎﻥ ﻫـﻭ‬ ‫ﻨﺘﻴﺠﺔ ﺨﺸﻭﻨﺔ ﺠﺩﺍﺭ ﺍﻷﻨﺒﻭﺒﺔ ﻭﺍﻹﻀﻁﺭﺍﺏ ﻭﻓﻲ ﻫـﺫﻩ ﺍﻟﺤﺎﻟـﺔ‬ ‫ﻴﻜﻭﻥ‬ ‫) ‪γ (Cst‬‬ ‫84751.0 > )‪V (mt / sec‬‬ ‫)‪d (inch‬‬ ‫)‪Q(mt / hr ) > 0.287 γ (cst ). d (inch‬‬ ‫3‬ ‫ﻭﺃﻴﻀﺎ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻴﺴﺎﻭﻯ‬ ‫ﹰ‬ ‫57.1 ‪γ 0.25 l Q‬‬ ‫5245.71 = ‪h f‬‬ ‫57.4 ‪d‬‬ ‫ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓـﻲ ﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬ ‫‪hf‬‬ ‫ﺤﻴﺙ ﺃﻥ‬ ‫ﺒﺎﻟﻤﺘﺭ‬ ‫ﻟﺯﻭﺠﺔ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺴﻨﺘﻰ‬ ‫‪γ‬‬ ‫ﺴﺘﻭﻜﺱ‬ ‫ﻁﻭل ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﻜﻴﻠﻭﻤﺘﺭ‬ ‫‪l‬‬ ‫ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ‬ ‫‪Q‬‬ ‫ﻓﻲ ﺍﻟﺴﺎﻋﺔ‬ ‫- ٨٣ -‬
  • 40. ‫ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺒﻭﺼﺔ‬ ‫‪d‬‬ ‫٢- ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ‪:Minor losses‬‬ ‫⎞ 2 ‪⎛V‬‬ ‫⎞ 2 ‪⎛V‬‬ ‫ﻭﻫﻰ ﺘﺴﺎﻭﻯ ⎟ ⎜ ‪ hs = K‬ﺤﻴﺙ ﺃﻥ ⎟ ⎜ ﻫﻰ ﻁﺎﻗـﺔ‬ ‫⎟ ‪⎜ 2g‬‬ ‫⎟ ‪⎜ 2g‬‬ ‫⎝‬ ‫⎠‬ ‫⎝‬ ‫⎠‬ ‫ﺍﻟﺤﺭﻜﺔ، ‪ K‬ﻤﻌﺎﻤل ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻤﺼﺩﺭ ﺍﻟﻔﺎﻗﺩ ﻭﻴﻤﻜـﻥ ﺇﻴﺠـﺎﺯ‬ ‫ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻜﻤﺎ ﻓﻲ ﺍﻟﺠﺩﻭل )٢(.‬ ‫ﻤﻌﺎﻤل ﺍﻟﻔﺎﻗﺩ ‪K‬‬ ‫ﺍﻟﻔـــــﺎﻗﺩ‬ ‫٥,٠‬ ‫ﻓﻲ ﻤﺩﺨل ﺍﻷﻨﺒﻭﺒﺔ‬ ‫١‬ ‫ﻋﻨﺩ ﻤﺨﺭﺝ ﺍﻷﻨﺒﻭﺒﺔ‬ ‫٥,٠‬ ‫ﻋﻨﺩ ﺘﻘﻠﻴل ﻤﻘﻁﻊ ﺍﻷﻨﺒﻭﺒﺔ ﻓﺠﺄﺓ‬ ‫٥٠,٠‬ ‫ﻋﻨﺩ ﺘﻘﻠﻴل ﻤﻘﻁﻊ ﺍﻷﻨﺒﻭﺒﺔ ﺘﺩﺭﻴﺠﻴﺎ‬ ‫ﹰ‬ ‫١‬ ‫ﻓﻲ ﺍﻟﻜﻭﻉ ٠٩‪º‬‬ ‫٥,٠‬ ‫ﻓﻲ ﺍﻟﻜﻭﻉ ٥٤‪º‬‬ ‫٩,٠‬ ‫ﻓﻲ ﺍﻟﻭﺼﻠﺔ ﺘﻴﻪ‬ ‫٢,٠‬ ‫ﻓﻲ ﺍﻟﻤﺤﺒﺱ ﺍﻟﻤﻔﺘﻭﺡ ﺘﻤﺎﻤﺎ‬ ‫ﹰ‬ ‫ﺠﺩﻭل )٢(‬ ‫- ٩٣ -‬
  • 41. ‫ﻭﺘﻭﺠﺩ ﻁﺭﻴﻘﺔ ﺃﺨﺭﻯ ﻟﺤﺴﺎﺏ ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻫﻰ ﻁﺭﻴﻘـﺔ‬ ‫ﺍﻷﻁـﻭﺍل ﺍﻟﻤﻜﺎﻓﺌـﺔ ‪ Equivalent Length‬ﺒﻤﻌﻨـﻰ ﺃﻥ ﺃﻯ‬ ‫ﻤﺼﺩﺭ ﻤﻥ ﻤﺼﺎﺩﺭ ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻴﻌﻁﻰ ﻓﻲ ﺼﻭﺭﺓ ﻁـﻭل‬ ‫ﻤﺴﺘﻘﻴﻡ ﻤﻥ ﺍﻷﻨﺒﻭﺒﺔ ﺒﺸﺭﻁ ﺃﻥ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓـﻲ ﻫـﺫﺍ‬ ‫ﺍﻟﻁﻭل ﻴﺴﺎﻭﻯ ﺍﻟﻔﺎﻗﺩ ﺍﻟﺜﺎﻨﻭﻯ ﻭﻫﻭ ﻴﺴﺎﻭﻯ‬ ‫2 ‪leq ⎛ V 2 ⎞ 0.81057 f leq Q‬‬ ‫‪hs = f‬‬ ‫⎜‬ ‫=⎟‬ ‫⎟ ‪d ⎜ 2g‬‬ ‫⎝‬ ‫⎠‬ ‫5 ‪gd‬‬ ‫- ٠٤ -‬
  • 42. (٣) ‫ ﻟﻤﺼﺎﺩﺭ ﺍﻟﻔﺎﻗﺩ ﺒﺎﻟﻤﺘﺭ ﻜﻤﺎ ﺒﺎﻟﺠﺩﻭل‬leq ‫ﻭﺘﻌﻁﻰ ﻗﻴﻡ‬ Welding Bends Valves Elbows Ratio Of Pipe Bend Long Short Welding Size Radius Radius Radius Tee Swing (Inch) To Pipe Gate Globe Angle Check Size ٥=‫ﻨﻕ=٦ ﻨﻕ‬ = ‫ﻨﻕ‬ ‫ﻨﻕ=٥,١ﺍﻟﻘﻁﺭ‬ ‫ﺍﻟﻘﻁﺭ ﺍﻟﻘﻁﺭ‬ ‫ﺍﻟﻘﻁﺭ‬ ١ ٠,١٥٠,١٨ ٠,٣٣ ٠,٤٣ ١,١٩ ٠,١٨ ٨,٨٤ ٤,٥٧ ٢,٢٢ ١,٢٥ ٠,١٨٠,٢٤ ٠,٤٣ ٠,٥٥ ١,٥٨ ٠,٢٤ ١١,٥٨ ٥,٧٩ ٢,٩٣ ١,٥ ٠,٢٤٠,٢٧ ٠,٤٩ ٠,٦٤ ١,٨٣ ٠,٢٧ ١٣,٧٢ ٦,٧ ٣,٣٥ ٢ ٠,٣٠٠,٣٣ ٠,٦٤ ٠,٨٥ ٢,٣٨ ٠,٣٦ ١٧,٣٧ ٨,٨٤ ٤,٢٧ ٢,٥ ٠,٣٦٠,٤٠ ٠,٧٦ ١ ٢,٨٣ ٠,٤٣ ٢١,٠٣ ١٠,٣٦ ٥,١٨ ٣ ٠,٤٦٠,٥٢ ٠,٩٤ ١,٢٥ ٣,٣٥ ٠,٥٥ ٢٥,٩١ ١٣,١١ ٦,٤ ٤ ٠,٦١٠,٦٧ ١,٢٢ ١,٦٤ ٤,٥٧ ٠,٧٣ ٣٤,١٤ ١٧,٠٧ ٨,٥٣ ٥ ٠,٧٦٠,٨٥ ١,٥٥ ٢,٠٤ ٥,٧٩ ٠,٨٨ ٤٢,٦٧ ٢١,٣٤١٠,٦٧ ٦ ٠,٩١ ١ ١,٨٦ ٢,٤٧ ٧ ١,٠٧ ٥١,٢١ ٢٥,٦ ١٢,٨ ٨ ١,١٩١,٣١ ٢,٤٤ ٣,٣٥ ٩,١٤ ١,٤٣ ٦٧,٦٧ ٣٣,٨٣١٧,٠٧ ١٠ ١,٤٩١,٦٨ ٣,٠٥ ٣,٩٦ ١١,٥٨ ١,٨ ٨٤,٧٣ ٤٢,٣٧٢١,٣٤ ١٢ ١,٧٧١,٩٥ ٣,٦٦ ٤,٨٨ ١٣,٧٢ ٢,١٣١٠١,١٩ ٥٠,٦ ٢٥,٣ ١٤ ١,٨٩٢,٠٧ ٣,٩٦ ٥,٤٩ ١٤,٩٣ ٢,٣٥١١٠,٩٥٥٥,٤٧٢٧,٧٤ ١٦ ٢,١٦٢,٣٨ ٤,٥٧ ٦,١ ١٧,٠٧ ٢,٦٨ ١٢٧,١ ٦٣,٤ ٣١,٧ - ٤١ -
  • 43. ‫٨١,٥ ٨٦,٢٤٤,٢ ٨١‬ ‫٧‬ ‫٦٦,٥٣٢٣,١٧٥٩,٢٤١٢٠,٣ ٢,٩١‬ ‫٩٧,٥ ٩٩,٢٤٧,٢ ٠٢‬ ‫٢٦,٧‬ ‫٣٩,٩٣٥٥,٩٧ ١,٩٥١ ٥٣,٣ ٤٦,١٢‬ ‫٦٦,٣٥٣,٣ ٤٢‬ ‫٧‬ ‫٤١,٩‬ ‫٥٨,٧٤١٧,٥٩٢٧,١٩١٦٩,٣ ١٩,٥٢‬ ‫ﺠﺩﻭل )٣(‬ ‫ﻭﻗﺩ ﻴﺘﻀﺢ ﻤﻥ ﺍﻟﺨﺒﺭﺓ ﺍﻟﻌﻤﻠﻴﺔ ﺃﻥ ﺍﻟﺒﻠﻭﻑ ﻤﻥ ﻨﻭﻉ ,‪Gate‬‬ ‫‪ Ball, Plug And Butterfly‬ﻟﻬﺎ ﻤﻘﺎﻭﻤﺔ ﻤﻨﺨﻔﻀﺔ ﻟﻠﺴﺭﻴﺎﻥ‬ ‫ﺃﻤﺎ ﺍﻟﺒﻠﻭﻑ ﺍﻷﺨﺭﻯ ﻤـﻥ ﻨـﻭﻉ ‪ Globe And Angle‬ﻟﻬـﺎ‬ ‫ﻤﻘﺎﻭﻤﺔ ﻤﺭﺘﻔﻌﺔ ﻟﻠﺴﺭﻴﺎﻥ.‬ ‫ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﻜﻼ ﻤﻥ ﻓﺎﻗـﺩ ﺍﻹﺤﺘﻜـﺎﻙ ﻭﺍﻟﻔﻭﺍﻗـﺩ‬ ‫ﹰ‬ ‫ﺍﻟﺜﺎﻨﻭﻴﺔ ﺍﻟﻔﺎﻗﺩ ﺍﻟﻜﻠﻰ ﻓﻲ ﺍﻷﻨﺒﻭﺒﺔ ﻭﻫﻭ ﻴﺴﺎﻭﻯ‬ ‫2 ‪l + leq ⎛ V 2 ⎞ 0.81057 f (l + leq)Q‬‬ ‫‪ht = h f + hs = f‬‬ ‫⎜‬ ‫=⎟‬ ‫⎟ ‪d ⎜ 2g‬‬ ‫⎝‬ ‫⎠‬ ‫5 ‪gd‬‬ ‫ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺨﻁﻭﻁ ﺍﻟﻁﻭﻴﻠﺔ ﺘﻜﻭﻥ ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﺼـﻐﻴﺭﺓ‬ ‫ﺠﺩﺍ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻔﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻭﺒﺎﻟﺘﺎﻟﻰ ﻴﻤﻜﻥ ﺇﻫﻤﺎﻟﻬﺎ ﺃﻤﺎ ﻓﻲ ﺤﺎﻟﺔ‬ ‫ﹰ‬ ‫ﺍﻟﺨﻁﻭﻁ ﺍﻟﻘﺼﻴﺭﺓ ﻤﺜل ﺸﺒﻜﺎﺕ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺩﺍﺨﻠﻴﺔ ﻓﺈﻨﻪ ﻻ ﻴﻤﻜﻥ‬ ‫ﺇﻫﻤﺎل ﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺜﺎﻨﻭﻴﺔ ﺇﺫﺍ ﻤﺎ ﻗﻭﺭﻨﺕ ﺒﻔﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ.‬ ‫- ٢٤ -‬
  • 45. ‫ﻁﺭﻕ ﻨﻘل ﺍﻟﺒﺘﺭﻭل:‬ ‫ﻴﺘﻡ ﻨﻘل ﻤﺨﺘﻠﻑ ﺃﻨﻭﺍﻉ ﺍﻟﺒﺘﺭﻭل ﻭﻤﻨﺘﺠﺎﺘﻪ ﺇﻤﺎ ﻋﻥ ﻁﺭﻴـﻕ‬ ‫ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻭ ﺒﺈﺴﺘﺨﺩﺍﻡ ﺴﻴﺎﺭﺍﺕ ﺍﻟﺸﺤﻥ )ﺍﻟﻠـﻭﺍﺭﻯ( ﺃﻭ‬ ‫ﺒﺈﺴﺘﺨﺩﺍﻡ ﺼﻬﺎﺭﻴﺞ ﺍﻟﺴـﻜﺔ ﺍﻟﺤﺩﻴـﺩ ﺃﻭ ﺒﺈﺴـﺘﺨﺩﺍﻡ ﺍﻟﻨـﺎﻗﻼﺕ‬ ‫ﺍﻟﺒﺤﺭﻴﺔ )ﺍﻟﺴﻔﻥ( ﻭﻴﺘﻤﻴﺯ ﺍﻟﻨﻘل ﺒﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﺒﺈﺴـﺘﻤﺭﺍﺭ‬ ‫ﻋﻤﻠﻴﺔ ﺍﻟﻨﻘل ﺒﺼﺭﻑ ﺍﻟﻨﻅﺭ ﻋﻥ ﻨﻭﻉ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺃﻯ ﻴـﺘﻡ‬ ‫ﻨﻘل ﻤﺨﺘﻠﻑ ﺃﻨﻭﺍﻉ ﺍﻟﺴﻭﺍﺌل ﺒﺎﻟﺘﻌﺎﻗﺏ ﺩﺍﺨل ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻟﻴﺱ‬ ‫ﻨﻘل ﻨﻭﻉ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﺴﻭﺍﺌل ﻜﻤﺎ ﻴﺘﻡ ﺒﺈﺴﺘﺨﺩﺍﻡ ﺴﻴﺎﺭﺍﺕ ﺍﻟﺸﺤﻥ‬ ‫)ﺍﻟﻠﻭﺍﺭﻯ( ﺃﻭ ﺼﻬﺎﺭﻴﺞ ﺍﻟﺴﻜﺔ ﺍﻟﺤﺩﻴﺩ ﺃﻭ ﺍﻟﻨـﺎﻗﻼﺕ ﺍﻟﺒﺤﺭﻴـﺔ‬ ‫)ﺍﻟﺴﻔﻥ(.‬ ‫- ٤٤ -‬
  • 46. ‫ﺘﺼﻨﻴﻑ ﺃﻨﻅﻤﺔ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬ ‫ﺘﺼﻨﻑ ﺃﻨﻅﻤﺔ ﺨﻁﻭﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﺨﺎﺼﺔ ﺒﻨﻘل ﺍﻟﺒﺘﺭﻭل ﺇﻟـﻰ‬ ‫ﺜﻼﺜﺔ ﺃﻨﻭﺍﻉ :‬ ‫١- ﻨﻅﺎﻡ ﺍﻟﺘﺠﻤﻴﻊ ‪:Gathering System‬‬ ‫ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﺍﻟﻤﻌﺩﺍﺕ ﺍﻷﺨﺭﻯ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻟﻨﻘل ﺍﻟﺯﻴـﺕ‬ ‫ﺍﻟﺨﺎﻡ ﻭﻤﻨﺘﺠﺎﺘﻪ ﻤﻥ ﺍﻵﺒﺎﺭﺍﻟﻤﻨﻔﺭﺩﺓ ﻭﻤﻭﺍﻗﻊ ﺍﻹﻨﺘﺎﺝ ﺍﻷﺨﺭﻯ ﺇﻟﻰ‬ ‫ﻤﻭﻗﻊ ﺭﺌﻴﺴﻰ ﻴﺴﻤﻰ ﻨﻅﺎﻡ ﺘﺠﻤﻴﻊ، ﻭﺘﺘﻜﻭﻥ ﺃﻨﻅﻤـﺔ ﺍﻟﺘﺠﻤﻴـﻊ‬ ‫ﺃﺴﺎﺴﺎ ﻤﻥ ﻓﺭﻭﻉ ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺘﺴﺭﻯ ﺇﻟﻰ ﻤﺤﻁﺎﺕ ﺨﻁ ﺭﺌﻴﺴﻰ‬ ‫ﹰ‬ ‫ﺃﻭ ﻤﻭﺍﻗﻊ ﺃﺨﺭﻯ ﺤﻴﺙ ﻴﺘﻡ ﻨﻘل ﺍﻟﺯﻴﺕ ﻭﻤﻨﺘﺠﺎﺘﻪ ﺇﻟﻰ ﻨﻅﺎﻡ ﺨﻁ‬ ‫ﺭﺌﻴﺴﻰ، ﻭﺘﻜﻭﻥ ﻤﻌﻅـﻡ ﺍﻷﻗﻁﺎﺭﺍﻟﺸـﺎﺌﻌﺔ ﻟﻠﺨﻁـﻭﻁ ﺒﺘﻠـﻙ‬ ‫ﺍﻟﺘﻔﺭﻴﻌﺎﺕ ﻤﻥ ٤ ﺇﻟﻰ ٢١ ﺒﻭﺼﺔ ﻭﻴﺤﺘﻭﻯ ﻨﻅﺎﻡ ﺍﻟﺘﺠﻤﻴﻊ ﻋﺎﺩﺓ‬ ‫ﻋﻠﻰ ﻤﺤﻁﺎﺕ ﻀﺦ ﻟﺘﺠﻤﻴﻊ ﺍﻟﺯﻴﺕ ﻤﻥ ﺒﺌﺭ ﻤﻔﺭﺩ ﻭﻴﻜﻭﻥ ﺨـﻁ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﻤﺴﺘﺨﺩﻡ ﺒﻨﻅﺎﻡ ﺍﻟﺘﺠﻤﻴﻊ ﻗﺼﻴﺭ ﺒﺎﻟﻤﻘﺎﺭﻨـﺔ ﺒﺨﻁـﻭﻁ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻭﻴﺘﺭﺍﻭﺡ ﻤﺩﻯ ﺍﻟﻁﻭل ﻤﻥ ﺃﻤﺘﺎﺭ ﻗﻠﻴﻠﺔ ﺇﻟـﻰ‬ ‫ﻋﺩﺓ ﻜﻴﻠﻭ ﻤﺘﺭﺍﺕ.‬ ‫- ٥٤ -‬
  • 47. ‫٢- ﻨﻅﺎﻡ ﺍﻟﺨﻁ ﺍﻟﺭﺌﻴﺴﻰ ‪:Trunk Line System‬‬ ‫ﻭﺘﻜﻭﻥ ﺍﻟﻤﺭﺤﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻫﻰ ﻨﻘل ﺍﻟﺯﻴﺕ ﺍﻟﺨﺎﻡ ﻭﻤﻨﺘﺠﺎﺘﻪ ﻋﻥ‬ ‫ﻁﺭﻴﻕ ﺨﻁـﻭﻁ ﺃﻨﺎﺒﻴـﺏ ﺭﺌﻴﺴـﻴﺔ ‪Trunk Pipe –Lines‬‬ ‫ﻭﻴﺴﺘﺨﺩﻡ ﻨﻅﺎﻡ ﺍﻟﺨﻁ ﺍﻟﺭﺌﻴﺴﻲ ﻟﻨﻘل ﺍﻟﺒﺘﺭﻭل ﻭﻤﻨﺘﺠﺎﺘـﻪ ﻤـﻥ‬ ‫ﺍﻵﺒﺎﺭ ﻭ ﻤﻭﺍﻗﻊ ﺍﻹﻨﺘﺎﺝ ﺍﻷﺨـﺭﻯ ﺇﻟـﻰ ﻤﻨـﺎﻁﻕ ﺍﻟﻤﻌﺎﻟﺠـﺔ‬ ‫ﺃﻭﺍﻟﺘﻜﺭﻴﺭ ﻭﺍﻟﺘﺴﻭﻴﻕ ﻭﺫﻟﻙ ﺒﻜﻤﻴﺎﺕ ﻜﺒﻴﺭﺓ ﻭﻟﻤﺴﺎﻓﺎﺕ ﻁﻭﻴﻠﺔ.‬ ‫٣- ﺃﻨﻅﻤﺔ ﺍﻟﺘﻭﺯﻴﻊ ‪:Distribution Systems‬‬ ‫ﻴﺘﻡ ﻨﻘل ﺍﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﺒﺘﺭﻭﻟﻴﺔ ﻤﻥ ﻤﺼﺎﺩﺭ ﺍﻹﻤﺩﺍﺩ ﻤﺜل ﻤﻌﺎﻤل‬ ‫ﺍﻟﺘﻜﺭﻴﺭ ﻭﺍﻟﻤﻭﺍﻨﻰ ﺍﻟﺒﺤﺭﻴﺔ ﺇﻟﻰ ﻤﻨـﺎﻁﻕ ﺍﻹﺴـﺘﻬﻼﻙ ﺃﺴﺎﺴـﺎ‬ ‫ﹰ‬ ‫ﺒﻭﺍﺴﻁﺔ ﺃﻨﻅﻤﺔ ﺨﻁ ﺍﻟﺘﻭﺯﻴـﻊ ‪Pipe Line Distribution‬‬ ‫‪ ،Systems‬ﻭﺘﻜﻭﻥ ﻤﻌﻅﻡ ﺍﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﺒﺘﺭﻭﻟﻴﺔ ﻫـﻰ ﺃﻨـﻭﺍﻉ‬ ‫ﺍﻟﺒﻨﺯﻴﻥ ﺍﻟﻤﺨﺘﻠﻔﺔ، ﻭﻗﻭﺩ ﺍﻟﻨﻔﺎﺜـﺎﺕ، ﺍﻟﻜﻴﺭﻭﺴـﻴﻥ، ﺍﻟﺴـﻭﻻﺭ،‬ ‫ﺍﻟﻤﺎﺯﻭﺕ ﻭﻜﺫﻟﻙ ﺍﻟﺒﻭﺘﺎﺠﺎﺱ ﺍﻟﻤﺴﺎل ﻭﺘﺨﺘﻠﻑ ﺨﻁﻭﻁ ﺃﻨﺎﺒﻴـﺏ‬ ‫ﺍﻟﺘﻭﺯﻴﻊ ﻟﻠﻤﻨﺘﺠﺎﺕ ﻋﻥ ﺨﻁﻭﻁ ﺃﻨﺎﺒﻴﺏ ﺍﻟﺯﻴﺕ ﺍﻟﺨﺎﻡ ﻓـﻲ ﺃﻨﻬـﺎ‬ ‫ﻋﺎﺩﺓ ﺘﺒﺩﺃ ﻜﺄﻨﻅﻤﺔ ﺫﺍﺕ ﺴﻌﺎﺕ ﻜﺒﻴﺭﺓ ﻭﺘﺘﻔﺭﻉ ﺇﻟﻰ ﺃﻨﻅﻤـﺔ ﺫﺍﺕ‬ ‫ﺴﻌﺎﺕ ﺃﺼﻐﺭ ﻜﺈﻤﺩﺍﺩﺍﺕ ﻟﻠﻤﻭﺍﻗﻊ ﺍﻟﻤﺨﺘﻠﻔﺔ.‬ ‫- ٦٤ -‬
  • 48. ‫ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻼﺯﻡ ﻟﻤﺸﺭﻭﻉ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬ ‫ﻴﺴﺘﻬﻠﻙ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻼﺯﻡ ﻟﻠﻤﺸﺭﻭﻉ ﺃﺴﺎﺴﺎ ﻓـﻲ ﺘﻜـﺎﻟﻴﻑ‬ ‫ﹰ‬ ‫ﺇﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﺃﻴﻀﺎ ﺘﻜﺎﻟﻴﻑ ﺇﻨﺸﺎﺀ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ.‬ ‫ﹰ‬ ‫١- ﺘﻜﺎﻟﻴﻑ ﺇﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬ ‫ﻴﻌﺘﺒﺭ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻓـﻲ ﺇﻨﺸـﺎﺀ ﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬ ‫)ﺩﻭﻻﺭ/ﻁﻥ ﺃﻭ ﺩﻭﻻﺭ/ ﻜﻴﻠﻭﻤﺘﺭ( ﻴﺘﻨﺎﺴﺏ ﻤﻊ ﻭﺯﻥ ﻤﻭﺍﺴـﻴﺭ‬ ‫ﺍﻟﺨﻁ ﻭﻫﻭ ﻴﺴﺎﻭﻯ ﺜﻤﻥ ﺍﻟﻤﻭﺍﺴﻴﺭ = ﺃ × ﻭﺯﻥ ﺍﻟﻤﻭﺍﺴﻴﺭ، ﺤﻴﺙ‬ ‫ﺃﻥ ﺃ ﻤﻌﺎﻤل ﻭﺃﻥ ﻭﺯﻥ ﺍﻟﻤﻭﺍﺴﻴﺭ ﻴﻌﺘﻤﺩ ﻋﻠـﻰ ﻗﻁـﺭ ﻭﺴـﻤﻙ‬ ‫ﻭﻁﻭل ﻫﺫﻩ ﺍﻟﻤﻭﺍﺴﻴﺭ.‬ ‫٢- ﺘﻜﺎﻟﻴﻑ ﺇﻨﺸﺎﺀ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ:‬ ‫ﻴﻌﺘﺒﺭ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻓﻲ ﺇﻨﺸـﺎﺀ ﻤﺤﻁـﺔ ﻟﻠﻀـﺦ‬ ‫)ﺩﻭﻻﺭ/ ﺤﺼﺎﻥ( ﻴﺘﻨﺎﺴﺏ ﻤﻊ ﻗﺩﺭﺓ ﻫﺫﻩ ﺍﻟﻤﺤﻁﺔ ﻭﻫﻭ ﻴﺴـﺎﻭﻯ‬ ‫ﺍﻟﺜﻤﻥ ﺍﻷﺴﺎﺴﻰ ﻟﻠﻤﻀﺨﺎﺕ.‬ ‫- ٧٤ -‬
  • 49. ‫ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻤﺸﺭﻭﻉ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ:‬ ‫ﺘﻨﻘﺴﻡ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ ﺇﻟﻰ ﺍﻟﺒﻨﻭﺩ ﺍﻵﺘﻴﺔ :‬ ‫ﻤﺼﺎﺭﻴﻑ ﺍﻟﺘﺸـﻐﻴل ﻭﺍﻟﺼـﻴﺎﻨﺔ ﻟﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ‬ ‫١-‬ ‫ﻭﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﻭﺘﺸﻤل ﺇﺴﺘﻬﻼﻙ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺭﺒـﺎﺌﻲ‬ ‫ﻭﺍﻟﻤﻴﺎﻩ ﻭﻗﻁﻊ ﺍﻟﻐﻴﺎﺭ ﻭﺍﻟﻭﻗﻭﺩ ﻭﺍﻟﺯﻴﻭﺕ، ﻭﺘﻜـﺎﻟﻴﻑ‬ ‫ﺃﻋﻤﺎل ﺍﻟﺼﻴﺎﻨﺔ ﺍﻟﺘﻲ ﺘﺘﻡ ﻋﻥ ﻁﺭﻴﻕ ﺍﻟﻐﻴﺭ.‬ ‫ﺍﻟﻤﺭﺘﺒﺎﺕ ﻭﺍﻷﺠﻭﺭ.‬ ‫٢-‬ ‫ﺍﻟﻀﺭﺍﺌﺏ ﻭﺍﻟﺘﺄﻤﻴﻨﺎﺕ ﻭﻤﺎ ﺸﺎﺒﻪ ﺫﻟﻙ.‬ ‫٣-‬ ‫ﻤﺼﺎﺭﻴﻑ ﺍﻹﻫﻼﻙ ﺍﻟﺴﻨﻭﻴﺔ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻤﺤﻁـﺎﺕ‬ ‫٤-‬ ‫ﺍﻟﻀﺦ ﻭﺘﻌﺭﻑ ﺒﺄﻨﻬﺎ ﻨﺴﺒﺔ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻹﻨﺸﺎﺀ‬ ‫ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻭ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﺇﻟﻰ ﺍﻟﻌﻤﺭ ﺍﻹﻓﺘﺭﺍﻀﻰ‬ ‫ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻭ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﺤﻴﺙ ﻴـﺘﻡ ﺤﺴـﺎﺏ‬ ‫ﻤﺼﺎﺭﻴﻑ ﺍﻹﻫﻼﻙ ﺍﻟﺴﻨﻭﻴﺔ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺘﻘﺴﻴﻡ ﺭﺃﺱ‬ ‫ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻹﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﻋﻠـﻰ ﺍﻟﻌﻤـﺭ‬ ‫ﺍﻹﻓﺘﺭﺍﻀﻰ ﻟﻠﺨﻁ )ﺤﻭﺍﻟﻰ ٣٣ ﻋﺎﻤـﺎ( ﻭﻜـﺫﻟﻙ ﻴـﺘﻡ‬ ‫ﹰ‬ ‫ﺤﺴﺎﺏ ﻤﺼﺎﺭﻴﻑ ﺍﻹﻫﻼﻙ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻤﺤﻁﺎﺕ ﺍﻟﻀـﺦ‬ ‫ﺒﺘﻘﺴﻴﻡ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺜﻤﺭ ﻹﻨﺸﺎﺀ ﻤﺤﻁﺎﺕ ﺍﻟﻀـﺦ‬ ‫ﻋﻠﻰ ﺍﻟﻌﻤﺭ ﺍﻹﻓﺘﺭﺍﻀﻰ ﻟﻠﻤﻀﺨﺎﺕ )ﺤﻭﺍﻟﻰ ٥٢ ﻋﺎﻤﺎ(.‬ ‫ﹰ‬ ‫ﺃﻯ ﻤﺼﺭﻭﻓﺎﺕ ﺃﺨﺭﻯ ﻤﺜل ﺍﻟﻔﺎﺌﺩﺓ ﻋﻠﻰ ﺭﺃﺱ ﺍﻟﻤﺎل‬ ‫٥-‬ ‫ﺍﻟﻤﻘﺘﺭﺽ.‬ ‫- ٨٤ -‬
  • 50. ‫ﻭﺒﺫﻟﻙ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺘﻜﻠﻔﺔ ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﻭﻫﻰ ﺘﺴﺎﻭﻯ‬ ‫ﺇﺠﻤﺎﻟﻰ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ‬ ‫ﺘﻜﻠﻔﺔ ﺍﻟﻨﻘل )ﺩﻭﻻﺭ/ﻁﻥ(‬ ‫)ﺩﻭﻻﺭ(‬ ‫=‬ ‫ﻜﻤﻴﺔ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻨﻘﻭﻟﺔ ﻓﻲ ﺍﻟﻌﺎﻡ )ﻁﻥ(‬ ‫ﻭﺒﻨﺎﺀ ﻋﻠﻰ ﻤﺎ ﺴﺒﻕ ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺴﻌﺭ ﻨﻘل ﺍﻟﺒﺘـﺭﻭل ﺒﺨـﻁ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ ﺒﻀﺭﺏ ﺘﻜﻠﻔﺔ ﺍﻟﻨﻘل ﻓﻲ ﻤﻌﺎﻤل ﺒﺤﻴﺙ ﻻ ﻴﺘﻌﺩﻯ ﺴﻌﺭ‬ ‫ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﺒﺎﻟﻁﺭﻕ ﺍﻷﺨﺭﻯ ﻭﺘﻌﺘﻤﺩ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻋﻠـﻰ‬ ‫ﺃﺴﻌﺎﺭ ﺍﻟﻨﻘل ﻟﻠﺸﺭﻜﺎﺕ ﺍﻷﺨﺭﻯ ﺍﻟﻤﻨﺎﻓﺴﺔ‬ ‫ﺃﺴﺱ ﺇﺨﺘﻴﺎﺭ ﻗﻁﺭ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ:‬ ‫ﻴﻌﺘﻤﺩ ﺇﺨﺘﻴﺎﺭ ﻗﻁﺭ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻋﻠﻰ ﻋﻤل ﺩﺭﺍﺴﺔ ﺘﺸـﻤل‬ ‫ﺍﻵﺘﻲ:‬ ‫١- ﺤﺴﺎﺏ ﺘﻜﺎﻟﻴﻑ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ، ﻭﻫﻰ ﻜﻤـﺎ ﺒﺎﻟﺸـﻜل‬ ‫)١١( ﻤﻨﺤﻨﻰ ١ ﺘﺯﺩﺍﺩ ﺒﺯﻴﺎﺩﺓ ﻗﻁﺭ ﺍﻟﺨﻁ.‬ ‫٢- ﺤﺴﺎﺏ ﺘﻜﺎﻟﻴﻑ ﻭﺤﺩﺍﺕ ﺍﻟﻀﺦ ﻭﻫﻰ ﻜﻤﺎ ﻨﺭﻯ ﻤﻨﺤﻨﻰ‬ ‫٢ ﺘﻘل ﺒﺯﻴﺎﺩﺓ ﻗﻁﺭ ﺍﻟﺨﻁ.‬ ‫- ٩٤ -‬
  • 51. ‫ﻭﺒﺠﻤﻊ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ١، ٢ ﻨﺤﺼل ﻋﻠـﻰ ﺍﻟﺘﻜـﺎﻟﻴﻑ ﺍﻟﻜﻠﻴـﺔ‬ ‫ﺍﻟﺴﻨﻭﻴﺔ ﻤﻨﺤﻨﻰ ٣ ﻭﺍﻟﻘﻁﺭ ﺍﻷﻤﺜل ﺇﻗﺘﺼﺎﺩﻴﺎ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻫـﻭ‬ ‫ﹰ‬ ‫ﺍﻟﻘﻁﺭ ﺍﻟﺫﻯ ﻟﻪ ﺃﻗل ﺘﻜﻠﻔﺔ ﻜﻠﻴﺔ ﻭﻗﺩ ﻭﺠﺩ ﺃﻥ ﺍﻟﺴﺭﻋﺔ ﺍﻟﻤﻨﺎﺴـﺒﺔ‬ ‫ﻟﻠﺴﻭﺍﺌل ﻓﻲ ﺍﻷﻨﺎﺒﻴﺏ ﻓﻲ ﻫـﺫﻩ ﺍﻟﺤﺎﻟـﺔ ﺘﺘـﺭﺍﻭﺡ ﺒـﻴﻥ ١:٣‬ ‫ﻤﺘﺭ/ﺜﺎﻨﻴﺔ.‬ ‫ﻭﻴﺘﻀﺢ ﻤﻥ ﺍﻟﺨﺒﺭﺓ ﺍﻟﻌﻤﻠﻴـﺔ ﺃﻥ ﺍﻟﺴـﺭﻋﺔ ﺘﻘﺘـﺭﺏ ﻤـﻥ‬ ‫١ﻤﺘﺭ/ﺜﺎﻨﻴﺔ ﻟﻠﺴﻭﺍﺌل ﻤﺭﺘﻔﻌﺔ ﺍﻟﻠﺯﻭﺠﺔ ﻭﺃﻴﻀـﺎ ﺘﻘﺘـﺭﺏ ﻤـﻥ‬ ‫ﹰ‬ ‫٣ﻤﺘﺭ/ﺜﺎﻨﻴﺔ ﻟﻠﺴﻭﺍﺌل ﻤﻨﺨﻔﻀﺔ ﺍﻟﻠﺯﻭﺠﺔ ﻭﻴﻌﺘﺒﺭ ﻫـﺫﺍ ﺍﻟﻤـﺩﻯ‬ ‫ﻟﺴﺭﻋﺔ ﺴﺭﻴﺎﻥ ﺍﻟﺴﻭﺍﺌل ﺩﺍﺨل ﺍﻷﻨﺎﺒﻴﺏ ﻫﻭ ﺍﻟﻘﻴﺩ ﻟﺭﻓﻊ ﻜﻔـﺎﺀﺓ‬ ‫ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ.‬ ‫ﻭﻋﻨﺩ ﺇﺨﺘﻴﺎﺭ ﻗﻁﺭ ﺨﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﻴﺠـﺏ ﺃﻥ ﻴﺅﺨـﺫ ﻓـﻲ‬ ‫ﺍﻹﻋﺘﺒﺎﺭ ﻤﻌﺎﻤل ﺍﻟﺨﺩﻤـﺔ ‪ Service Factor‬ﻟﺨﻁـﺔ ﺍﻟﻨﻘـل‬ ‫ﺍﻟﺴﻨﻭﻴﺔ ﻭﻫﻭ ﻴﻜﻭﻥ ﻓﻲ ﺤﺩﻭﺩ ٢٨% ﺒﻤﻌﻨﻰ ﺃﻥ ﻴﺘﻡ ﻨﻘل ﺍﻟﻜﻤﻴﺔ‬ ‫ﺍﻟﻤﻁﻠﻭﺒﺔ ﺴﻨﻭﻴﺎ ﺨﻼل ٠٠٣ ﻴﻭﻡ ﻓﻘﻁ ﻭﺫﻟﻙ ﺤﺘـﻰ ﻻ ﻴـﺅﺜﺭ‬ ‫ﹰ‬ ‫ﺇﻴﻘﺎﻑ ﺍﻟﺨﻁ ﻷﻯ ﺴﺒﺏ ﻋﻠﻰ ﺘﺤﻘﻴﻕ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟـﺔ ﺴـﻨﻭﻴﺎ‬ ‫ﹰ‬ ‫ﻭﻟﺫﻟﻙ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺘﺴﺎﻭﻯ‬ ‫- ٠٥ -‬
  • 52. ‫ﺸﻜل )١١(‬ ‫6 01 × ) ‪(million ton / year‬‬ ‫=‪Q‬‬ ‫‪7200 × sp.gr‬‬ ‫ﺤﻴﺙ ﺃﻥ ‪ sp.gr‬ﻫﻰ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﺴﺎﺌل ﺍﻟﻤﻨﻘﻭل ﺒﺎﻟﺨﻁ‬ ‫ﻭﺃﻴﻀﺎ ﺘﻜﻭﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌـﺏ ﻓـﻲ ﺍﻟﺴـﺎﻋﺔ‬ ‫ﹰ‬ ‫ﺘﺴﺎﻭﻯ 2‪. Q = ١,٨٢٤ Di‬‬ ‫ﺤﻴﺙ ﺃﻥ ‪ V‬ﻫﻰ ﺴﺭﻋﺔ ﺍﻟﺴﺎﺌل ﺩﺍﺨل ﺍﻟﺨﻁ ﺒﺎﻟﻤﺘﺭ/ﺜﺎﻨﻴﺔ.‬ ‫- ١٥ -‬
  • 53. ‫‪ Di‬ﻫﻭ ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺒﻭﺼﺔ، ﻭﻤﻤﺎ ﺴﺒﻕ‬ ‫ﻴﺘﻀﺢ ﺃﻨﻪ ﻟﻜﻲ ﻴﺘﻡ ﻨﻘل ﺍﻟﺒﺘﺭﻭل ﺒﺼﻭﺭﺓ ﺇﻗﺘﺼـﺎﺩﻴﺔ ﺒﻤﻌﻨـﻰ‬ ‫ﺘﺤﻘﻴﻕ ﺃﻗل ﺘﻜﻠﻔﺔ ﻜﻠﻴﺔ ﻟﻠﻤﺸﺭﻭﻉ ﻴﻜﻭﻥ ﺍﻟﺤﺩ ﺍﻷﺩﻨـﻰ ﻟﻠﻜﻤﻴـﺔ‬ ‫ﺍﻟﻤﻨﻘﻭﻟﺔ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺘﺴـﺎﻭﻯ 2‪Qmin = 1.824 Di‬‬ ‫ﻭﺃﻴﻀﺎ ﺒﻬﺩﻑ ﺭﻓﻊ ﻜﻔﺎﺀﺓ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻴﻜﻭﻥ ﺍﻟﺤـﺩ ﺍﻷﻗﺼـﻰ‬ ‫ﹰ‬ ‫ﻟﻠﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺘﺴﺎﻭﻯ 2‪. Qmax = 5.472 Di‬‬ ‫ﺍﻟﻌﻭﺍﻤل ﺍﻟﻤﺅﺜﺭﺓ ﻋﻠﻰ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﻜﻠﻴﺔ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل‬ ‫ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬ ‫ﻴﺘﻀﺢ ﻤﻤﺎ ﺴﺒﻕ ﺃﻥ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺘﻨﺨﻔﺽ ﺒﺯﻴﺎﺩﺓ‬ ‫ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻨﻘﻭﻟﺔ ﺴﻨﻭﻴﺎ ﻭﺃﻥ ﻤﺴﺎﻓﺔ ﺍﻟﻨﻘل ﻟﻬﺎ ﺘﺄﺜﻴﺭ ﻗﻠﻴل ﺠـﺩﺍ،‬ ‫ﹰ‬ ‫ﹰ‬ ‫ﻭﻗﺩ ﺘﺨﺘﻠﻑ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺒﺈﺨﺘﻼﻑ ﻤﻭﺍﺼﻔﺎﺕ ﺍﻟﺴﺎﺌل‬ ‫ﺍﻟﻤﻨﻘﻭل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻨﺫﻜﺭ ﻋﻠﻰ ﺴـﺒﻴل ﺍﻟﻤﺜـﺎل ﺍﻟﻌﻭﺍﻤـل‬ ‫ﺍﻵﺘﻴﺔ:‬ ‫١- ﺘﺼﺒﺢ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺃﻗل ﻤﺎ ﻴﻤﻜﻥ ﻋﻨﺩ ﻨﻘل‬ ‫ﺴﺎﺌل ﻭﺍﺤﺩ ﺫﻭ ﻟﺯﻭﺠﺔ ﻤﻨﺨﻔﻀﺔ ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ.‬ ‫- ٢٥ -‬
  • 54. ‫٢- ﺘﺯﺩﺍﺩ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﺍﻟـﺫﻯ‬ ‫ﻴﻨﻘل ﺴﻭﺍﺌل ﻤﺘﻌﺩﺩﺓ ﺒﺴـﺒﺏ ﺍﻟﺘﺭﻜﻴﺒـﺎﺕ ﺍﻹﻀـﺎﻓﻴﺔ‬ ‫ﻭﺍﻟﺨﻁﻭﻁ ﺍﻟﻔﺭﻋﻴﺔ.‬ ‫٣- ﺘﺯﺩﺍﺩ ﺍﻟﺘﻜﺎﻟﻴﻑ ﺍﻟﺴﻨﻭﻴﺔ ﻟﻠﻨﻘل ﺒﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﻤﻌﺯﻭل‬ ‫ﺤﺭﺍﺭﻴﺎ ﺒﺴﺒﺏ ﺃﻋﺒﺎﺀ ﺘﻜﺎﻟﻴﻑ ﺍﻟﻌﺯل ﺍﻟﺤﺭﺍﺭﻯ ﻟﻠﺨﻁ‬ ‫ﹰ‬ ‫ﻭﺘﻜﺎﻟﻴﻑ ﺯﻴﺎﺩﺓ ﻋﻤﻕ ﺍﻟﺨﻁ ﺘﺤﺕ ﺍﻷﺭﺽ ﻋﻥ ﺍﻟﻌﻤﻕ‬ ‫ﺍﻟﻁﺒﻴﻌﻰ ﻭﺘﻜﺎﻟﻴﻑ ﺘﺴﺨﻴﻥ ﺍﻟﺴﺎﺌل ﻭﺃﻴﻀـﺎ ﺇﺭﺘﻔـﺎﻉ‬ ‫ﹰ‬ ‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﻼﺯﻤﺔ ﻟﻀﺦ ﺍﻟﺴﺎﺌل ﺍﻟﻠﺯﺝ.‬ ‫ﺘﺼﻤﻴﻡ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ :‬ ‫ﻟﺘﺼﻤﻴﻡ ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﻴﺠﺏ ﺃﻭﻻ ﺘﺤﺩﻴﺩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻵﺘﻴﺔ :‬ ‫ﹰ‬ ‫١- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﻤﺩﻯ ﻟﻠﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﺃﻯ ﺍﻟﻜﻤﻴـﺔ‬ ‫ﺍﻟﻤﺒﺩﺌﻴ ـﺔ ﻭﺍﻟﻘﺼ ـﻭﻯ ‪Initial And Ultimate‬‬ ‫ـ‬ ‫ـ‬ ‫‪Throughput‬‬ ‫٢- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻀﻐﻁ ﺍﻵﻤﻥ ﺍﻟﺫﻯ ﻴﺘﺤﻤﻠﻪ ﻤﻌـﺩﻥ ﺨـﻁ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ ﻭﻓﻲ ﺃﻏﻠﺏ ﺍﻷﺤﻴﺎﻥ ﻴﻜﻭﻥ ﻫﺫﺍ ﺍﻟﻀﻐﻁ ﻓـﻲ‬ ‫ﺤﺩﻭﺩ ٠٧ﻜﺠﻡ/ﺴﻡ٢.‬ ‫- ٣٥ -‬
  • 55. ‫٣- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻀﻐﻁ ﻋﻨﺩ ﻨﻬﺎﻴـﺔ ﺨـﻁ ﺍﻷﻨﺎﺒﻴـﺏ ﺃﻯ‬ ‫ﺍﻟﻀﻐﻁ ﻋﻨﺩ ﻤﺤﻁﺔ ﺍﻹﺴﺘﻼﻡ ﻭﻫﻭ ﻴﻜﻭﻥ ﻓﻲ ﺤـﺩﻭﺩ‬ ‫٢ﻜﺠﻡ/ﺴﻡ٢.‬ ‫٤- ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﻁﻭل ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺃﻯ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻤﺤﻁﺔ‬ ‫ﺍﻟﺘﺩﻓﻴﻊ ﻭﻤﺤﻁﺔ ﺍﻹﺴﺘﻼﻡ.‬ ‫ﺨﻁﻭﺍﺕ ﺍﻟﺘﺼﻤﻴﻡ :‬ ‫١- ﻴﺘﻡ ﺤﺴﺎﺏ ﻤﺩﻯ ﻷﻗﻁﺎﺭ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺘـﻲ ﺘﺴـﺘﻭﻋﺏ‬ ‫ﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬـﺎ ﺃﻯ ﺍﻟﺤـﺩ ﺍﻷﺩﻨـﻰ‬ ‫ﻭﺍﻷﻗﺼﻰ ﻷﻗﻁﺎﺭ ﺍﻟﺨﻁﻭﻁ، ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﻘﻭﻟﺔ‬ ‫ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺘﺴﺎﻭﻯ 2‪Q = 1.842V Di‬‬ ‫ﻓﻴﻜﻭﻥ ﺍﻟﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺒﺎﻟﺒﻭﺼﺔ ﻴﺴﺎﻭﻯ‬ ‫= ‪ Di‬ﺤﻴﺙ ﺃﻥ ‪ V‬ﻫﻰ ﺴﺭﻋﺔ ﺍﻟﺴـﺎﺌل‬ ‫‪Q‬‬ ‫‪1.824V‬‬ ‫ﺩﺍﺨل ﺍﻟﺨﻁ ﺒﺎﻟﻤﺘﺭ/ﺜﺎﻨﻴﺔ، ﻭﻹﻴﺠﺎﺩ ﺍﻟﺤﺩ ﺍﻷﺩﻨﻰ ﻟﻠﻘﻁﺭ‬ ‫ﺍﻟ ـﺩﺍﺨﻠﻰ ﻨﻀ ـﻊ ﺍﻟﻜﻤﻴ ـﺔ ﺍﻟﻘﺼ ـﻭﻯ ‪Ultimate‬‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫ـ‬ ‫‪ Throughput‬ﻭﺃﻴﻀﺎ ‪ V=٣mt/sec‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‬ ‫ﹰ‬ ‫ﺍﻟﺴﺎﺒﻘﺔ‬ ‫‪Qult‬‬ ‫= ‪Minimum Di‬‬ ‫3 × 428.1‬ ‫- ٤٥ -‬
  • 56. ‫ﻭﻜﺫﻟﻙ ﻹﻴﺠﺎﺩ ﺍﻟﺤﺩ ﺍﻷﻗﺼﻰ ﻟﻠﻘﻁﺭ ﺍﻟﺩﺍﺨﻠﻰ ﻨﻀﻊ ﺍﻟﻜﻤﻴـﺔ‬ ‫ـﺎ ٥,١=‪V‬‬ ‫ـﻭﻯ ‪ Ultimate Throughput‬ﻭﺃﻴﻀـ ﹰ‬ ‫ﺍﻟﻘﺼـ‬ ‫‪ mt/sec‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ‬ ‫‪Qult‬‬ ‫= ‪Maximum Di‬‬ ‫5.1× 428.1‬ ‫٢- ﻴﺘﻡ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﺃﻯ ﺘﻘﺭﻴﺒﺎ ﻓﺎﻗـﺩ ﺍﻟﻀـﻐﻁ‬ ‫ﹰ‬ ‫ﺍﻟﻤﺭﺘﺒﻁ ﺒﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﻭﺫﻟﻙ ﻟﻤـﺩﻯ‬ ‫ﺍﻷﻗﻁﺎﺭ ﺍﻟﺘﻲ ﺘﻡ ﺇﺨﺘﻴﺎﺭﻫﺎ ﻓﻲ ﺍﻟﺨﻁﻭﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻋـﻥ‬ ‫ﻁﺭﻴﻕ ﻤﻌﺎﺩﻟﺔ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜـﺎﻙ ﺁﺨـﺫﺍ ﻓـﻲ‬ ‫ﹰ‬ ‫ﺍﻹﻋﺘﺒﺎﺭ ﺍﻟﻤﻌﻁﻴﺎﺕ.‬ ‫- ٥٥ -‬
  • 57. ‫٣- ﻴﺘﻡ ﺘﺴﺠﻴل ﻨﺘﺎﺌﺞ ﺍﻟﺤﺴﺎﺒﺎﺕ ﻓﻲ ﺠﺩﻭل ﻜﺎﻵﺘﻲ :‬ ‫ﺭﺃﺱ‬ ‫ﺍﻟﻤﺎل‬ ‫ﻓﺎﻗﺩ‬ ‫ﺃﻗل‬ ‫ﺘﻜﺎﻟﻴﻑ‬ ‫ﺍﻟﻜﻤﻴﺔ‬ ‫ﺍﻟﻼﺯﻡ‬ ‫ﺘﻜﺎﻟﻴﻑ‬ ‫ﺇﺠﻬﺎﺩ ﺍﻟﻀﻐﻁ‬ ‫ﺇﻨﺸﺎﺀ‬ ‫ﺍﻟﻤﻨﻘﻭﻟﺔ‬ ‫ﺍﻟﻘﻁﺭ‬ ‫ﻹﻨﺸﺎﺀ‬ ‫ﺇﻨﺸﺎﺀ‬ ‫ﺨﻀﻭﻉ ﻋﻠﻰ‬ ‫ﻤﺤﻁﺎﺕ‬ ‫ﺒﺎﻟﻤﺘﺭ‬ ‫ﺴﻤﻙ ﺍﻟﺩﺍﺨﻠﻰ‬ ‫ﺨﻁ‬ ‫ﺨﻁ‬ ‫ﻟﻤﻌﺩﻥ ﻁﻭل‬ ‫ﻗﻁﺭ ﺍﻟﺨﻁ‬ ‫ﺍﻟﻀﺦ‬ ‫ﺍﻟﻤﻜﻌﺏ‬ ‫ﺍﻟﺨﻁ ﻟﻠﺨﻁ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ‬ ‫ﺍﻟﻤﻭﺍﺴ ﺍﻟﺨﻁ‬ ‫-١‪α(P‬‬ ‫ﻓﻲ‬ ‫‪Di‬‬ ‫ﻭﻤﺤﻁﺎ‬ ‫‪α Di‬‬ ‫ﻴﺭ ‪(P١- min‬‬ ‫)٢‪P‬‬ ‫ﺍﻟﺴﺎﻋﺔ‬ ‫ﺕ‬ ‫)٢‪P‬‬ ‫‪σy‬‬ ‫ﺍﻟﻀﺦ‬ ‫- ٦٥ -‬
  • 58. ‫ﻭﻴﻤﻜﻥ ﺍﻟﺘﺤﻜﻡ ﻓﻲ ﺍﻟﻌﻭﺍﻤل ﺍﻟﻤﺘﻐﻴﺭﺓ ﻤﺜل ﻗﻁﺭ ﺍﻟﺨﻁ ﻭﻓﺎﻗﺩ‬ ‫ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﻁﻭل ﺍﻟﺨﻁ ﺒﻬﺩﻑ ﺇﻴﺠﺎﺩ ﺃﻗل ﻗﻴﻤﺔ ﻤﻤﻜﻨﺔ ﻟـﺭﺃﺱ‬ ‫ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺨﺩﻡ ﻹﻨﺸﺎﺀ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﻭﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﻋﻠﻤـﺎ‬ ‫ﹰ‬ ‫ﺒﺄﻥ ﻤﻌﻅﻡ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺴﺘﺨﺩﻡ ﻴﺴﺘﻬﻠﻙ ﻓـﻲ ﺇﻨﺸـﺎﺀ ﺨـﻁ‬ ‫ﺍﻷﻨﺎﺒﻴﺏ ﻨﻔﺴﻪ، ﻭﻗﺩ ﻴﺘﻀﺢ ﺃﻨﻪ ﻟﺘﺼﻤﻴﻡ ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺒﺄﻗل ﺭﺃﺱ‬ ‫ﻤﺎل ﻓﺈﻨﻪ ﻴﺠﺏ ﺇﺨﺘﻴﺎﺭ ﺍﻟﻤﻭﺍﺴﻴﺭ ﺫﺍﺕ ﺍﻷﻗﻁﺎﺭ ﺍﻟﺼﻐﻴﺭﺓ ﻭﻓـﻲ‬ ‫ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻓﺈﻥ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﻗﺩ ﺘﻜﻭﻥ ﻤﺘﻘﺎﺭﺒﺔ ﻭﻫﺫﺍ ﻴﺤﻘـﻕ‬ ‫ﺃﻋﻠﻰ ﺇﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻹﺴﺘﺜﻤﺎﺭﺍﺕ ﺍﻟﻤﺩﻓﻭﻋﺔ ﻓﻲ ﺃﻯ ﻭﻗـﺕ ﻓـﻭﺭ‬ ‫ﻀﺦ ﻫﺫﻩ ﺍﻹﺴﺘﺜﻤﺎﺭﺍﺕ ﻭﻴﺠﺏ ﺃﻥ ﻨﺘﻼﻗﻰ ﻀﺦ ﺃﻯ ﺇﺴﺘﺜﻤﺎﺭﺍﺕ‬ ‫ﻏﻴﺭ ﻀﺭﻭﺭﻴﺔ ﻤﺒﻜﺭﺍ ﺤﻴﺙ ﺃﻨﻪ ﻴﺘﺴﺒﺏ ﻓﻲ ﻋﺩﻡ ﺍﻹﺴﺘﻔﺎﺩﺓ ﻤﻥ‬ ‫ﹰ‬ ‫ﻫﺫﻩ ﺍﻹﺴﺘﺜﻤﺎﺭﺍﺕ ﻋﺩﺓ ﺴﻨﻭﺍﺕ.‬ ‫ﻤﺜﺎل ﻋﻠﻰ ﺘﺼﻤﻴﻡ ﺨﻁ ﺃﻨﺎﺒﻴﺏ :‬ ‫ﻤﻁﻠﻭﺏ ﻨﻘل ﺴﺎﺌل ﻟﻤﺴﺎﻓﺔ ﻗﺩﺭﻫﺎ ٠٩١ﻜﻴﻠﻭ ﻤﺘـﺭ ﻭﺒﻜﻤﻴـﺔ‬ ‫ﻗﺩﺭﻫﺎ ٢ ﻤﻠﻴﻭﻥ ﻁﻥ ﺴﻨﻭﻴﺎ ﺴﻭﻑ ﺘﺯﺩﺍﺩ ﻤﺴﺘﻘﺒﻼ ﺇﻟﻰ ٥ ﻤﻠﻴﻭﻥ‬ ‫ﹰ‬ ‫ﹰ‬ ‫ﻁﻥ ﺴﻨﻭﻴﺎ.‬ ‫ﹰ‬ ‫- ٧٥ -‬
  • 59. ‫ﺍﻟﺤل : ﻨﺤﺴﺏ ﺃﻭﻻ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﺒﺩﺌﻴﺔ ﻭﺍﻟﻘﺼﻭﻯ ﺍﻟﻤﻁﻠـﻭﺏ‬ ‫ﹰ‬ ‫ﻨﻘﻠﻬﺎ ﺒﺎﻟﻤﺘﺭ ﺍﻟﻤﻜﻌﺏ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺒﻔﺭﺽ ﺃﻥ ﺍﻟﺴﺎﺌل ﺍﻟﻤﻁﻠـﻭﺏ‬ ‫6 01 × 2‬ ‫‪Q Initial‬‬ ‫= ‪= 2 × 10 ton / year‬‬ ‫6‬ ‫ﻨﻘﻠﻪ ﻫﻭ ﺍﻟﻤﺎﺀ.‬ ‫‪7200sp.gr‬‬ ‫‪Qinitial= ٢٧٧,٧٧ mt٣/hr‬‬ ‫6 01 × 5‬ ‫= ‪QUltimate = 5 × 10 6 ton / year‬‬ ‫‪= 694.44mt 3 / hr‬‬ ‫‪7200sp.gr‬‬ ‫ﺜﻡ ﻨﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﺩﻨﻰ ﻭﺍﻷﻗﺼﻰ ﻷﻗﻁﺎﺭ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺘـﻲ‬ ‫ﺘﺴﺘﻭﻋﺏ ﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ‬ ‫44. 496‬ ‫= ‪min .D i‬‬ ‫‪= 11 .265 inch‬‬ ‫274. 5‬ ‫44. 496‬ ‫= ‪max .D i‬‬ ‫‪= 15 .93 inch‬‬ ‫637. 2‬ ‫ﻭﻤﻤﺎ ﺴﺒﻕ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺃﺩﻨﻰ ﻭﺃﻗﺼﻰ ﻗﻁﺭ ﻟﻨﻘل ﻫﺫﺍ ﺍﻟﻤـﺩﻯ‬ ‫ﻤﻥ ﺍﻟﻜﻤﻴﺎﺕ ﻴﺴﺎﻭﻯ٢١، ٦١ ﺒﻭﺼﺔ ﻋﻠﻰ ﺍﻟﺘـﻭﺍﻟﻰ، ﻭﺒـﺫﻟﻙ‬ ‫ﻴﻤﻜﻥ ﺇﺨﺘﻴﺎﺭ ٣ ﺃﻗﻁﺎﺭ ﻟﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ ﺍﻟﻼﺯﻡ ﻟﻨﻘل ﻫﺫﺍ ﺍﻟﻤـﺩﻯ‬ ‫ﻤﻥ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﻭﻫﺫﻩ ﺍﻷﻗﻁﺎﺭ ﻫﻰ ٢١ ﺒﻭﺼـﺔ،‬ ‫٤١ ﺒﻭﺼﺔ ﻭ٦١ ﺒﻭﺼﺔ.‬ ‫- ٨٥ -‬
  • 60. ‫: ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺒﻘﻁﺭ ٢١ ﺒﻭﺼﺔ ﺒﻤﺤﻁﺔ ﻀﺦ ﻭﺍﺤﺩﺓ‬ ‫ﺃﻭﻻ‬ ‫ﹰ‬ ‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ ﻭﻴـﺘﻡ ﺇﻀـﺎﻓﺔ ﻤﺤﻁـﺔ ﻀـﺦ‬ ‫ﻤﺴﺎﻋﺩﺓ ﻓﻲ ﻤﻨﺘﺼﻑ ﺍﻟﻁﻭل ﺘﻘﺭﻴﺒﺎ ﻓﻴﻤﺎ ﺒﻌﺩ ﺜﻡ ﺒﻌـﺩ‬ ‫ﹰ‬ ‫ﺫﻟﻙ ﻴﺘﻡ ﺇﻀﺎﻓﺔ ﻋﺩﺩ ٢ ﻤﺤﻁﺔ ﻀﺦ ﻤﺴﺎﻋﺩﺓ ﻋﻠـﻰ‬ ‫ﻤﺴﺎﻓﺔ ﺭﺒﻊ ﻁﻭل ﺍﻟﺨﻁ ﺘﻘﺭﻴﺒﺎ ﻤﻥ ﺒﺩﺍﻴﺘـﻪ ﻭﻨﻬﺎﻴﺘـﻪ‬ ‫ﹰ‬ ‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ‬ ‫ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﺘﻡ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﺃﻯ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ‬ ‫ﺍﻟﻤﺭﺘﺒﻁ ﺒﻤﺩﻯ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻤﻁﻠﻭﺏ ﻨﻘﻠﻬﺎ ﻜﺎﻵﺘﻲ :‬ ‫ﻟﻠﺨﻁ ٢١ ﺒﻭﺼﺔ ‪ Standard weight‬ﺴـﻤﻙ ﺍﻟﺨـﻁ =‬ ‫٥٧٣,٠ ﺒﻭﺼﺔ‬ ‫‪Di=١٢,٧٥ – ٢ (٠,٣٧٥) = ١٢// and L = ١٩٠ kmt‬‬ ‫١( ﻟﻠﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ ‪QI=٢٧٧,٧٧ m٣/hr‬‬ ‫77.772‬ ‫=‪V‬‬ ‫‪= 1.057mt / sec‬‬ ‫2 )21(428.1‬ ‫ﺒﺘﻁﺒﻴﻕ ﻤﻌﺎﺩﻟﺔ ﺤﺴﺎﺏ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻟﻠﺴﺭﻴﺎﻥ ﺍﻟﻤﻀﻁﺭﺏ‬ ‫ﺩﺍﺨل ﺍﻷﻨﺎﺒﻴﺏ‬ ‫57.1 77.772)091( 52.01‬ ‫× 5245.71 = ‪h f‬‬ ‫‪= 471.2mt‬‬ ‫57.4 21‬ ‫- ٩٥ -‬
  • 61. ‫ﻭﺒﺫﻟﻙ ﻴﻜﻭﻥ ﻓﺎﻗﺩ ﺍﻹﺤﺘﻜﺎﻙ ﻓﻲ ﺼـﻭﺭﺓ ﻀـﻐﻁ ﻴﺴـﺎﻭﻯ‬ ‫‪sp.gr‬‬ ‫× 2.174‬ ‫2 ‪= 47.12kg / cm‬‬ ‫01‬ ‫ﻭﻴﺘﻀﺢ ﻤﻤﺎ ﺴﺒﻕ ﺃﻨﻪ ﻴﻜﻔﻲ ﺘﺭﻜﻴﺏ ﻤﺤﻁﺔ ﻀﺦ ﻭﺍﺤﺩﺓ ﻓﻲ‬ ‫ﺒﺩﺍﻴﺔ ﺍﻟﺨﻁ ﻭﺫﻟﻙ ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ.‬ ‫٢( ﻟﻠﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ ‪Qu = ٦٩٤,٤٤ m٣/hr‬‬ ‫ﻨﻜﺭﺭ ﻨﻔﺱ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺴﺎﺒﻘﺔ:‬ ‫‪V = ٢,٦٤ mt/sec‬‬ ‫٢‪hf = ٢٣٤,٢ kg/cm‬‬ ‫ﻭﺤﻴﺙ ﺃﻥ ﻓﺎﻗﺩ ﺍﻟﻀﻐﻁ ﻴﺘﻌﺩﻯ ﺍﻟﻀﻐﻁ ﺍﻵﻤﻥ ﺍﻟﺫﻯ ﻴﺘﺤﻤﻠﻪ‬ ‫ﻤﻌﺩﻥ ﺨﻁ ﺍﻷﻨﺎﺒﻴﺏ، ﻟﺫﻟﻙ ﻴﻜﻭﻥ ﻋﺩﺩ ﻤﺤﻁﺎﺕ ﺍﻟﻀﺦ ﺍﻟﻤﻁﻠﻭﺒﺔ‬ ‫ﻭﻤﻤـﺎ ﺴـﺒﻕ‬ ‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ ﻴﺴﺎﻭﻯ 643.3 =‬ ‫2.432‬ ‫07‬ ‫ﻴﺘﻀﺢ ﺃﻨﻪ ﻴﺠﺏ ﺘﺭﻜﻴﺏ ٤ ﻤﺤﻁﺎﺕ ﻀﺦ ﻋﻠﻰ ﻁـﻭل ﺍﻟﺨـﻁ‬ ‫ﻭﺫﻟﻙ ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ.‬ ‫: ﺨﻁ ﺃﻨﺎﺒﻴﺏ ﺒﻘﻁﺭ ٤١ ﺒﻭﺼﺔ ﺒﻤﺤﻁﺔ ﻀﺦ ﻭﺍﺤﺩﺓ‬ ‫ﺜﺎﻨﻴﺎ‬ ‫ﹰ‬ ‫ﻟﻨﻘل ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺒﺩﺌﻴﺔ ﺜﻡ ﺒﻌﺩ ﺫﻟﻙ ﻴﺘﻡ ﺇﻀﺎﻓﺔ ﻤﺤﻁـﺔ‬ ‫ﻀﺦ ﻤﺴﺎﻋﺩﺓ ﻓﻲ ﻤﻨﺘﺼﻑ ﻁﻭل ﺍﻟﺨﻁ ﺘﻘﺭﻴﺒﺎ ﻟﻨﻘـل‬ ‫ﹰ‬ ‫ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻭﻯ.‬ ‫- ٠٦ -‬