Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
EN
Uploaded by
Akira Asano
66 views
2022年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2022. 12. 1)
関西大学総合情報学部・応用数学(解析)(担当・浅野晃) http://racco.mikeneko.jp/Kougi/2022a/AMA/
Education
◦
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 121
2
/ 121
3
/ 121
4
/ 121
5
/ 121
6
/ 121
7
/ 121
8
/ 121
9
/ 121
10
/ 121
11
/ 121
12
/ 121
13
/ 121
14
/ 121
15
/ 121
16
/ 121
17
/ 121
18
/ 121
19
/ 121
20
/ 121
21
/ 121
22
/ 121
23
/ 121
24
/ 121
25
/ 121
26
/ 121
27
/ 121
28
/ 121
29
/ 121
30
/ 121
31
/ 121
32
/ 121
33
/ 121
34
/ 121
35
/ 121
36
/ 121
37
/ 121
38
/ 121
39
/ 121
40
/ 121
41
/ 121
42
/ 121
43
/ 121
44
/ 121
45
/ 121
46
/ 121
47
/ 121
48
/ 121
49
/ 121
50
/ 121
51
/ 121
52
/ 121
53
/ 121
54
/ 121
55
/ 121
56
/ 121
57
/ 121
58
/ 121
59
/ 121
60
/ 121
61
/ 121
62
/ 121
63
/ 121
64
/ 121
65
/ 121
66
/ 121
67
/ 121
68
/ 121
69
/ 121
70
/ 121
71
/ 121
72
/ 121
73
/ 121
74
/ 121
75
/ 121
76
/ 121
77
/ 121
78
/ 121
79
/ 121
80
/ 121
81
/ 121
82
/ 121
83
/ 121
84
/ 121
85
/ 121
86
/ 121
87
/ 121
88
/ 121
89
/ 121
90
/ 121
91
/ 121
92
/ 121
93
/ 121
94
/ 121
95
/ 121
96
/ 121
97
/ 121
98
/ 121
99
/ 121
100
/ 121
101
/ 121
102
/ 121
103
/ 121
104
/ 121
105
/ 121
106
/ 121
107
/ 121
108
/ 121
109
/ 121
110
/ 121
111
/ 121
112
/ 121
113
/ 121
114
/ 121
115
/ 121
116
/ 121
117
/ 121
118
/ 121
119
/ 121
120
/ 121
121
/ 121
More Related Content
PDF
2018年度秋学期 応用数学(解析) 第3部・微分方程式に関する話題 第10回 生存時間分布と半減期 (2018. 11. 20)
by
Akira Asano
PDF
2016年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2016. 12. 1)
by
Akira Asano
PDF
2014年度秋学期 応用数学(解析) 第3部・微分方程式に関する話題 / 第10回 生存時間分布と半減期 (2014. 12. 4)
by
Akira Asano
PDF
2015年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2015. 11. 26)
by
Akira Asano
PDF
2022年度秋学期 統計学 第8回 問題に対する答案の書き方 (2022. 11. 15)
by
Akira Asano
PDF
生存時間分析数理の基礎
by
Koichiro Gibo
PDF
比例ハザードモデルはとってもtricky!
by
takehikoihayashi
PDF
2022年度秋学期 応用数学(解析) 第5回 微分方程式とは・変数分離形 (2022. 10. 20)
by
Akira Asano
2018年度秋学期 応用数学(解析) 第3部・微分方程式に関する話題 第10回 生存時間分布と半減期 (2018. 11. 20)
by
Akira Asano
2016年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2016. 12. 1)
by
Akira Asano
2014年度秋学期 応用数学(解析) 第3部・微分方程式に関する話題 / 第10回 生存時間分布と半減期 (2014. 12. 4)
by
Akira Asano
2015年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2015. 11. 26)
by
Akira Asano
2022年度秋学期 統計学 第8回 問題に対する答案の書き方 (2022. 11. 15)
by
Akira Asano
生存時間分析数理の基礎
by
Koichiro Gibo
比例ハザードモデルはとってもtricky!
by
takehikoihayashi
2022年度秋学期 応用数学(解析) 第5回 微分方程式とは・変数分離形 (2022. 10. 20)
by
Akira Asano
Similar to 2022年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2022. 12. 1)
PDF
2022年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(1) (2022. 11. 10)
by
Akira Asano
PDF
2016年度秋学期 統計学 第14回 分布についての仮説を検証する-検定 (2016. 1. 7)
by
Akira Asano
PDF
2022年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2022. 12. 6)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析) 第6回 変数分離形の変形 (2022. 10. 27)
by
Akira Asano
PPT
050 確率と確率分布
by
t2tarumi
PDF
2022年度秋学期 応用数学(解析) 第14回 測度論ダイジェスト(1) ルベーグ測度と完全加法性 (2023. 1. 12)
by
Akira Asano
PDF
Zansa0130presentation
by
Zansa
PDF
第4回MachineLearningのための数学塾資料(浅川)
by
Shin Asakawa
PDF
2022年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(1) 複素関数・正則関数 (2022. 12. 15)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析) 第3回 実数とは何か (2022. 10. 6)
by
Akira Asano
PPTX
データサイエンス概論第一=4-2 確率と確率分布
by
Seiichi Uchida
PDF
Draftall
by
Toshiyuki Shimono
PDF
2021年度秋学期 統計学 第14回 分布についての仮説を検証する - 仮説検定(1)(2022. 1. 11)
by
Akira Asano
PDF
はじめての確率論 測度から確率へ 57~60ページ ノート
by
Chihiro Kusunoki
PDF
2018年度秋学期 応用数学(解析) 第2部・基本的な微分方程式 第7回 2階線形微分方程式(1) (2018. 11. 6)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析)第1回 イントロダクションーちょっとかっこいい数学を (2022.9.22)
by
Akira Asano
PDF
数学教材(中間発表)
by
Mizuguchi1205
PPTX
確率の基礎
by
諒 片山
PDF
2016年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(1) (2016. 11. 17)
by
Akira Asano
PDF
2018年度春学期 統計学 第14回 分布についての仮説を検証するー検定(その1) (2018. 7. 12))
by
Akira Asano
2022年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(1) (2022. 11. 10)
by
Akira Asano
2016年度秋学期 統計学 第14回 分布についての仮説を検証する-検定 (2016. 1. 7)
by
Akira Asano
2022年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2022. 12. 6)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第6回 変数分離形の変形 (2022. 10. 27)
by
Akira Asano
050 確率と確率分布
by
t2tarumi
2022年度秋学期 応用数学(解析) 第14回 測度論ダイジェスト(1) ルベーグ測度と完全加法性 (2023. 1. 12)
by
Akira Asano
Zansa0130presentation
by
Zansa
第4回MachineLearningのための数学塾資料(浅川)
by
Shin Asakawa
2022年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(1) 複素関数・正則関数 (2022. 12. 15)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第3回 実数とは何か (2022. 10. 6)
by
Akira Asano
データサイエンス概論第一=4-2 確率と確率分布
by
Seiichi Uchida
Draftall
by
Toshiyuki Shimono
2021年度秋学期 統計学 第14回 分布についての仮説を検証する - 仮説検定(1)(2022. 1. 11)
by
Akira Asano
はじめての確率論 測度から確率へ 57~60ページ ノート
by
Chihiro Kusunoki
2018年度秋学期 応用数学(解析) 第2部・基本的な微分方程式 第7回 2階線形微分方程式(1) (2018. 11. 6)
by
Akira Asano
2022年度秋学期 応用数学(解析)第1回 イントロダクションーちょっとかっこいい数学を (2022.9.22)
by
Akira Asano
数学教材(中間発表)
by
Mizuguchi1205
確率の基礎
by
諒 片山
2016年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(1) (2016. 11. 17)
by
Akira Asano
2018年度春学期 統計学 第14回 分布についての仮説を検証するー検定(その1) (2018. 7. 12))
by
Akira Asano
More from Akira Asano
PDF
2022年度秋学期 統計学 第15回 分布についての仮説を検証するー仮説検定(2) (2023. 1. 17)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析) 第15回 測度論ダイジェスト(2) ルベーグ積分 (2023. 1. 19)
by
Akira Asano
PDF
2022年度秋学期 統計学 第14回 分布についての仮説を検証するー仮説検定(1) (2023. 1. 10)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析) 第13回 複素関数論ダイジェスト(2) 孤立特異点と留数 (2022. 12. 22)
by
Akira Asano
PDF
2022年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2022. 12. 20)
by
Akira Asano
PDF
2022年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2022. 12. 13)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2022. 12. 9)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析) 第11回 振動と微分方程式 (2022. 12. 8)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第10回 Radon変換と投影切断面定理 (2022. 12. 2)
by
Akira Asano
PDF
2022年度秋学期 統計学 第10回 分布の推測とはー標本調査,度数分布と確率分布 (2022. 11. 29)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2022. 11. 25)
by
Akira Asano
PDF
2022年度秋学期 統計学 第9回 確からしさを記述するー確率 (2022. 11. 22)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2022. 11. 18)
by
Akira Asano
PDF
2022年度秋学期 応用数学(解析) 第8回 2階線形微分方程式(2) (2022. 11. 17)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2022. 11. 11)
by
Akira Asano
PDF
2022年度秋学期 統計学 第8回 問題に対する答案の書き方(講義前提供用) (2022. 11. 15)
by
Akira Asano
PDF
2022年度秋学期 統計学 第7回 データの関係を知る(2)ー 回帰分析 (2022. 11. 8)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第6回 ベクトルと行列について (2022. 10. 28)
by
Akira Asano
PDF
2022年度秋学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2022. 11. 1)
by
Akira Asano
PDF
2022年度秋学期 画像情報処理 第6回 ベクトルと行列について(講義前配付用) (2022. 10. 28)
by
Akira Asano
2022年度秋学期 統計学 第15回 分布についての仮説を検証するー仮説検定(2) (2023. 1. 17)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第15回 測度論ダイジェスト(2) ルベーグ積分 (2023. 1. 19)
by
Akira Asano
2022年度秋学期 統計学 第14回 分布についての仮説を検証するー仮説検定(1) (2023. 1. 10)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第13回 複素関数論ダイジェスト(2) 孤立特異点と留数 (2022. 12. 22)
by
Akira Asano
2022年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2022. 12. 20)
by
Akira Asano
2022年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2022. 12. 13)
by
Akira Asano
2022年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2022. 12. 9)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第11回 振動と微分方程式 (2022. 12. 8)
by
Akira Asano
2022年度秋学期 画像情報処理 第10回 Radon変換と投影切断面定理 (2022. 12. 2)
by
Akira Asano
2022年度秋学期 統計学 第10回 分布の推測とはー標本調査,度数分布と確率分布 (2022. 11. 29)
by
Akira Asano
2022年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2022. 11. 25)
by
Akira Asano
2022年度秋学期 統計学 第9回 確からしさを記述するー確率 (2022. 11. 22)
by
Akira Asano
2022年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2022. 11. 18)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第8回 2階線形微分方程式(2) (2022. 11. 17)
by
Akira Asano
2022年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2022. 11. 11)
by
Akira Asano
2022年度秋学期 統計学 第8回 問題に対する答案の書き方(講義前提供用) (2022. 11. 15)
by
Akira Asano
2022年度秋学期 統計学 第7回 データの関係を知る(2)ー 回帰分析 (2022. 11. 8)
by
Akira Asano
2022年度秋学期 画像情報処理 第6回 ベクトルと行列について (2022. 10. 28)
by
Akira Asano
2022年度秋学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2022. 11. 1)
by
Akira Asano
2022年度秋学期 画像情報処理 第6回 ベクトルと行列について(講義前配付用) (2022. 10. 28)
by
Akira Asano
2022年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2022. 12. 1)
1.
浅野 晃 関西大学総合情報学部 2022年度秋学期 応用数学(解析) 第3部・微分方程式に関する話題
生存時間分布と半減期 第10回
2.
2
3.
2 今日は,「寿命」を扱う微分方程式🤔🤔
4.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら
5.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」
6.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという
7.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという 寿命がいくらである確率がどのくらいであるかを 表すのが[確率分布]
8.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t)
9.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
10.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
11.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
12.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
13.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
14.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
15.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間
16.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合
17.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合 [ハザード関数]
18.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t)
19.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率
20.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
21.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
22.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
23.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数] 生存関数は,ある時間がたったとき,まだ生きている確率
24.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t)
25.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt
26.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t)
27.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt
28.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′(t)
29.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′(t) すなわち f(t) = F′(t)
30.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
31.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
32.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
33.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
34.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
35.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
36.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
37.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
38.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
39.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
40.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
41.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
42.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
43.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
44.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
45.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
46.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
47.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F (t)
48.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t)
49.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t)
50.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t)
51.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t)
52.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t)
53.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t)
54.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t) S (t) = (1 − F(t)) = −F (t) = −f(t)
55.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t) S (t) = (1 − F(t)) = −F (t) = −f(t)
56.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t) S (t) = (1 − F(t)) = −F (t) = −f(t) 以上から l(t) = − S(t) S(t) という微分方程式が得られる
57.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t))
58.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分)
59.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C
60.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1
61.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから
62.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0
63.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0
64.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0
65.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1
66.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0
67.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
68.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
69.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0 ハザード関数と生存関数の関係
70.
10
71.
10 ワイブル分布と指数分布📈📈
72.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
73.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入
74.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p )
75.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p )
76.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p ) 微積分の関係
77.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p ) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p )
78.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布 11 この形の累積分布関数をもつ確率分布を[ワイブル分布]とよぶ ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p ) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p )
79.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1
80.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる
81.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる
82.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは,
83.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正
84.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正
85.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
86.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
87.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障]
88.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは,
89.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負
90.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
91.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
92.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる [初期故障]
93.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 13 t F(t) F(t) = 1 – e–t4 F(t) = 1 – e–t2 経過時間 累積分布関数 (ある時刻までに死亡・ 故障したものの割合) p = 2 の場合と p = 4 の場合 どちらも摩耗故障(時間につれて故障しやすくなる) p = 4 のほうが,急激に故障が増える
94.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する
95.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p )
96.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる
97.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ)
98.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y
99.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y X
100.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y X Y = p(X + log λ)
101.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y X Y = p(X + log λ) 時刻を上の X ,その時刻での生存割合を上の Y に変換してプロット →並びを近似する直線の傾きが p
102.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1
103.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 ハザード関数は l(t) = λ
104.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 ハザード関数は l(t) = λ
105.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ
106.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
107.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
108.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する
109.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する ハザード関数が一定で,指数分布にしたがう
110.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定
111.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする t t′
112.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t)
113.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt
114.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt
115.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt
116.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt 対数をとる
117.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる
118.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる
119.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる t によらず一定
120.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる t によらず一定 [半減期]
121.
17 2022年度秋学期 応用数学(解析) /
関西大学総合情報学部 浅野 晃 今日のまとめ 17 集団中の個体の数が 死亡・故障によって減少して行く この現象を表す 微分方程式 解に仮定を持ち込むことで, ワイブル分布,指数分布といった 「死亡・故障による現象のモデル」が導かれる
Download