SlideShare a Scribd company logo
Digital Garage & Naviplus 主催
第2回Pythonで実践する深層学習
浅川伸一 asakawa@ieee.org
10/06/2016
2/24
Notice
次回以降で取り上げる話題,データ,プロジェクト,質疑応答のために
slack のチームを作成しました。今回参加されなかった方でも自由に参
加できます。チーム名は deeppython.slack.com です。ご参加ください。
参加ご希望の方は deeplearning.w.python@gmail.com までメールをお
願いします。
#DLwPY
10/06/2016
3/24
本日のお品書き
●
Basic knowledge of neurons
● Cross entropy
●
Feedforwards and feedbacks of neural networks
●
Try googleplayground
● Convolutional neural networks
● Try keras
10/06/2016
4/24
前回の補足
最速で理解するには
1. 線形回帰 linear regression
2. ロジスティック回帰 logistic regression
3. 正則化 regularization
4. 多層パーセプトロン multi-layered perceptrons
5. 畳み込みニューラルネットワーク convolutional neural networks
6. リカレントニューラルネットワーク recurrent neural networks
7. 強化学習 reinforcement learning
10/06/2016
5/24
Warning: Stealing Machine Learning Models via
Prediction APIs https://arxiv.org/abs/1609.02943
Machine learning (ML) models may be deemed confidential due to their sensitive training data,
commercial value, or use in security applications. Increasingly often, confidential ML models are
being deployed with publicly accessible query interfaces. ML-as-a-service ("predictive analytics")
systems are an example: Some allow users to train models on potentially sensitive data and charge
others for access on a pay-per-query basis.
The tension between model confidentiality and public access motivates our investigation of model
extraction attacks. In such attacks, an adversary with black-box access, but no prior knowledge of
an ML model's parameters or training data, aims to duplicate the functionality of (i.e., "steal") the
model. Unlike in classical learning theory settings, ML-as-a-service offerings may accept partial
feature vectors as inputs and include confidence values with predictions. Given these practices, we
show simple, efficient attacks that extract target ML models with near-perfect fidelity for popular
model classes including logistic regression, neural networks, and decision trees. We demonstrate
these attacks against the online services of BigML and Amazon Machine Learning. We further show
that the natural countermeasure of omitting confidence values from model outputs still admits
potentially harmful model extraction attacks. Our results highlight the need for careful ML model
deployment and new model extraction countermeasures.
10/06/2016
6/24
Prerequisites
●
Basics about Neural Networks
– How the brain actually works?
– How parallel computation works adapting parameters inspired by
neurons?
– How the brain implements learning algorithms?
● (ペ)What is it a good idea to try to emulate the brain when solving
a recognition task?
10/06/2016
7/24
A schematic neuron
There are many neurotransimtters, but
we deal with those as positive/negative
weights and also positive negative
inputs. (ペ) why?
http://www.mhhe.com/socscience/intro/ibank/set1.htm
10/06/2016
8/24
Why computer vision is so difficult?
http://xkcd.com/1425/
10/06/2016
9/24
Cross entropy
10/06/2016
10/24
playground.tensorflow.org
10/06/2016
11/24
Convnet.js http://cs.stanford.edu/people/karpathy/convnetjs/
10/06/2016
12/24
TensorFlow Tips
●
Computation graph (see http://colah.github.io/posts/2015-08-Backprop/ , その翻訳記事
は http://postd.cc/2015-08-backprop/ )
● Ways of installations (c.f. Tensorflow.org Download and Setup )
– Pip
– Virutalenv
– Anaconda
– Docker
● Let’s try http://playground.tensorflow.org/
● You can also check it out, Karpthy’s convnetjs
● Keras is another choice to consider
10/06/2016
13/24
A computation graph
http://deeplearning.net/software/theano/extending/graphstructures.html
10/06/2016
14/24
Sample code of TensorFlow
import tensorflow as tf
W = tf.get_variable(shape=[], name='W')
b = tf.get_variable(shape=[], name='b')
x = tf.placeholder(shape=[None], dtype=tf.float32, name='x')
y = tf.matmul(W, x) + b
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print(sess.run(y, feed_dict={x: x_in}))
10/06/2016
15/24
The difference between placeholder and variable
Since Tensor computations compose graphs then it's better to interpret the two in terms of graphs.
When you launch the graph, variables have to be explicitly initialized before you can run Ops that use
their value. Then during the process of the an operation variables should be constant.
import tensorflow as tf
# Create a variable.
# w = tf.Variable(<initial-value>, name=<optional-name>)
w = tf.Variable(tf.truncated_normal([10, 40]))
v = tf.Variable(tf.truncated_normal([40, 20]))
# Use the variable in the graph like any Tensor.
# The variable should be initialized before this operation!
y = tf.matmul(w, v)
# Assign a new value to the variable with `assign()` or a related method.
w.assign(w + 1.0)
w.assign_add(1.0)
http://stackoverflow.com/questions/36693740/whats-the-difference-between-tf-placeholder-and-tf-variable
tf.Variableはオペレーション実行前に初期化される
10/06/2016
16/24
The difference between placeholder and variable
A placeholder is a handle of a value in the operation and it can be not initialized before the execution of
the graph (launching the graph in the session which does its computation relaying on a highly efficient C+
+ backend).
x = tf.placeholder(tf.float32, shape=(1024, 1024))
# You don't need to initialize it to calculate y, it's different from
# the variable above, the placeholder is a "variable"(not intialized)
# in this operation.
y = tf.matmul(x, x)
with tf.Session() as sess:
# However you should initialize x to execute y for the execution of the graph.
print(sess.run(y)) # ERROR: will fail because x was not fed.
rand_array = np.random.rand(1024, 1024)
print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.
プレースホルダーは初期化されない
10/06/2016
17/24
Convolutional neural networks: LeNet5
LeCun1998 より
10/06/2016
18/24
AlexNet
Krizensky+2012 より
10/06/2016
19/24
GoogLeNet
10/06/2016
20/24
GoogLeNet Inception module
10/06/2016
21/24
畳み込み演算
10/06/2016
22/24
kernels
10/06/2016
23/24
To understand convolution
●
畳み込みの理解には
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
10/06/2016
24/24
What is convolution?
●
Convolution is an operation from signal processing
● Filters, or kernels in machine learning,

More Related Content

Similar to 2016 dg2

H2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
H2O World - Benchmarking Open Source ML Platforms - Szilard PafkaH2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
H2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
Sri Ambati
 
Deep learning with Keras
Deep learning with KerasDeep learning with Keras
Deep learning with Keras
QuantUniversity
 
Deep learning with Keras
Deep learning with KerasDeep learning with Keras
Deep learning with Keras
QuantUniversity
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介
Kenta Oono
 
Andrew NG machine learning
Andrew NG machine learningAndrew NG machine learning
Andrew NG machine learning
ShareDocView.com
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
Big Data Spain
 
Overview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language ProcessingOverview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language Processing
ananth
 
Project00
Project00Project00
Project00
Ganesh Chavan
 
deepnet-lourentzou.ppt
deepnet-lourentzou.pptdeepnet-lourentzou.ppt
deepnet-lourentzou.ppt
yang947066
 
Introduction to Deep Learning presentation
Introduction to Deep Learning presentationIntroduction to Deep Learning presentation
Introduction to Deep Learning presentation
johanericka2
 
Introduction to Convolutional Neural Networks
Introduction to Convolutional Neural NetworksIntroduction to Convolutional Neural Networks
Introduction to Convolutional Neural Networks
Hannes Hapke
 
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCEINTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
IPutuAdiPratama
 
Feature extraction for classifying students based on theirac ademic performance
Feature extraction for classifying students based on theirac ademic performanceFeature extraction for classifying students based on theirac ademic performance
Feature extraction for classifying students based on theirac ademic performance
Venkat Projects
 
Start machine learning in 5 simple steps
Start machine learning in 5 simple stepsStart machine learning in 5 simple steps
Start machine learning in 5 simple steps
Renjith M P
 
Deep learning QuantUniversity meetup
Deep learning QuantUniversity meetupDeep learning QuantUniversity meetup
Deep learning QuantUniversity meetup
QuantUniversity
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Tensor flow
Tensor flowTensor flow
Tensor flow
Nikhil Krishna Nair
 
Matlab and Python: Basic Operations
Matlab and Python: Basic OperationsMatlab and Python: Basic Operations
Matlab and Python: Basic Operations
Wai Nwe Tun
 
Standardizing arrays -- Microsoft Presentation
Standardizing arrays -- Microsoft PresentationStandardizing arrays -- Microsoft Presentation
Standardizing arrays -- Microsoft Presentation
Travis Oliphant
 

Similar to 2016 dg2 (20)

H2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
H2O World - Benchmarking Open Source ML Platforms - Szilard PafkaH2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
H2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
 
Deep learning with Keras
Deep learning with KerasDeep learning with Keras
Deep learning with Keras
 
Deep learning with Keras
Deep learning with KerasDeep learning with Keras
Deep learning with Keras
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介
 
Andrew NG machine learning
Andrew NG machine learningAndrew NG machine learning
Andrew NG machine learning
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
 
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
 
Overview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language ProcessingOverview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language Processing
 
Project00
Project00Project00
Project00
 
deepnet-lourentzou.ppt
deepnet-lourentzou.pptdeepnet-lourentzou.ppt
deepnet-lourentzou.ppt
 
Introduction to Deep Learning presentation
Introduction to Deep Learning presentationIntroduction to Deep Learning presentation
Introduction to Deep Learning presentation
 
Introduction to Convolutional Neural Networks
Introduction to Convolutional Neural NetworksIntroduction to Convolutional Neural Networks
Introduction to Convolutional Neural Networks
 
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCEINTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
INTRODUCTION TO MACHINE LEARNING FOR MATERIALS SCIENCE
 
Feature extraction for classifying students based on theirac ademic performance
Feature extraction for classifying students based on theirac ademic performanceFeature extraction for classifying students based on theirac ademic performance
Feature extraction for classifying students based on theirac ademic performance
 
Start machine learning in 5 simple steps
Start machine learning in 5 simple stepsStart machine learning in 5 simple steps
Start machine learning in 5 simple steps
 
Deep learning QuantUniversity meetup
Deep learning QuantUniversity meetupDeep learning QuantUniversity meetup
Deep learning QuantUniversity meetup
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
 
Tensor flow
Tensor flowTensor flow
Tensor flow
 
Matlab and Python: Basic Operations
Matlab and Python: Basic OperationsMatlab and Python: Basic Operations
Matlab and Python: Basic Operations
 
Standardizing arrays -- Microsoft Presentation
Standardizing arrays -- Microsoft PresentationStandardizing arrays -- Microsoft Presentation
Standardizing arrays -- Microsoft Presentation
 

More from Shin Asakawa

TensorFlow math ja 05 word2vec
TensorFlow math ja 05 word2vecTensorFlow math ja 05 word2vec
TensorFlow math ja 05 word2vec
Shin Asakawa
 
深層学習(ディープラーニング)入門勉強会資料(浅川)
深層学習(ディープラーニング)入門勉強会資料(浅川)深層学習(ディープラーニング)入門勉強会資料(浅川)
深層学習(ディープラーニング)入門勉強会資料(浅川)
Shin Asakawa
 
第4回MachineLearningのための数学塾資料(浅川)
第4回MachineLearningのための数学塾資料(浅川)第4回MachineLearningのための数学塾資料(浅川)
第4回MachineLearningのための数学塾資料(浅川)
Shin Asakawa
 
2016word embbed supp
2016word embbed supp2016word embbed supp
2016word embbed supp
Shin Asakawa
 
2016word embbed
2016word embbed2016word embbed
2016word embbed
Shin Asakawa
 
primers neural networks
primers neural networksprimers neural networks
primers neural networks
Shin Asakawa
 
回帰
回帰回帰
回帰
Shin Asakawa
 
Linera lgebra
Linera lgebraLinera lgebra
Linera lgebra
Shin Asakawa
 
2016人工知能と経済の未来合評会資料
2016人工知能と経済の未来合評会資料2016人工知能と経済の未来合評会資料
2016人工知能と経済の未来合評会資料
Shin Asakawa
 
2016tf study5
2016tf study52016tf study5
2016tf study5
Shin Asakawa
 
2016tensorflow ja001
2016tensorflow ja0012016tensorflow ja001
2016tensorflow ja001
Shin Asakawa
 
dl-with-python01_handout
dl-with-python01_handoutdl-with-python01_handout
dl-with-python01_handout
Shin Asakawa
 
Rnncamp2handout
Rnncamp2handoutRnncamp2handout
Rnncamp2handout
Shin Asakawa
 
Rnncamp01
Rnncamp01Rnncamp01
Rnncamp01
Shin Asakawa
 
Rnncamp01
Rnncamp01Rnncamp01
Rnncamp01
Shin Asakawa
 

More from Shin Asakawa (15)

TensorFlow math ja 05 word2vec
TensorFlow math ja 05 word2vecTensorFlow math ja 05 word2vec
TensorFlow math ja 05 word2vec
 
深層学習(ディープラーニング)入門勉強会資料(浅川)
深層学習(ディープラーニング)入門勉強会資料(浅川)深層学習(ディープラーニング)入門勉強会資料(浅川)
深層学習(ディープラーニング)入門勉強会資料(浅川)
 
第4回MachineLearningのための数学塾資料(浅川)
第4回MachineLearningのための数学塾資料(浅川)第4回MachineLearningのための数学塾資料(浅川)
第4回MachineLearningのための数学塾資料(浅川)
 
2016word embbed supp
2016word embbed supp2016word embbed supp
2016word embbed supp
 
2016word embbed
2016word embbed2016word embbed
2016word embbed
 
primers neural networks
primers neural networksprimers neural networks
primers neural networks
 
回帰
回帰回帰
回帰
 
Linera lgebra
Linera lgebraLinera lgebra
Linera lgebra
 
2016人工知能と経済の未来合評会資料
2016人工知能と経済の未来合評会資料2016人工知能と経済の未来合評会資料
2016人工知能と経済の未来合評会資料
 
2016tf study5
2016tf study52016tf study5
2016tf study5
 
2016tensorflow ja001
2016tensorflow ja0012016tensorflow ja001
2016tensorflow ja001
 
dl-with-python01_handout
dl-with-python01_handoutdl-with-python01_handout
dl-with-python01_handout
 
Rnncamp2handout
Rnncamp2handoutRnncamp2handout
Rnncamp2handout
 
Rnncamp01
Rnncamp01Rnncamp01
Rnncamp01
 
Rnncamp01
Rnncamp01Rnncamp01
Rnncamp01
 

Recently uploaded

cathode ray oscilloscope and its applications
cathode ray oscilloscope and its applicationscathode ray oscilloscope and its applications
cathode ray oscilloscope and its applications
sandertein
 
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE  AND ITS BENIFITS.pptxIMPORTANCE OF ALGAE  AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
OmAle5
 
Summary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdfSummary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdf
vadgavevedant86
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
Ritik83251
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
yourprojectpartner05
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
Lattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptxLattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptx
DrRajeshDas
 
Introduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptxIntroduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptx
QusayMaghayerh
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
Sérgio Sacani
 
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptxTOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
shubhijain836
 
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdfHolsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
frank0071
 
Anti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark UniverseAnti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark Universe
Sérgio Sacani
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Sérgio Sacani
 
Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5
vimalveerammal
 
2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf
lucianamillenium
 
Signatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coastsSignatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coasts
Sérgio Sacani
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
Sérgio Sacani
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 

Recently uploaded (20)

cathode ray oscilloscope and its applications
cathode ray oscilloscope and its applicationscathode ray oscilloscope and its applications
cathode ray oscilloscope and its applications
 
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE  AND ITS BENIFITS.pptxIMPORTANCE OF ALGAE  AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
 
Summary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdfSummary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdf
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
 
Lattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptxLattice Defects in ionic solid compound.pptx
Lattice Defects in ionic solid compound.pptx
 
Introduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptxIntroduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptx
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
 
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptxTOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
 
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdfHolsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
Holsinger, Bruce W. - Music, body and desire in medieval culture [2001].pdf
 
Anti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark UniverseAnti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark Universe
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
 
Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5Quality assurance B.pharm 6th semester BP606T UNIT 5
Quality assurance B.pharm 6th semester BP606T UNIT 5
 
2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf
 
Signatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coastsSignatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coasts
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 

2016 dg2