SlideShare a Scribd company logo
1 of 24
, 20130104, published 27 March 20139 2013 Biol. Lett.
Matthew L. Niemiller, Dennis M. Higgs and Daphne Soares
Evidence for hearing loss in amblyopsid cavefishes
References
http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full
.html#ref-list-1
This article cites 13 articles, 1 of which can be accessed free
Subject collections
(75 articles)neuroscience �
(642 articles)evolution �
(629 articles)ecology �
Articles on similar topics can be found in the following
collections
Email alerting service
hereright-hand corner of the article or click
Receive free email alerts when new articles cite this article -
sign up in the box at the top
http://rsbl.royalsocietypublishing.org/subscriptions go to: Biol.
Lett.To subscribe to
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full
.html#ref-list-1
http://rsbl.royalsocietypublishing.org/cgi/collection/ecology
http://rsbl.royalsocietypublishing.org/cgi/collection/evolution
http://rsbl.royalsocietypublishing.org/cgi/collection/neuroscienc
e
http://rsbl.royalsocietypublishing.org/cgi/alerts/ctalert?alertTyp
e=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria
_resid=roybiolett;9/3/20130104&return_type=article&return_url
=http://rsbl.royalsocietypublishing.org/content/9/3/20130104.ful
l.pdf
http://rsbl.royalsocietypublishing.org/subscriptions
http://rsbl.royalsocietypublishing.org/
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
rsbl.royalsocietypublishing.org
Research
Cite this article: Niemiller ML, Higgs DM,
Soares D. 2013 Evidence for hearing loss in
amblyopsid cavefishes. Biol Lett 9: 20130104.
http://dx.doi.org/10.1098/rsbl.2013.0104
Received: 1 February 2013
Accepted: 5 March 2013
Subject Areas:
evolution, neuroscience, ecology
Keywords:
auditory, evolution, fish, subterranean
Author for correspondence:
Daphne Soares
e-mail: [email protected]
& 2013 The Author(s) Published by the Royal Society. All
rights reserved.
Neurobiology
Evidence for hearing loss in amblyopsid
cavefishes
Matthew L. Niemiller1, Dennis M. Higgs2 and Daphne Soares3
1Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT 06520, USA
2Department of Biological Sciences, University of Windsor,
Windsor, Ontario, Canada N9B 3P4
3Department of Biology, University of Maryland, College Park,
MD 20742, USA
The constant darkness of caves and other subterranean habitats
imposes sen-
sory constraints that offer a unique opportunity to examine
evolution of
sensory modalities. Hearing in cavefishes has not been well
explored, and
here we show that cavefishes in the family Amblyopsidae are
not only
blind but have also lost a significant portion of their hearing
range. Our
results showed that cave and surface amblyopsids shared the
same audio-
gram profile at low frequencies but only surface amblyopsids
were able to
hear frequencies higher than 800 Hz and up to 2 kHz. We
measured ambient
noise in aquatic cave and surface habitats and found high
intensity peaks
near 1 kHz for streams underground, suggesting no adaptive
advantage in
hearing in those frequencies. In addition, cave amblyopsids had
lower hair
cell densities compared with their surface relative. These traits
may have
evolved in response to the loud high-frequency background
noise found
in subterranean pools and streams. This study represents the
first report of
auditory regression in a subterranean organism.
1. Introduction
Animals that live in continual darkness are faced with unique
challenges in
order to locate and identify food, predators and each other [1].
Without
visual information, independent lineages of obligate cave-
dwelling organisms
have evolved regressive features, such as the loss or reduction
of eyes and pig-
mentation and constructive traits, such as longer appendages
and hypertrophy
of non-visual sensory systems [2]. Aside from darkness being
common to all
subterranean habitats, several other abiotic factors influence
subterranean
organisms, such as relatively stable temperature, high humidity
and hydro-
logical factors (for example, periodic flooding) [2]. However,
little to nothing
is known about how the diverse abiotic characteristics of caves
affect the sen-
sory ecology of cave animals. Here, we examine the relationship
between the
acoustic environment of caves and hearing in amblyopsid
cavefishes.
Aquatic cave organisms, such as cavefishes, survive in
perpetual darkness.
An important sensory modality in such environments may be the
sense of hear-
ing. In above-ground aquatic habitats, hearing is important for
many aspects of
fish behaviour (reviewed in [3]) and is effective over relatively
long distances
owing to the nature of underwater sound travel. Sound may play
an especially
important role in subterranean habitats owing to the lack of
visual signals yet
the acoustic properties of these habitats have been largely
ignored to date.
Hypertrophy of hearing characteristics could be adaptive in
caves for several
reasons, including working in association with other non-visual
senses to
detect prey, conspecifics or predators. However, the degree to
which hearing
abilities are modified in cavefishes is largely unknown, as
behavioural and
neurophysiological studies on the acoustical biology of
cavefishes are extremely
limited. Popper [4] showed that the cave and surface forms of
the characid
Astyanax mexicanus do not differ in hearing. Similarly, no
differences were
found between cave and surface forms of the molly Poecilia
mexicana [5].
http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2013.010
4&domain=pdf&date_stamp=2013-03-27
mailto:[email protected]
http://rsbl.royalsocietypublishing.org/
50
40
A. spelaea T. subterraneus F. agassizii
30
ha
ir
c
el
l
de
ns
it
y
(u
ni
ts
1
00
m
m
–2
)
20
10
0
Chologaster Troglichthys Speoplatyrhinus(i) (ii) (iii)
(b)(a)
(i)
(ii)
(iii)
Figure 1. (a) The phylogenetic relationships of the two obligate
cave species (white) (i) Typhlichthys and (ii) Amblyopsis and
one surface species (black) (iii)
Forbesichthys. (b) Cell density counts for the three species
show fewer hair cells in the cavefishes (*F2,23 ¼ 15.3, p ¼
0.0007). Inserts show photomicrograms
of the ears stained with phalloidin. Scale bar, 100 mm. (Online
version in colour.)
rsbl.royalsocietypublishing.org
Biol
Lett
9:
20130104
2
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
Here, we show the first report of differences in hearing
characteristics in a cavefish compared with its surface rela-
tive. We compared the auditory evoked potentials (AEPs)
of three species in the family Amblyopsidae, as well as the
acoustic profiles of their subterranean habitats in order to
investigate whether a relationship exists between noise in
cave habitats and cavefish hearing. Amblyopsid caveshes
are a model system for studying the ecological and evolution-
ary processes of cave adaptation because the cave-restricted
species in the family represent a range of troglomorphy
that reflects variable durations of isolation in caves [6].
Cave amblyopsids are one of the most comprehensively
studied caveshes, with six genera and eight species [7]. In
this study, we examine the hearing characteristics of three
related amblyopsids: the surface dwelling, Forbesichthys
agassizii and two cave species, Typhlichthys subterraneus and
Amblyopsis spelaea (figure 1a).
2. Material and methods
All procedures followed IACUC guidelines dictated by the Uni-
versity of Windsor. All data are available in http://datadryad.
org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected
under scientific permits issued by the states of TN (no. 1605)
and KY (no. SC1211135), USA. We collected nine individuals
of Forbesichthys agassizii from a quiet pool (10 m2, mean depth
0.6 m, mud/silt substrate with abundant vegetation) of a
spring run fed by Jarrell’s Spring, Coffee Co., TN, USA; seven
individuals for each of the two cave-dwelling species:
Amblyopsis
spelaea from several quiet pools (20 – 150 m2, 0.2 – 2þ m
depth,
silt/sand/cobble substrate) in Under the Road Cave, Breckin-
ridge Co., KY, USA and Typhlichthys subterraneus from several
pools with some current (4 – 12 m2, 0.1 – 0.8 m depth,
0 – 0.6 ms21 (low flow), cobble/bedrock substrate) in L&N
Railroad Cave, Barren Co., KY, USA.
(a) Auditory evoked potentials
This method measures the compound electrical potential created
by the eighth cranial nerve and auditory brainstem nuclei in
response to sound [9,10]. We restrained submerged fish and
played 10 msec tones, ranging from 0.1 to 2 kHz at 0.1 Hz
inter-
vals. We increased the sound level in 5 dB intervals until a
stereotypical evoked potential waveform was detected (figure 2,
insert). We determined auditory threshold to be the lowest
inten-
sity for which AEP traces were detected [11]. Sound output
was measured with a hydrophone (model LC-10, Reson Inc;
Calibration sensitivity of 2208.9 dB re 1V uPa21, 0 – 100 kHz)
and an accelerometer (model 4524 cubic triaxial deltatron,
Brüel & Kjær). We calibrated sound level and particle accelera-
tion at the beginning of each trial. Thresholds were compared
between species and frequencies with a two-way ANOVA.
(b) Hair cell histology
Fish were euthanized with an overdose of 2-phenoxy-ethanol
and fixed in 4 per cent paraformaldehyde. Epithelia were dis-
sected and stained with Oregon Green phalloidin (Invitrogen)
followed by fluorescent imaging. Hair cells were manually
counted across eight different regions of saccular epithelia and
quantified as density (hair cells/2500 mm2) to correct for differ-
ences in epithelium size. There were no apparent differences in
fluorescent intensity sufficient to affect manual counts. Within
species, there were no significant density differences between
epithelial areas (ANOVA F7,40 ¼ 0.437, p ¼ 0.873), so the
density
estimates were averaged across epithelial areas. ANOVA was
http://datadryad.org
http://datadryad.org
http://datadryad.org
http://dx.doi.org/10.5061/dryad.9sj49
http://rsbl.royalsocietypublishing.org/
frequency (Hz)
0
0
20
40
60
80
100
th
re
sh
ol
d
(d
B
)
120
140
160
500 1000 1500 2000
Forbesichthys
Forbesichthys
environment
Amblyopsis
Amblyopsis
Typhlichthys
Typhlichthys
5 mS
10 mV
2500 3000
Figure 2. Auditory thresholds of amblyopsid fishes. Values are
means+standard errors. The suface fish Forbesichthys reaches
up to 2 kHz while the cavefish
Typhlichthys (1) and Amblyopsis (2) are limited to 1 kHz. Fast
Fourier Transformation (FFT) of sound recorded in a Drowned
Rat Cave pool. The pool was
carved in bedrock by a small stream. The recording was made
0.5 m deep and approximately 1 m from the waterfall. The
ceiling of the cave was also dripping
onto the pool. Insert: auditory evoked potential traces of all
species to a 400 Hz tone burst at 60 dB.
rsbl.royalsocietypublishing.org
Biol
Lett
9:
20130104
3
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
used to assess differences in hair cell density, followed by a
Tukey post-hoc test.
(c) Environmental sound profiles
We characterized aquatic environmental sound profiles in cave
and surface habitats, using a hydrophone (type 10CT hydro-
phone, calibration sensitivity of 2195 dB re. 1 V mPa21;+3 dB,
0.02 – 10 kHz, omnidirectional, G.R.A.S., Denmark) connected
through a preamplifier (Spikerbox, Backyard Brains) to an iPad
(Apple). Three recordings of 5 min were taken per site. Within
caves, we obtained sound profiles from two habitat types: shal-
low stream riffles at depths of 0.05 – 0.1 m and pools with no
current at depths of 0.1 – 2 m. We also recorded at the same
depths in surface streams and pools inhabited by Forbesichthys.
Characterization of sound spectra and corresponding SPLs was
performed using AUDIOTOOLS software (Studio Six Digital).
We
matched cave and surface habitats profiles as much as possi-
ble (e.g. area, substrate and water flow), with the exception of
vegetation in surface habitats.
3. Results
Density of saccular hair cells differed between species
(F2,6 ¼ 15.3, p ¼ 0.0007), with the two cave species having
lower hair cell densities (mean ¼ 34 and 29 hair cells/
2500 mm2) than the surface species (mean ¼ 45 hair cells/
2500 mm2; figure 1). There was no difference in threshold
between species below 800 Hz (F2,15 ¼ 1.087, p ¼ 0.342;
figure 2), and thresholds increased with frequency (F11,15 ¼
25.9, p , 0.001) with no significant frequency – species
interaction
(F15,95 ¼ 47.9, p ¼ 0.702). All three amblyopsid species were
most sensitive at 100 Hz (mean threshold range 112 – 122 dB re
1 mPa), and thresholds increased between 100 and 800 Hz.
In the two cave species, only one Typhlichthys responded to
tones 700 – 1000 Hz and just two Amblyopsis responded to tone
bursts above 600 Hz, with only one responding at 1000 Hz.
The surface species showed clear evoked responses well above
this limit, with defined responses detected up to 2000 Hz.
Underwater sounds were variable depending on habitat. In
cave streams with rock and sand substrate, there was a peak in
background noise at about 1000 Hz followed by peaks at low
frequencies (below 200 Hz; figure 2). Overall sound intensity
was less prominent between 200 and 5000 Hz in pool habitats
away from the small streams. Nonetheless, the same general
profile was present but with a smaller, less defined 1000 Hz
peak. Surface streams showed low-frequency noise (less than
100 Hz) and high-frequency noise (more than 8000 Hz) with
a small peak at 1200 Hz, but the overall noise level was much
higher at intermediate frequencies (1000 – 3000 Hz) in the
cave streams than surface streams.
4. Discussion
Adaptation to cave environments is often associated with
hypertrophy of non-visual sensory modalities. Cave ambly-
opsids exhibited similar hearing sensitivities as their surface-
dwelling relative at 800 Hz and below, consistent with
previous findings in other cavefishes [5,6]. Surprisingly how-
ever, cave amblyopsids have lost a significant portion of their
hearing range. Both Amblyopsis and Typhlichthys are unable
to hear frequencies above 800 Hz, unlike their surface relative
Forbesichthys, which can hear up to 2 kHz. In addition, both
cave species had lower hair cell densities than Forbesichthys.
To our knowledge, this is the first report of auditory regression
in a subterranean organism.
http://rsbl.royalsocietypublishing.org/
rsbl.royalsocietypublishing.org
Biol
Lett
9:
20130104
4
on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded
from
Like the loss of eyes, loss of hearing range in cave amb-
lyopsids represents an example of regressive evolution in
subterranean organisms. Audio recordings from native cave
habitats of cave amblyopsids showed that flowing streams
(riffles) and water droplets dripping from the ceiling of
cave passages contribute to loud high-frequency background
noise generally above 800 Hz (figure 2), although the precise
contribution of all noise sources have not been characterized.
Lower frequencies are not likely to propagate far in these
shallow environments [12] but the higher frequency com-
ponents would propagate further and contribute to the more
to the high background noise levels of the caves. The apparent
match between hearing ability and background noise profiles
has been hypothesized to be an evolutionary driver of hearing
ability across the Teleostei [13], and the hearing of two species
of goby (Padogobius martensii and Gobius nigricans) living in
noisy waterfall environments is most sensitive in a frequency
range corresponding to a quiet window in these environments
[14]. Noisy stream environments mask high-frequency hearing
in ostariophysan fishes [15] but hearing specializations of clo-
sely related species in different acoustic environments have
rarely been tested. Our findings raise the intriguing possibility
that cave amblyopsids may have lost hearing at high frequen-
cies in response to the noisy acoustic environments in which
they live.
The reduction in hair cell density indicates peripheral
involvement in high-frequency hearing loss. Fewer hair cells
pro-
vide fewer sites for signal transduction and also may lead to
less
relative stimulation upon relative motion of the otolith. Poulson
[9] reports an increase in otolith size with increasing cave
adaptation in this group and suggests it may be due to different
equilibrium demands. If the sensory epithelium is growing in
pace with the otolith without concomitant increase in hair
cells, a decrease in hair cell density would result. If, however,
the loss of high-frequency hearing ability in cave species was
due to selective loss of high-frequency hair cells, this could
also lead to a decrease in overall hair cell density. There is no
evidence for tonotopy in fish ears, but there is some evidence
for differential frequency selectivity in hair cells across the
epithelia [15]. More work needs to be done on frequency
responses at the level of individual hair cells before this idea
can be supported.
Our study provides evidence that two cavefish species
have evolved loss of high-frequency hearing and reduced
hair cell densities compared with a surface-dwelling relative.
These traits may have evolved in response to loud high-
frequency background noise that mask acoustic signals in
their aquatic subterranean habitats; however, the mechanism
(i.e. neutral loss versus selection) underlying hearing loss
remain to be understood.
All procedures followed IACUC guidelines dictated by the
Univer-
sity of Windsor. All data are available in http://datadryad.org
under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under
scien-
tific permits issued by the states of TN (no. 1605) and KY (no.
SC1211135), USA.
We thank Daniel Escobar Camacho for help and Dr Gal Haspel
and
Dr Kim Hoke for comments. This work was supported by the
Yale
Institute of Biospheric Studies (M.L.N.) and by ADVANCE
grant
no. 1008117 to D.S.
References
1. Jeffery W. 2001 Cavefish as a model system in
evolutionary developmental biology. Dev. Biol. 231,
1 – 12. (doi:10.1006/dbio.2000.0121)
2. Culver D, Pipan T. 2009 The biology of caves and
other subterranean habitats. Oxford, UK: Oxford
University Press.
3. Fay RR, Popper AN. 2012 Fish hearing: new
perspectives from two ‘senior’ bioacousticians. Brain
Behav. Evol. 79, 215 – 217. (doi:10.1159/
000338719)
4. Popper AN. 1970 Auditory capacities of the Mexican
blind cave fish (Astyanax jordani) and its eyed
ancestor (Astyanax mexicanus). Anim. Behav. 18,
552 – 562. (doi:10.1016/0003-3472(70)90052-7)
5. Schulz-Mirbach T, Ladich F, Riesch R, Plath M. 2010
Otolith morphology and hearing abilities in cave-
and surface-dwelling ecotypes of the Atlantic molly,
Poecilia mexicana (Teleostei: Poeciliidae). Hear. Res.
267, 137 – 148. (doi:10.1016/j.heares.2010.04.001)
6. Poulson TL. 1963 Cave adaptation in amblyopsid
fishes. Am. Midland Nat. 70, 257 – 290. (doi:10.
2307/2423056)
7. Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L,
Near TJ. 2013 Evidence for repeated loss of selective
constraint in rhodopsin of amblyopsid cavefishes
(Teleostei: Amblyopsidae). Evolution 67, 732 – 748.
(doi:10.1111/j.1558-5646.2012.01822.x)
8. Niemiller ML, Higgs DM, Soares D. 2013 Data from:
evidence for hearing loss in amblyopsid cavefishes.
Dryad Digital Respository. (doi:10.5061/dryad.9sj49)
9. Corwin JT, Bullock TH, Schweitzer J. 1982 The
auditory brain stem response in five vertebrate
classes. Electroencephalogr. Clin. Neurophysiol. 54,
629 – 641. (doi:10.1016/0013-4694(82)90117-1)
10. Kenyon TN, Ladich F, Yan HY. 1998 A comparative
study of hearing ability in fishes: the auditory
brainstem response approach. J. Comp. Physiol. A
182, 307 – 318. (doi:10.1007/s003590050181)
11. Mann DA, Higgs DM, Tavolga WN, Souza MJ,
Popper AN. 2001 Ultrasound detection by
clupeiform fishes. J. Acoust. Soc. Am. 109,
3048 – 3054. (doi:10.1121/1.1368406)
12. Fine ML, Lenhardt ML. 1983 Shallow-water
propagation of the toadfish mating call. Comp.
Biochem. Physiol. A. 76, 225 – 231. (doi:10.1016/
0300-9629(83)90319-5)
13. Popper AN, Fay RR. 1997 Evolution of the ear and
hearing: issues and questions. Brain Behav. Evol. 50,
213 – 221. (doi:10.1159/000113335)
14. Lugli M, Yan HY, Fine ML. 2003 Acoustic communication
in two freshwater gobies: the relationship between
ambient noise, hearing thresholds and sound spectrum.
J. Comp. Physiol. A. 189, 309 – 320.
15. Amoser S, Ladich F. 2005 Are hearing sensitivities of
freshwater fish adapted to the ambient noise in
their habitats? J. Exp. Biol. 208, 3533 – 3542.
(doi:10.1242/jeb.01809)
http://datadryad.org
http://datadryad.org
http://dx.doi.org/10.5061/dryad.9sj49
http://dx.doi.org/10.1006/dbio.2000.0121
http://dx.doi.org/10.1159/000338719
http://dx.doi.org/10.1159/000338719
http://dx.doi.org/10.1016/0003-3472(70)90052-7
http://dx.doi.org/10.1016/j.heares.2010.04.001
http://dx.doi.org/10.2307/2423056
http://dx.doi.org/10.2307/2423056
http://dx.doi.org/10.1111/j.1558-5646.2012.01822.x
http://dx.doi.org/10.5061/dryad.9sj49
http://dx.doi.org/10.1016/0013-4694(82)90117-1
http://dx.doi.org/10.1007/s003590050181
http://dx.doi.org/10.1121/1.1368406
http://dx.doi.org/10.1016/0300-9629(83)90319-5
http://dx.doi.org/10.1016/0300-9629(83)90319-5
http://dx.doi.org/10.1159/000113335
http://dx.doi.org/10.1242/jeb.01809
http://rsbl.royalsocietypublishing.org/Evidence for hearing loss
in amblyopsid cavefishesIntroductionMaterial and
methodsAuditory evoked potentialsHair cell
histologyEnvironmental sound profilesResultsDiscussionAll
procedures followed IACUC guidelines dictated by the
University of Windsor. All data are available in
http://datadryad.org under doi:10.5061/dryad.9sj49 [8]. Fishes
were collected under scientific permits issued by the states of
TN (no. 1605) and KY (no. SC1211135), USA.We thank Daniel
Escobar Camacho for help and Dr Gal Haspel and Dr Kim Hoke
for comments. This work was supported by the Yale Institute of
Biospheric Studies (M.L.N.) and by ADVANCE grant no.
1008117 to D.S.References

More Related Content

Similar to Hearing Loss in Cavefishes

Comparison of Echolocation by Sperm Whales and Spinner Dolphins
Comparison of Echolocation by Sperm Whales and Spinner DolphinsComparison of Echolocation by Sperm Whales and Spinner Dolphins
Comparison of Echolocation by Sperm Whales and Spinner DolphinsVictoria Nguyen
 
Laura figoski olindias formosa protein fluorescent
Laura figoski  olindias formosa protein fluorescentLaura figoski  olindias formosa protein fluorescent
Laura figoski olindias formosa protein fluorescentDay Pierre DESAULT
 
Dissertation_final_submission
Dissertation_final_submissionDissertation_final_submission
Dissertation_final_submissionThomas Trew
 
Conservation biology
Conservation biologyConservation biology
Conservation biologyQamar iqbal
 
FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14
FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14
FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14Faith Warren
 
Amibio biodivriede2010
Amibio biodivriede2010Amibio biodivriede2010
Amibio biodivriede2010Klaus Riede
 
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_LindsayRS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_LindsayKurtis Lindsay
 
Darcya_HonoursThesisFinal
Darcya_HonoursThesisFinalDarcya_HonoursThesisFinal
Darcya_HonoursThesisFinalAndrew Darcy
 
Antarctic Marine Biology
Antarctic Marine BiologyAntarctic Marine Biology
Antarctic Marine BiologyDeja Lewis
 
The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...Ædel Aerospace GmbH
 
Turtle Nest Predation Poster
Turtle Nest Predation PosterTurtle Nest Predation Poster
Turtle Nest Predation PosterShelby Does
 
Dolphin Hearing Capabilities And Loss
Dolphin Hearing Capabilities And LossDolphin Hearing Capabilities And Loss
Dolphin Hearing Capabilities And Lossmnook700
 
2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy
2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy
2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copyGabriel Maciel de Souza Vianna
 
Aquatic ecosystems
Aquatic ecosystemsAquatic ecosystems
Aquatic ecosystemsHMENI
 
Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...
Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...
Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...Jenna Cragg
 
Rotem et al 2011 The Effect of anthropogenic resources on the space-use patt...
Rotem et al  2011 The Effect of anthropogenic resources on the space-use patt...Rotem et al  2011 The Effect of anthropogenic resources on the space-use patt...
Rotem et al 2011 The Effect of anthropogenic resources on the space-use patt...Guy Rotem
 
EFFECT OF SOUND POLLUTION ON FISHES
EFFECT OF SOUND POLLUTION ON FISHESEFFECT OF SOUND POLLUTION ON FISHES
EFFECT OF SOUND POLLUTION ON FISHESSailesh Mahapatra
 

Similar to Hearing Loss in Cavefishes (20)

Comparison of Echolocation by Sperm Whales and Spinner Dolphins
Comparison of Echolocation by Sperm Whales and Spinner DolphinsComparison of Echolocation by Sperm Whales and Spinner Dolphins
Comparison of Echolocation by Sperm Whales and Spinner Dolphins
 
Laura figoski olindias formosa protein fluorescent
Laura figoski  olindias formosa protein fluorescentLaura figoski  olindias formosa protein fluorescent
Laura figoski olindias formosa protein fluorescent
 
Dissertation_final_submission
Dissertation_final_submissionDissertation_final_submission
Dissertation_final_submission
 
Conservation biology
Conservation biologyConservation biology
Conservation biology
 
FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14
FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14
FAITH.WARREN.BIOASSESSMENTPAPER.4.21.14
 
1. Dissertation
1. Dissertation1. Dissertation
1. Dissertation
 
Amibio biodivriede2010
Amibio biodivriede2010Amibio biodivriede2010
Amibio biodivriede2010
 
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_LindsayRS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
RS3608_IWC Vol_14 2014_Cover.pdf-14pp1_14_Hamilton_Lindsay
 
Darcya_HonoursThesisFinal
Darcya_HonoursThesisFinalDarcya_HonoursThesisFinal
Darcya_HonoursThesisFinal
 
Poster Presentation
Poster PresentationPoster Presentation
Poster Presentation
 
Ocean Noise: What we Learned in 2006
Ocean Noise: What we Learned in 2006Ocean Noise: What we Learned in 2006
Ocean Noise: What we Learned in 2006
 
Antarctic Marine Biology
Antarctic Marine BiologyAntarctic Marine Biology
Antarctic Marine Biology
 
The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...
 
Turtle Nest Predation Poster
Turtle Nest Predation PosterTurtle Nest Predation Poster
Turtle Nest Predation Poster
 
Dolphin Hearing Capabilities And Loss
Dolphin Hearing Capabilities And LossDolphin Hearing Capabilities And Loss
Dolphin Hearing Capabilities And Loss
 
2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy
2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy
2016 Vianna et al. Indicators of fishing mortality in Palau_Authors copy
 
Aquatic ecosystems
Aquatic ecosystemsAquatic ecosystems
Aquatic ecosystems
 
Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...
Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...
Wildlife Society Bulletin 2016 CraggTechniques for monitoring Brachyramphusmu...
 
Rotem et al 2011 The Effect of anthropogenic resources on the space-use patt...
Rotem et al  2011 The Effect of anthropogenic resources on the space-use patt...Rotem et al  2011 The Effect of anthropogenic resources on the space-use patt...
Rotem et al 2011 The Effect of anthropogenic resources on the space-use patt...
 
EFFECT OF SOUND POLLUTION ON FISHES
EFFECT OF SOUND POLLUTION ON FISHESEFFECT OF SOUND POLLUTION ON FISHES
EFFECT OF SOUND POLLUTION ON FISHES
 

More from mercysuttle

1 Question Information refinement means taking the system requi.docx
1 Question Information refinement means taking the system requi.docx1 Question Information refinement means taking the system requi.docx
1 Question Information refinement means taking the system requi.docxmercysuttle
 
1 pageApaSourcesDiscuss how an organization’s marketing i.docx
1 pageApaSourcesDiscuss how an organization’s marketing i.docx1 pageApaSourcesDiscuss how an organization’s marketing i.docx
1 pageApaSourcesDiscuss how an organization’s marketing i.docxmercysuttle
 
1 R120V11Vac0Vdc R2100VC13mE.docx
1 R120V11Vac0Vdc R2100VC13mE.docx1 R120V11Vac0Vdc R2100VC13mE.docx
1 R120V11Vac0Vdc R2100VC13mE.docxmercysuttle
 
1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx
1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx
1 PSYC499SeniorCapstoneTheImpactoftheSocial.docxmercysuttle
 
1 Politicking is less likely in organizations that have· adecl.docx
1 Politicking is less likely in organizations that have· adecl.docx1 Politicking is less likely in organizations that have· adecl.docx
1 Politicking is less likely in organizations that have· adecl.docxmercysuttle
 
1 page2 sourcesReflect on the important performance management.docx
1 page2 sourcesReflect on the important performance management.docx1 page2 sourcesReflect on the important performance management.docx
1 page2 sourcesReflect on the important performance management.docxmercysuttle
 
1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx
1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx
1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docxmercysuttle
 
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docxmercysuttle
 
1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docx1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docxmercysuttle
 
1 of 8 Student name ……………. St.docx
1 of 8 Student name …………….               St.docx1 of 8 Student name …………….               St.docx
1 of 8 Student name ……………. St.docxmercysuttle
 
1 MATH 106 QUIZ 4 Due b.docx
1 MATH 106 QUIZ 4                                 Due b.docx1 MATH 106 QUIZ 4                                 Due b.docx
1 MATH 106 QUIZ 4 Due b.docxmercysuttle
 
1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx
1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx
1 MN6003 Levis Strauss Case Adapted from Does Levi St.docxmercysuttle
 
1 NAME__________________ EXAM 1 Directi.docx
1 NAME__________________ EXAM 1  Directi.docx1 NAME__________________ EXAM 1  Directi.docx
1 NAME__________________ EXAM 1 Directi.docxmercysuttle
 
1 pageapasources2Third Party LogisticsBriefly describe .docx
1 pageapasources2Third Party LogisticsBriefly describe .docx1 pageapasources2Third Party LogisticsBriefly describe .docx
1 pageapasources2Third Party LogisticsBriefly describe .docxmercysuttle
 
1 Pageapasources2Review the Food Environment Atlas maps for.docx
1 Pageapasources2Review the Food Environment Atlas maps for.docx1 Pageapasources2Review the Food Environment Atlas maps for.docx
1 Pageapasources2Review the Food Environment Atlas maps for.docxmercysuttle
 
1 Lab 3 Newton’s Second Law of Motion Introducti.docx
1 Lab 3 Newton’s Second Law of Motion  Introducti.docx1 Lab 3 Newton’s Second Law of Motion  Introducti.docx
1 Lab 3 Newton’s Second Law of Motion Introducti.docxmercysuttle
 
1 Marks 2 A person can be prosecuted for both an attempt and .docx
1 Marks 2 A person can be prosecuted for both an attempt and .docx1 Marks 2 A person can be prosecuted for both an attempt and .docx
1 Marks 2 A person can be prosecuted for both an attempt and .docxmercysuttle
 
1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx
1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx
1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docxmercysuttle
 
1 List of Acceptable Primary Resources for the Week 3 .docx
1 List of Acceptable Primary Resources for the Week 3 .docx1 List of Acceptable Primary Resources for the Week 3 .docx
1 List of Acceptable Primary Resources for the Week 3 .docxmercysuttle
 

More from mercysuttle (20)

1 Question Information refinement means taking the system requi.docx
1 Question Information refinement means taking the system requi.docx1 Question Information refinement means taking the system requi.docx
1 Question Information refinement means taking the system requi.docx
 
1 pageApaSourcesDiscuss how an organization’s marketing i.docx
1 pageApaSourcesDiscuss how an organization’s marketing i.docx1 pageApaSourcesDiscuss how an organization’s marketing i.docx
1 pageApaSourcesDiscuss how an organization’s marketing i.docx
 
1 R120V11Vac0Vdc R2100VC13mE.docx
1 R120V11Vac0Vdc R2100VC13mE.docx1 R120V11Vac0Vdc R2100VC13mE.docx
1 R120V11Vac0Vdc R2100VC13mE.docx
 
1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx
1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx
1 PSYC499SeniorCapstoneTheImpactoftheSocial.docx
 
1 Politicking is less likely in organizations that have· adecl.docx
1 Politicking is less likely in organizations that have· adecl.docx1 Politicking is less likely in organizations that have· adecl.docx
1 Politicking is less likely in organizations that have· adecl.docx
 
1 page2 sourcesReflect on the important performance management.docx
1 page2 sourcesReflect on the important performance management.docx1 page2 sourcesReflect on the important performance management.docx
1 page2 sourcesReflect on the important performance management.docx
 
1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx
1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx
1 of 402.5 PointsUse Cramer’s Rule to solve the following syst.docx
 
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx1 of 6  LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
1 of 6 LAB 5 IMAGE FILTERING ECE180 Introduction to.docx
 
1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docx1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docx
 
1 of 8 Student name ……………. St.docx
1 of 8 Student name …………….               St.docx1 of 8 Student name …………….               St.docx
1 of 8 Student name ……………. St.docx
 
1 MATH 106 QUIZ 4 Due b.docx
1 MATH 106 QUIZ 4                                 Due b.docx1 MATH 106 QUIZ 4                                 Due b.docx
1 MATH 106 QUIZ 4 Due b.docx
 
1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx
1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx
1 MN6003 Levis Strauss Case Adapted from Does Levi St.docx
 
1 NAME__________________ EXAM 1 Directi.docx
1 NAME__________________ EXAM 1  Directi.docx1 NAME__________________ EXAM 1  Directi.docx
1 NAME__________________ EXAM 1 Directi.docx
 
1 Name .docx
1 Name                                                 .docx1 Name                                                 .docx
1 Name .docx
 
1 pageapasources2Third Party LogisticsBriefly describe .docx
1 pageapasources2Third Party LogisticsBriefly describe .docx1 pageapasources2Third Party LogisticsBriefly describe .docx
1 pageapasources2Third Party LogisticsBriefly describe .docx
 
1 Pageapasources2Review the Food Environment Atlas maps for.docx
1 Pageapasources2Review the Food Environment Atlas maps for.docx1 Pageapasources2Review the Food Environment Atlas maps for.docx
1 Pageapasources2Review the Food Environment Atlas maps for.docx
 
1 Lab 3 Newton’s Second Law of Motion Introducti.docx
1 Lab 3 Newton’s Second Law of Motion  Introducti.docx1 Lab 3 Newton’s Second Law of Motion  Introducti.docx
1 Lab 3 Newton’s Second Law of Motion Introducti.docx
 
1 Marks 2 A person can be prosecuted for both an attempt and .docx
1 Marks 2 A person can be prosecuted for both an attempt and .docx1 Marks 2 A person can be prosecuted for both an attempt and .docx
1 Marks 2 A person can be prosecuted for both an attempt and .docx
 
1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx
1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx
1 Marks 1 Post Traumatic Stress Disorder (PTSD)Choose one .docx
 
1 List of Acceptable Primary Resources for the Week 3 .docx
1 List of Acceptable Primary Resources for the Week 3 .docx1 List of Acceptable Primary Resources for the Week 3 .docx
1 List of Acceptable Primary Resources for the Week 3 .docx
 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 

Hearing Loss in Cavefishes

  • 1. , 20130104, published 27 March 20139 2013 Biol. Lett. Matthew L. Niemiller, Dennis M. Higgs and Daphne Soares Evidence for hearing loss in amblyopsid cavefishes References http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full .html#ref-list-1 This article cites 13 articles, 1 of which can be accessed free Subject collections (75 articles)neuroscience � (642 articles)evolution � (629 articles)ecology � Articles on similar topics can be found in the following collections Email alerting service hereright-hand corner of the article or click Receive free email alerts when new articles cite this article - sign up in the box at the top http://rsbl.royalsocietypublishing.org/subscriptions go to: Biol. Lett.To subscribe to
  • 2. on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from http://rsbl.royalsocietypublishing.org/content/9/3/20130104.full .html#ref-list-1 http://rsbl.royalsocietypublishing.org/cgi/collection/ecology http://rsbl.royalsocietypublishing.org/cgi/collection/evolution http://rsbl.royalsocietypublishing.org/cgi/collection/neuroscienc e http://rsbl.royalsocietypublishing.org/cgi/alerts/ctalert?alertTyp e=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria _resid=roybiolett;9/3/20130104&return_type=article&return_url =http://rsbl.royalsocietypublishing.org/content/9/3/20130104.ful l.pdf http://rsbl.royalsocietypublishing.org/subscriptions http://rsbl.royalsocietypublishing.org/ on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from rsbl.royalsocietypublishing.org Research Cite this article: Niemiller ML, Higgs DM, Soares D. 2013 Evidence for hearing loss in amblyopsid cavefishes. Biol Lett 9: 20130104. http://dx.doi.org/10.1098/rsbl.2013.0104 Received: 1 February 2013 Accepted: 5 March 2013 Subject Areas: evolution, neuroscience, ecology Keywords:
  • 3. auditory, evolution, fish, subterranean Author for correspondence: Daphne Soares e-mail: [email protected] & 2013 The Author(s) Published by the Royal Society. All rights reserved. Neurobiology Evidence for hearing loss in amblyopsid cavefishes Matthew L. Niemiller1, Dennis M. Higgs2 and Daphne Soares3 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA 2Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4 3Department of Biology, University of Maryland, College Park, MD 20742, USA The constant darkness of caves and other subterranean habitats imposes sen- sory constraints that offer a unique opportunity to examine evolution of sensory modalities. Hearing in cavefishes has not been well explored, and here we show that cavefishes in the family Amblyopsidae are not only blind but have also lost a significant portion of their hearing range. Our
  • 4. results showed that cave and surface amblyopsids shared the same audio- gram profile at low frequencies but only surface amblyopsids were able to hear frequencies higher than 800 Hz and up to 2 kHz. We measured ambient noise in aquatic cave and surface habitats and found high intensity peaks near 1 kHz for streams underground, suggesting no adaptive advantage in hearing in those frequencies. In addition, cave amblyopsids had lower hair cell densities compared with their surface relative. These traits may have evolved in response to the loud high-frequency background noise found in subterranean pools and streams. This study represents the first report of auditory regression in a subterranean organism. 1. Introduction Animals that live in continual darkness are faced with unique challenges in order to locate and identify food, predators and each other [1]. Without visual information, independent lineages of obligate cave-
  • 5. dwelling organisms have evolved regressive features, such as the loss or reduction of eyes and pig- mentation and constructive traits, such as longer appendages and hypertrophy of non-visual sensory systems [2]. Aside from darkness being common to all subterranean habitats, several other abiotic factors influence subterranean organisms, such as relatively stable temperature, high humidity and hydro- logical factors (for example, periodic flooding) [2]. However, little to nothing is known about how the diverse abiotic characteristics of caves affect the sen- sory ecology of cave animals. Here, we examine the relationship between the acoustic environment of caves and hearing in amblyopsid cavefishes. Aquatic cave organisms, such as cavefishes, survive in perpetual darkness. An important sensory modality in such environments may be the sense of hear- ing. In above-ground aquatic habitats, hearing is important for
  • 6. many aspects of fish behaviour (reviewed in [3]) and is effective over relatively long distances owing to the nature of underwater sound travel. Sound may play an especially important role in subterranean habitats owing to the lack of visual signals yet the acoustic properties of these habitats have been largely ignored to date. Hypertrophy of hearing characteristics could be adaptive in caves for several reasons, including working in association with other non-visual senses to detect prey, conspecifics or predators. However, the degree to which hearing abilities are modified in cavefishes is largely unknown, as behavioural and neurophysiological studies on the acoustical biology of cavefishes are extremely limited. Popper [4] showed that the cave and surface forms of the characid Astyanax mexicanus do not differ in hearing. Similarly, no differences were found between cave and surface forms of the molly Poecilia mexicana [5].
  • 8. m m –2 ) 20 10 0 Chologaster Troglichthys Speoplatyrhinus(i) (ii) (iii) (b)(a) (i) (ii) (iii) Figure 1. (a) The phylogenetic relationships of the two obligate cave species (white) (i) Typhlichthys and (ii) Amblyopsis and one surface species (black) (iii) Forbesichthys. (b) Cell density counts for the three species show fewer hair cells in the cavefishes (*F2,23 ¼ 15.3, p ¼ 0.0007). Inserts show photomicrograms of the ears stained with phalloidin. Scale bar, 100 mm. (Online version in colour.) rsbl.royalsocietypublishing.org Biol Lett 9:
  • 9. 20130104 2 on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from Here, we show the first report of differences in hearing characteristics in a cavefish compared with its surface rela- tive. We compared the auditory evoked potentials (AEPs) of three species in the family Amblyopsidae, as well as the acoustic profiles of their subterranean habitats in order to investigate whether a relationship exists between noise in cave habitats and cavefish hearing. Amblyopsid caveshes are a model system for studying the ecological and evolution- ary processes of cave adaptation because the cave-restricted species in the family represent a range of troglomorphy that reflects variable durations of isolation in caves [6]. Cave amblyopsids are one of the most comprehensively studied caveshes, with six genera and eight species [7]. In this study, we examine the hearing characteristics of three related amblyopsids: the surface dwelling, Forbesichthys
  • 10. agassizii and two cave species, Typhlichthys subterraneus and Amblyopsis spelaea (figure 1a). 2. Material and methods All procedures followed IACUC guidelines dictated by the Uni- versity of Windsor. All data are available in http://datadryad. org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under scientific permits issued by the states of TN (no. 1605) and KY (no. SC1211135), USA. We collected nine individuals of Forbesichthys agassizii from a quiet pool (10 m2, mean depth 0.6 m, mud/silt substrate with abundant vegetation) of a spring run fed by Jarrell’s Spring, Coffee Co., TN, USA; seven individuals for each of the two cave-dwelling species: Amblyopsis spelaea from several quiet pools (20 – 150 m2, 0.2 – 2þ m depth, silt/sand/cobble substrate) in Under the Road Cave, Breckin- ridge Co., KY, USA and Typhlichthys subterraneus from several pools with some current (4 – 12 m2, 0.1 – 0.8 m depth, 0 – 0.6 ms21 (low flow), cobble/bedrock substrate) in L&N Railroad Cave, Barren Co., KY, USA. (a) Auditory evoked potentials This method measures the compound electrical potential created by the eighth cranial nerve and auditory brainstem nuclei in response to sound [9,10]. We restrained submerged fish and
  • 11. played 10 msec tones, ranging from 0.1 to 2 kHz at 0.1 Hz inter- vals. We increased the sound level in 5 dB intervals until a stereotypical evoked potential waveform was detected (figure 2, insert). We determined auditory threshold to be the lowest inten- sity for which AEP traces were detected [11]. Sound output was measured with a hydrophone (model LC-10, Reson Inc; Calibration sensitivity of 2208.9 dB re 1V uPa21, 0 – 100 kHz) and an accelerometer (model 4524 cubic triaxial deltatron, Brüel & Kjær). We calibrated sound level and particle accelera- tion at the beginning of each trial. Thresholds were compared between species and frequencies with a two-way ANOVA. (b) Hair cell histology Fish were euthanized with an overdose of 2-phenoxy-ethanol and fixed in 4 per cent paraformaldehyde. Epithelia were dis- sected and stained with Oregon Green phalloidin (Invitrogen) followed by fluorescent imaging. Hair cells were manually counted across eight different regions of saccular epithelia and quantified as density (hair cells/2500 mm2) to correct for differ-
  • 12. ences in epithelium size. There were no apparent differences in fluorescent intensity sufficient to affect manual counts. Within species, there were no significant density differences between epithelial areas (ANOVA F7,40 ¼ 0.437, p ¼ 0.873), so the density estimates were averaged across epithelial areas. ANOVA was http://datadryad.org http://datadryad.org http://datadryad.org http://dx.doi.org/10.5061/dryad.9sj49 http://rsbl.royalsocietypublishing.org/ frequency (Hz) 0 0 20 40 60 80 100 th re
  • 13. sh ol d (d B ) 120 140 160 500 1000 1500 2000 Forbesichthys Forbesichthys environment Amblyopsis Amblyopsis Typhlichthys Typhlichthys 5 mS 10 mV 2500 3000
  • 14. Figure 2. Auditory thresholds of amblyopsid fishes. Values are means+standard errors. The suface fish Forbesichthys reaches up to 2 kHz while the cavefish Typhlichthys (1) and Amblyopsis (2) are limited to 1 kHz. Fast Fourier Transformation (FFT) of sound recorded in a Drowned Rat Cave pool. The pool was carved in bedrock by a small stream. The recording was made 0.5 m deep and approximately 1 m from the waterfall. The ceiling of the cave was also dripping onto the pool. Insert: auditory evoked potential traces of all species to a 400 Hz tone burst at 60 dB. rsbl.royalsocietypublishing.org Biol Lett 9: 20130104 3 on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from used to assess differences in hair cell density, followed by a Tukey post-hoc test. (c) Environmental sound profiles We characterized aquatic environmental sound profiles in cave and surface habitats, using a hydrophone (type 10CT hydro- phone, calibration sensitivity of 2195 dB re. 1 V mPa21;+3 dB, 0.02 – 10 kHz, omnidirectional, G.R.A.S., Denmark) connected
  • 15. through a preamplifier (Spikerbox, Backyard Brains) to an iPad (Apple). Three recordings of 5 min were taken per site. Within caves, we obtained sound profiles from two habitat types: shal- low stream riffles at depths of 0.05 – 0.1 m and pools with no current at depths of 0.1 – 2 m. We also recorded at the same depths in surface streams and pools inhabited by Forbesichthys. Characterization of sound spectra and corresponding SPLs was performed using AUDIOTOOLS software (Studio Six Digital). We matched cave and surface habitats profiles as much as possi- ble (e.g. area, substrate and water flow), with the exception of vegetation in surface habitats. 3. Results Density of saccular hair cells differed between species (F2,6 ¼ 15.3, p ¼ 0.0007), with the two cave species having lower hair cell densities (mean ¼ 34 and 29 hair cells/ 2500 mm2) than the surface species (mean ¼ 45 hair cells/ 2500 mm2; figure 1). There was no difference in threshold between species below 800 Hz (F2,15 ¼ 1.087, p ¼ 0.342; figure 2), and thresholds increased with frequency (F11,15 ¼ 25.9, p , 0.001) with no significant frequency – species interaction (F15,95 ¼ 47.9, p ¼ 0.702). All three amblyopsid species were
  • 16. most sensitive at 100 Hz (mean threshold range 112 – 122 dB re 1 mPa), and thresholds increased between 100 and 800 Hz. In the two cave species, only one Typhlichthys responded to tones 700 – 1000 Hz and just two Amblyopsis responded to tone bursts above 600 Hz, with only one responding at 1000 Hz. The surface species showed clear evoked responses well above this limit, with defined responses detected up to 2000 Hz. Underwater sounds were variable depending on habitat. In cave streams with rock and sand substrate, there was a peak in background noise at about 1000 Hz followed by peaks at low frequencies (below 200 Hz; figure 2). Overall sound intensity was less prominent between 200 and 5000 Hz in pool habitats away from the small streams. Nonetheless, the same general profile was present but with a smaller, less defined 1000 Hz peak. Surface streams showed low-frequency noise (less than 100 Hz) and high-frequency noise (more than 8000 Hz) with a small peak at 1200 Hz, but the overall noise level was much higher at intermediate frequencies (1000 – 3000 Hz) in the cave streams than surface streams. 4. Discussion Adaptation to cave environments is often associated with
  • 17. hypertrophy of non-visual sensory modalities. Cave ambly- opsids exhibited similar hearing sensitivities as their surface- dwelling relative at 800 Hz and below, consistent with previous findings in other cavefishes [5,6]. Surprisingly how- ever, cave amblyopsids have lost a significant portion of their hearing range. Both Amblyopsis and Typhlichthys are unable to hear frequencies above 800 Hz, unlike their surface relative Forbesichthys, which can hear up to 2 kHz. In addition, both cave species had lower hair cell densities than Forbesichthys. To our knowledge, this is the first report of auditory regression in a subterranean organism. http://rsbl.royalsocietypublishing.org/ rsbl.royalsocietypublishing.org Biol Lett 9: 20130104 4 on May 28, 2013rsbl.royalsocietypublishing.orgDownloaded from Like the loss of eyes, loss of hearing range in cave amb-
  • 18. lyopsids represents an example of regressive evolution in subterranean organisms. Audio recordings from native cave habitats of cave amblyopsids showed that flowing streams (riffles) and water droplets dripping from the ceiling of cave passages contribute to loud high-frequency background noise generally above 800 Hz (figure 2), although the precise contribution of all noise sources have not been characterized. Lower frequencies are not likely to propagate far in these shallow environments [12] but the higher frequency com- ponents would propagate further and contribute to the more to the high background noise levels of the caves. The apparent match between hearing ability and background noise profiles has been hypothesized to be an evolutionary driver of hearing ability across the Teleostei [13], and the hearing of two species of goby (Padogobius martensii and Gobius nigricans) living in noisy waterfall environments is most sensitive in a frequency range corresponding to a quiet window in these environments [14]. Noisy stream environments mask high-frequency hearing
  • 19. in ostariophysan fishes [15] but hearing specializations of clo- sely related species in different acoustic environments have rarely been tested. Our findings raise the intriguing possibility that cave amblyopsids may have lost hearing at high frequen- cies in response to the noisy acoustic environments in which they live. The reduction in hair cell density indicates peripheral involvement in high-frequency hearing loss. Fewer hair cells pro- vide fewer sites for signal transduction and also may lead to less relative stimulation upon relative motion of the otolith. Poulson [9] reports an increase in otolith size with increasing cave adaptation in this group and suggests it may be due to different equilibrium demands. If the sensory epithelium is growing in pace with the otolith without concomitant increase in hair cells, a decrease in hair cell density would result. If, however, the loss of high-frequency hearing ability in cave species was due to selective loss of high-frequency hair cells, this could also lead to a decrease in overall hair cell density. There is no
  • 20. evidence for tonotopy in fish ears, but there is some evidence for differential frequency selectivity in hair cells across the epithelia [15]. More work needs to be done on frequency responses at the level of individual hair cells before this idea can be supported. Our study provides evidence that two cavefish species have evolved loss of high-frequency hearing and reduced hair cell densities compared with a surface-dwelling relative. These traits may have evolved in response to loud high- frequency background noise that mask acoustic signals in their aquatic subterranean habitats; however, the mechanism (i.e. neutral loss versus selection) underlying hearing loss remain to be understood. All procedures followed IACUC guidelines dictated by the Univer- sity of Windsor. All data are available in http://datadryad.org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under scien- tific permits issued by the states of TN (no. 1605) and KY (no. SC1211135), USA. We thank Daniel Escobar Camacho for help and Dr Gal Haspel
  • 21. and Dr Kim Hoke for comments. This work was supported by the Yale Institute of Biospheric Studies (M.L.N.) and by ADVANCE grant no. 1008117 to D.S. References 1. Jeffery W. 2001 Cavefish as a model system in evolutionary developmental biology. Dev. Biol. 231, 1 – 12. (doi:10.1006/dbio.2000.0121) 2. Culver D, Pipan T. 2009 The biology of caves and other subterranean habitats. Oxford, UK: Oxford University Press. 3. Fay RR, Popper AN. 2012 Fish hearing: new perspectives from two ‘senior’ bioacousticians. Brain Behav. Evol. 79, 215 – 217. (doi:10.1159/ 000338719) 4. Popper AN. 1970 Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim. Behav. 18, 552 – 562. (doi:10.1016/0003-3472(70)90052-7) 5. Schulz-Mirbach T, Ladich F, Riesch R, Plath M. 2010 Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae). Hear. Res. 267, 137 – 148. (doi:10.1016/j.heares.2010.04.001) 6. Poulson TL. 1963 Cave adaptation in amblyopsid fishes. Am. Midland Nat. 70, 257 – 290. (doi:10. 2307/2423056) 7. Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L, Near TJ. 2013 Evidence for repeated loss of selective
  • 22. constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 67, 732 – 748. (doi:10.1111/j.1558-5646.2012.01822.x) 8. Niemiller ML, Higgs DM, Soares D. 2013 Data from: evidence for hearing loss in amblyopsid cavefishes. Dryad Digital Respository. (doi:10.5061/dryad.9sj49) 9. Corwin JT, Bullock TH, Schweitzer J. 1982 The auditory brain stem response in five vertebrate classes. Electroencephalogr. Clin. Neurophysiol. 54, 629 – 641. (doi:10.1016/0013-4694(82)90117-1) 10. Kenyon TN, Ladich F, Yan HY. 1998 A comparative study of hearing ability in fishes: the auditory brainstem response approach. J. Comp. Physiol. A 182, 307 – 318. (doi:10.1007/s003590050181) 11. Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN. 2001 Ultrasound detection by clupeiform fishes. J. Acoust. Soc. Am. 109, 3048 – 3054. (doi:10.1121/1.1368406) 12. Fine ML, Lenhardt ML. 1983 Shallow-water propagation of the toadfish mating call. Comp. Biochem. Physiol. A. 76, 225 – 231. (doi:10.1016/ 0300-9629(83)90319-5) 13. Popper AN, Fay RR. 1997 Evolution of the ear and hearing: issues and questions. Brain Behav. Evol. 50, 213 – 221. (doi:10.1159/000113335) 14. Lugli M, Yan HY, Fine ML. 2003 Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum. J. Comp. Physiol. A. 189, 309 – 320.
  • 23. 15. Amoser S, Ladich F. 2005 Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? J. Exp. Biol. 208, 3533 – 3542. (doi:10.1242/jeb.01809) http://datadryad.org http://datadryad.org http://dx.doi.org/10.5061/dryad.9sj49 http://dx.doi.org/10.1006/dbio.2000.0121 http://dx.doi.org/10.1159/000338719 http://dx.doi.org/10.1159/000338719 http://dx.doi.org/10.1016/0003-3472(70)90052-7 http://dx.doi.org/10.1016/j.heares.2010.04.001 http://dx.doi.org/10.2307/2423056 http://dx.doi.org/10.2307/2423056 http://dx.doi.org/10.1111/j.1558-5646.2012.01822.x http://dx.doi.org/10.5061/dryad.9sj49 http://dx.doi.org/10.1016/0013-4694(82)90117-1 http://dx.doi.org/10.1007/s003590050181 http://dx.doi.org/10.1121/1.1368406 http://dx.doi.org/10.1016/0300-9629(83)90319-5 http://dx.doi.org/10.1016/0300-9629(83)90319-5 http://dx.doi.org/10.1159/000113335 http://dx.doi.org/10.1242/jeb.01809 http://rsbl.royalsocietypublishing.org/Evidence for hearing loss in amblyopsid cavefishesIntroductionMaterial and methodsAuditory evoked potentialsHair cell histologyEnvironmental sound profilesResultsDiscussionAll procedures followed IACUC guidelines dictated by the University of Windsor. All data are available in http://datadryad.org under doi:10.5061/dryad.9sj49 [8]. Fishes were collected under scientific permits issued by the states of TN (no. 1605) and KY (no. SC1211135), USA.We thank Daniel Escobar Camacho for help and Dr Gal Haspel and Dr Kim Hoke for comments. This work was supported by the Yale Institute of
  • 24. Biospheric Studies (M.L.N.) and by ADVANCE grant no. 1008117 to D.S.References