Distance and
Midpoint Formula
A B
The distance from point A
to point B
is 4 units.
Count spaces
not lines.
E
D
The distance from point D
to point E
can be found
with
a2 + b2 = c2 3 c
4
32 + 42 = c2
5 = c
5
You can also use the
distance
formula.
(-3,2)
(1,-1)
Use ordered
pairs.
E
D
The distance between
two points (x1,y1) and
(x2,y2) is
d = x2 - x1
( )
2
+ y2 - y1
( )
2
y1
y2
x1 x2
(x1,y1)
(x2,y2)
lx2-x1l
ly2-y1l
a2
b2
d
c2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
a 2 + b2
c = √
Distance formula is based
on Pythagorean Theorem.
Find distance between
(-3,2) and ( 1, -1 )
(x1, y1) (x2, y2)
_______________
d = √( 1++3)2 + ( - 1- 2 )2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
1 -3 -1 2
Find distance between
(-3,2) and ( 1, -1 )
d = √( 1++ 3)2 + ( - 1-2 )2
d = √( 4 )2 + ( - 3 )2
d = √ 16 + 9
d = √25
Find distance between
(5, 1) and ( 2, -6 )
(x1, y1) (x2, y2)
d = x2 - x1
( )
2
+ y2 - y1
( )
2
( 2 - 5)2 + ( -6 - 1 )2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
( 2 - 5)2 + ( -6 - 1 )2
d =√
d =√
d =√
(- 3) 2 + ( - 7 )2
9 + 49
58 = 7.6
careful !
this is not
- 32
A B
The distance from point A
to point B
is 4 units.
The
MIDPOINT
is 1/2 way.
For any 2 points (x1, y1)
and (x2, y2) the midpoint is
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
(x1,y1)
(x2,y2)
Find midpoint
(7, 2) and ( -3, 6 )
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
(x1, y1) (x2, y2)
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
-3 + 7 , 6 + 2
2 2
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
4 , 8
2 2 ( 2, 4)
(7, 2) and ( -3, 6 )
Segment AB, has one
endpoint A (-1,5). The
midpoint is C( 7,3). Find the
other endpoint B.
A
C B
Endpoint A (-1,5). (x1,y1)
Midpoint C( 7,3). Find endpoint B.
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷ = (7,3)
x1 + x2
2
= 7
y1 + y2
2
= 3
-1 5
x2= 15 y2= 1
(15,1)
What kind of triangle is this?
Find the lengths of the sides.
A B
C
3 = sides is
equilateral.
2 = sides is
isosceles.
no = sides
scalene. d = x2 - x1
( )
2
+ y2 - y1
( )
2
The pessimist sees difficulty
in every opportunity.
The optimist sees
the opportunity in
every difficulty.

1-3-Mdpt--Distance.ppt

  • 1.
  • 2.
    A B The distancefrom point A to point B is 4 units. Count spaces not lines.
  • 3.
    E D The distance frompoint D to point E can be found with a2 + b2 = c2 3 c 4 32 + 42 = c2 5 = c 5
  • 4.
    You can alsouse the distance formula. (-3,2) (1,-1) Use ordered pairs. E D
  • 5.
    The distance between twopoints (x1,y1) and (x2,y2) is d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2
  • 6.
  • 7.
    d = x2- x1 ( ) 2 + y2 - y1 ( ) 2 a 2 + b2 c = √ Distance formula is based on Pythagorean Theorem.
  • 8.
    Find distance between (-3,2)and ( 1, -1 ) (x1, y1) (x2, y2) _______________ d = √( 1++3)2 + ( - 1- 2 )2 d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 1 -3 -1 2
  • 9.
    Find distance between (-3,2)and ( 1, -1 ) d = √( 1++ 3)2 + ( - 1-2 )2 d = √( 4 )2 + ( - 3 )2 d = √ 16 + 9 d = √25
  • 10.
    Find distance between (5,1) and ( 2, -6 ) (x1, y1) (x2, y2) d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 ( 2 - 5)2 + ( -6 - 1 )2 d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2
  • 11.
    d = x2- x1 ( ) 2 + y2 - y1 ( ) 2 d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 ( 2 - 5)2 + ( -6 - 1 )2 d =√ d =√ d =√ (- 3) 2 + ( - 7 )2 9 + 49 58 = 7.6 careful ! this is not - 32
  • 12.
    A B The distancefrom point A to point B is 4 units. The MIDPOINT is 1/2 way.
  • 13.
    For any 2points (x1, y1) and (x2, y2) the midpoint is x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ (x1,y1) (x2,y2)
  • 14.
    Find midpoint (7, 2)and ( -3, 6 ) x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ (x1, y1) (x2, y2)
  • 15.
    x1 + x2 2 , y1+ y2 2 æ è ç ö ø ÷ x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ -3 + 7 , 6 + 2 2 2 x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ 4 , 8 2 2 ( 2, 4) (7, 2) and ( -3, 6 )
  • 16.
    Segment AB, hasone endpoint A (-1,5). The midpoint is C( 7,3). Find the other endpoint B. A C B
  • 17.
    Endpoint A (-1,5).(x1,y1) Midpoint C( 7,3). Find endpoint B. x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ = (7,3) x1 + x2 2 = 7 y1 + y2 2 = 3 -1 5 x2= 15 y2= 1 (15,1)
  • 18.
    What kind oftriangle is this? Find the lengths of the sides. A B C 3 = sides is equilateral. 2 = sides is isosceles. no = sides scalene. d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2
  • 19.
    The pessimist seesdifficulty in every opportunity. The optimist sees the opportunity in every difficulty.