NUMBER SYSTEM
1
Dr. Ajay Nagne
Dr. Ajay Nagne
Table of Contents
 What is Number System?
 Types of Number System
 Number System Conversion
2
Dr. Ajay Nagne Dr. Ajay Nagne
What is Number System?
3
 A number system is defined as a system of writing
to express numbers.
 It is the mathematical notation for representing
numbers of a given set by using digits or other
symbols in a consistent manner.
 It provides a unique representation of every
number and represents the arithmetic and
algebraic structure of the figures.
 It also allows us to operate arithmetic operations
like addition, subtraction, Multiplication and
division.
Dr. Ajay Nagne Dr. Ajay Nagne
The value of any digit in a number
can be determined by:
4
The digit
Its position in the number
The base of the number system
Dr. Ajay Nagne Dr. Ajay Nagne
Types of Number System
5
 There are various types of number
system in mathematics. The four most
common number system types are:
Decimal number system (Base- 10)
Binary number system (Base- 2)
Octal number system (Base-8)
Hexadecimal number system (Base- 16)
Dr. Ajay Nagne Dr. Ajay Nagne
6
Dr. Ajay Nagne Dr. Ajay Nagne
Decimal Number System (Base 10
Number System)
7
 Decimal number system has base 10
because it uses ten digits from 0 to 9.
 In the decimal number system, the
positions successive to the left of the
decimal point represent units, tens,
hundreds, thousands and so on.
 This system is expressed in decimal
numbers.
Dr. Ajay Nagne Dr. Ajay Nagne
Decimal Number System (Base 10
Number System)
8
 Every position shows a particular
power of the base (10).
 For example, the decimal number 1457
consists of the digit 7 in the units
position, 5 in the tens place, 4 in the
hundreds position, and 1 in the
thousands place whose value can be
written as
Dr. Ajay Nagne Dr. Ajay Nagne
Decimal Number System (Base 10
Number System)
9
 ( 1 4 5 7 )10 =
= (1×103)
= (1×1000)
= 1000 + 400 + 50 + 7
= 1457
+ (4×102)+ (5×101)+ (7×100)
+ (4×100) + (7×1)
+ (5×10)
Dr. Ajay Nagne Dr. Ajay Nagne
1) Decimal to Binary No. system
10
 Most Significant Digit (MSD )
The Left Most digit having the Highest
weighted Value is Call as MSD.
 Least Significant Digit (LSD)
 The right Most digit having the Lowest
weighted Value is Call as LSD.
 Ex.
2 7 8 9
MSD LSD
Dr. Ajay Nagne Dr. Ajay Nagne
Binary Number System (Base 2
Number System)
11
 The base 2 number system is also known
as the Binary number system wherein,
only two binary digits exist, i.e., 0 and 1.
Specifically, the usual base-2 is a radix of
2.
 This system are known as binary numbers
which are the combination of 0 and 1.
 For example, 110101 is a binary number.
Dr. Ajay Nagne Dr. Ajay Nagne
Binary Number System
12
bit = 0 or 1
1 Byte = 8 bits
1 Kilobyte = 1024 Byte
1 Megabyte = 1024 Kb
1 Gigabyte= 1024 MB
1 Terabyte = 1024 GB
Dr. Ajay Nagne Dr. Ajay Nagne
13
MS
B
Binary Digit
LS
B
28 27 26 25 24 23 22 21 20
256
12
8
64 32 16 8 4 2 1
Dr. Ajay Nagne Dr. Ajay Nagne
Binary Number System
14
Ex.
10010
Dr. Ajay Nagne Dr. Ajay Nagne
Binary Number System
15
 Most Significant Bit (MSB )
The Left Most bit having the Highest
weighted Value is Call as MSB.
 Least Significant Bit (LSB)
 The right Most bit having the Lowest
weighted Value is Call as LSB.
 Ex.
10010
MSB LSB
Dr. Ajay Nagne Dr. Ajay Nagne
Octal Number System (Base 8
Number System)
16
 In the octal number system, the base is 8 and
it uses numbers from 0 to 7 to represent
numbers.
 Octal numbers are commonly used in
computer applications.
 Converting an octal number to decimal is the
same as decimal conversion and is explained
below using an example.
Dr. Ajay Nagne Dr. Ajay Nagne
Hexadecimal Number System
(Base 16 Number System)
17
 In the hexadecimal system, numbers are written
or represented with base 16.
 In the hex system, the numbers are first
represented just like in decimal system, i.e. from
0 to 9.
 Then, the numbers are represented using the
alphabets from A to F.
 The below-given table shows the representation
of numbers in the hexadecimal number system.
Dr. Ajay Nagne Dr. Ajay Nagne
Cont. . . . .
18
Hexa-
decima
l
0 1 2 3 4 5 6 7 8 9 A B C D E F
Decima
l
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dr. Ajay Nagne Dr. Ajay Nagne
19
Decimal Binary Octal Hexadecimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Dr. Ajay Nagne Dr. Ajay Nagne
20
Name Base Symbols Example
Decimal 10
0,1,2,3,4,5,6,7,
8,9
(279)10
Binary 2 0,1 10010
Octal 8 0,1,2,3,4,5,6,7 (157)8
Hexadecimal 16
0,1,2,3,4,5,6,7,
8,9,A,B,C,D,E,F
3DB
Dr. Ajay Nagne Dr. Ajay Nagne
21
Conversion from One
Number System to
Another Number system
Dr. Ajay Nagne Dr. Ajay Nagne
Decimal to Other Base System
22
1) Decimal to Binary No. system
2) Decimal to Octal No. system
3) Decimal to Hexadecimal No.
system
Dr. Ajay Nagne Dr. Ajay Nagne
1) Decimal to Binary No. system
23
 Most Significant Bit (MSD )
The Left Most digit having the Highest
weighted Value is Call as MSD.
 Least Significant Bit (LSD)
 The right Most digit having the Lowest
weighted Value is Call as LSD.
 Ex.
2 7 8 9
MSD LSD
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 1 (26) 𝟏𝟎 = ( ? )2
24
2 26 0
2 13 1
2 6 0
2 3 1
2 1 1
0
Ex. 1 (26) 𝟏𝟎 = ( 11010 )2
LSB
MSB
0100/-
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 2 (32) 𝟏𝟎 = ( 100000)2
25
2 32 0
2 16 0
2 8 0
2 4 0
2 2 0
2 1 1
0
LSB
MSB
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 3 (17) 𝟏𝟎 = ( 10001 )2
26
2 17 1
2 8 0
2 4 0
2 2 0
2 1 1
0
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 4 (42) 𝟏𝟎 = ( ? )2
27
 Ex. 5 (125)10 = ( )2
 Ex. 6 ( 82)10 = ( )2
 Ex. 7 ( 542)10 = ( )2
 Ex. 8 ( 689)10 = ( )2
 Ex. 9 ( 1245)10 = ( )2
 Ex. 10 ( 230)10 = ( )2
Dr. Ajay Nagne Dr. Ajay Nagne
2) Decimal to Octal No. system
28
Ex.
2 7 8 9
MSD LSD
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 1 (32) 𝟏𝟎 = (40)8
29
8 32 0
8 4 4
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 2 (50) 𝟏𝟎 = ( 62 )8
30
8 50 2
8 6 6
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 2 (50) 𝟏𝟎 = ( 26 )8
Ex. 3 (17) 𝟏𝟎 = ( 21 )8
31
8 17 1
8 2 2
0
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 3 (128) 𝟏𝟎 = (200)8
32
8 128 0
8 16 0
8 2 2
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 4 (42) 𝟏𝟎 = ( ? )8
33
 Ex. 5 (76)10 = (114 )8
 Ex. 6 ( 82)10 = (122 )8
 Ex. 7 ( 98)10 = ( 142 )8
 Ex. 8 ( 128)10 = ( 1200 )8 ( 200 )8
 Ex. 9 ( 245)10 = ( 365 )8
 Ex. 10 ( 1245)10 =( 2335 )8
Dr. Ajay Nagne Dr. Ajay Nagne
3) Decimal to Hexadecimal No.
system
34
Ex.
2 7 8 9
MSD LSD
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 1 (22) 𝟏𝟎 = ( 16)16
35
16 22 6
16 1 1
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 2 (40) 𝟏𝟎 = ( 29)16
36
16 41 9
16 2 2
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 3 (45) 𝟏𝟎 = ( 2D )16
37
16 45 13 D
16 2 2 2
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 4 (95) 𝟏𝟎 = ( 5F )16
38
16 95 15 F
16 5 5
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
Ex. 5 (142) 𝟏𝟎 = ( 8E)16
39
 Ex. 6 (125)10 = ( 7D )16
 Ex. 7 ( 82)10 = ( 52 )16
 Ex. 8 ( 542)10 = ( 21E )16
 Ex. 9 ( 689)10 = ( )16
 Ex. 10 ( 1245)10 = ( )16
 Ex. 11 ( 230)10 = ( )16
Dr. Ajay Nagne Dr. Ajay Nagne
Ex. 4 (95) 𝟏𝟎 = ( 5F )16
40
16 542 14 E
16 33 1 1
16 2 2 2
0
Dr. Ajay Nagne Dr. Ajay Nagne
LSD
MSD
41
Thank You . . . . . !
Dr. Ajay Nagne Dr. Ajay Nagne

1 -- Number System & Conversion from Decimal to Other Base Number System.pptx

  • 1.
    NUMBER SYSTEM 1 Dr. AjayNagne Dr. Ajay Nagne
  • 2.
    Table of Contents What is Number System?  Types of Number System  Number System Conversion 2 Dr. Ajay Nagne Dr. Ajay Nagne
  • 3.
    What is NumberSystem? 3  A number system is defined as a system of writing to express numbers.  It is the mathematical notation for representing numbers of a given set by using digits or other symbols in a consistent manner.  It provides a unique representation of every number and represents the arithmetic and algebraic structure of the figures.  It also allows us to operate arithmetic operations like addition, subtraction, Multiplication and division. Dr. Ajay Nagne Dr. Ajay Nagne
  • 4.
    The value ofany digit in a number can be determined by: 4 The digit Its position in the number The base of the number system Dr. Ajay Nagne Dr. Ajay Nagne
  • 5.
    Types of NumberSystem 5  There are various types of number system in mathematics. The four most common number system types are: Decimal number system (Base- 10) Binary number system (Base- 2) Octal number system (Base-8) Hexadecimal number system (Base- 16) Dr. Ajay Nagne Dr. Ajay Nagne
  • 6.
    6 Dr. Ajay NagneDr. Ajay Nagne
  • 7.
    Decimal Number System(Base 10 Number System) 7  Decimal number system has base 10 because it uses ten digits from 0 to 9.  In the decimal number system, the positions successive to the left of the decimal point represent units, tens, hundreds, thousands and so on.  This system is expressed in decimal numbers. Dr. Ajay Nagne Dr. Ajay Nagne
  • 8.
    Decimal Number System(Base 10 Number System) 8  Every position shows a particular power of the base (10).  For example, the decimal number 1457 consists of the digit 7 in the units position, 5 in the tens place, 4 in the hundreds position, and 1 in the thousands place whose value can be written as Dr. Ajay Nagne Dr. Ajay Nagne
  • 9.
    Decimal Number System(Base 10 Number System) 9  ( 1 4 5 7 )10 = = (1×103) = (1×1000) = 1000 + 400 + 50 + 7 = 1457 + (4×102)+ (5×101)+ (7×100) + (4×100) + (7×1) + (5×10) Dr. Ajay Nagne Dr. Ajay Nagne
  • 10.
    1) Decimal toBinary No. system 10  Most Significant Digit (MSD ) The Left Most digit having the Highest weighted Value is Call as MSD.  Least Significant Digit (LSD)  The right Most digit having the Lowest weighted Value is Call as LSD.  Ex. 2 7 8 9 MSD LSD Dr. Ajay Nagne Dr. Ajay Nagne
  • 11.
    Binary Number System(Base 2 Number System) 11  The base 2 number system is also known as the Binary number system wherein, only two binary digits exist, i.e., 0 and 1. Specifically, the usual base-2 is a radix of 2.  This system are known as binary numbers which are the combination of 0 and 1.  For example, 110101 is a binary number. Dr. Ajay Nagne Dr. Ajay Nagne
  • 12.
    Binary Number System 12 bit= 0 or 1 1 Byte = 8 bits 1 Kilobyte = 1024 Byte 1 Megabyte = 1024 Kb 1 Gigabyte= 1024 MB 1 Terabyte = 1024 GB Dr. Ajay Nagne Dr. Ajay Nagne
  • 13.
    13 MS B Binary Digit LS B 28 2726 25 24 23 22 21 20 256 12 8 64 32 16 8 4 2 1 Dr. Ajay Nagne Dr. Ajay Nagne
  • 14.
  • 15.
    Binary Number System 15 Most Significant Bit (MSB ) The Left Most bit having the Highest weighted Value is Call as MSB.  Least Significant Bit (LSB)  The right Most bit having the Lowest weighted Value is Call as LSB.  Ex. 10010 MSB LSB Dr. Ajay Nagne Dr. Ajay Nagne
  • 16.
    Octal Number System(Base 8 Number System) 16  In the octal number system, the base is 8 and it uses numbers from 0 to 7 to represent numbers.  Octal numbers are commonly used in computer applications.  Converting an octal number to decimal is the same as decimal conversion and is explained below using an example. Dr. Ajay Nagne Dr. Ajay Nagne
  • 17.
    Hexadecimal Number System (Base16 Number System) 17  In the hexadecimal system, numbers are written or represented with base 16.  In the hex system, the numbers are first represented just like in decimal system, i.e. from 0 to 9.  Then, the numbers are represented using the alphabets from A to F.  The below-given table shows the representation of numbers in the hexadecimal number system. Dr. Ajay Nagne Dr. Ajay Nagne
  • 18.
    Cont. . .. . 18 Hexa- decima l 0 1 2 3 4 5 6 7 8 9 A B C D E F Decima l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Dr. Ajay Nagne Dr. Ajay Nagne
  • 19.
    19 Decimal Binary OctalHexadecimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Dr. Ajay Nagne Dr. Ajay Nagne
  • 20.
    20 Name Base SymbolsExample Decimal 10 0,1,2,3,4,5,6,7, 8,9 (279)10 Binary 2 0,1 10010 Octal 8 0,1,2,3,4,5,6,7 (157)8 Hexadecimal 16 0,1,2,3,4,5,6,7, 8,9,A,B,C,D,E,F 3DB Dr. Ajay Nagne Dr. Ajay Nagne
  • 21.
    21 Conversion from One NumberSystem to Another Number system Dr. Ajay Nagne Dr. Ajay Nagne
  • 22.
    Decimal to OtherBase System 22 1) Decimal to Binary No. system 2) Decimal to Octal No. system 3) Decimal to Hexadecimal No. system Dr. Ajay Nagne Dr. Ajay Nagne
  • 23.
    1) Decimal toBinary No. system 23  Most Significant Bit (MSD ) The Left Most digit having the Highest weighted Value is Call as MSD.  Least Significant Bit (LSD)  The right Most digit having the Lowest weighted Value is Call as LSD.  Ex. 2 7 8 9 MSD LSD Dr. Ajay Nagne Dr. Ajay Nagne
  • 24.
    Ex. 1 (26)𝟏𝟎 = ( ? )2 24 2 26 0 2 13 1 2 6 0 2 3 1 2 1 1 0 Ex. 1 (26) 𝟏𝟎 = ( 11010 )2 LSB MSB 0100/- Dr. Ajay Nagne Dr. Ajay Nagne
  • 25.
    Ex. 2 (32)𝟏𝟎 = ( 100000)2 25 2 32 0 2 16 0 2 8 0 2 4 0 2 2 0 2 1 1 0 LSB MSB Dr. Ajay Nagne Dr. Ajay Nagne
  • 26.
    Ex. 3 (17)𝟏𝟎 = ( 10001 )2 26 2 17 1 2 8 0 2 4 0 2 2 0 2 1 1 0 Dr. Ajay Nagne Dr. Ajay Nagne
  • 27.
    Ex. 4 (42)𝟏𝟎 = ( ? )2 27  Ex. 5 (125)10 = ( )2  Ex. 6 ( 82)10 = ( )2  Ex. 7 ( 542)10 = ( )2  Ex. 8 ( 689)10 = ( )2  Ex. 9 ( 1245)10 = ( )2  Ex. 10 ( 230)10 = ( )2 Dr. Ajay Nagne Dr. Ajay Nagne
  • 28.
    2) Decimal toOctal No. system 28 Ex. 2 7 8 9 MSD LSD Dr. Ajay Nagne Dr. Ajay Nagne
  • 29.
    Ex. 1 (32)𝟏𝟎 = (40)8 29 8 32 0 8 4 4 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 30.
    Ex. 2 (50)𝟏𝟎 = ( 62 )8 30 8 50 2 8 6 6 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD Ex. 2 (50) 𝟏𝟎 = ( 26 )8
  • 31.
    Ex. 3 (17)𝟏𝟎 = ( 21 )8 31 8 17 1 8 2 2 0 Dr. Ajay Nagne Dr. Ajay Nagne
  • 32.
    Ex. 3 (128)𝟏𝟎 = (200)8 32 8 128 0 8 16 0 8 2 2 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 33.
    Ex. 4 (42)𝟏𝟎 = ( ? )8 33  Ex. 5 (76)10 = (114 )8  Ex. 6 ( 82)10 = (122 )8  Ex. 7 ( 98)10 = ( 142 )8  Ex. 8 ( 128)10 = ( 1200 )8 ( 200 )8  Ex. 9 ( 245)10 = ( 365 )8  Ex. 10 ( 1245)10 =( 2335 )8 Dr. Ajay Nagne Dr. Ajay Nagne
  • 34.
    3) Decimal toHexadecimal No. system 34 Ex. 2 7 8 9 MSD LSD Dr. Ajay Nagne Dr. Ajay Nagne
  • 35.
    Ex. 1 (22)𝟏𝟎 = ( 16)16 35 16 22 6 16 1 1 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 36.
    Ex. 2 (40)𝟏𝟎 = ( 29)16 36 16 41 9 16 2 2 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 37.
    Ex. 3 (45)𝟏𝟎 = ( 2D )16 37 16 45 13 D 16 2 2 2 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 38.
    Ex. 4 (95)𝟏𝟎 = ( 5F )16 38 16 95 15 F 16 5 5 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 39.
    Ex. 5 (142)𝟏𝟎 = ( 8E)16 39  Ex. 6 (125)10 = ( 7D )16  Ex. 7 ( 82)10 = ( 52 )16  Ex. 8 ( 542)10 = ( 21E )16  Ex. 9 ( 689)10 = ( )16  Ex. 10 ( 1245)10 = ( )16  Ex. 11 ( 230)10 = ( )16 Dr. Ajay Nagne Dr. Ajay Nagne
  • 40.
    Ex. 4 (95)𝟏𝟎 = ( 5F )16 40 16 542 14 E 16 33 1 1 16 2 2 2 0 Dr. Ajay Nagne Dr. Ajay Nagne LSD MSD
  • 41.
    41 Thank You .. . . . ! Dr. Ajay Nagne Dr. Ajay Nagne