Cinvestav
Guadalajara
Lecture 02: ComplexNetwork Metrics
Arturo Díaz Pérez
Centro de Investigación y de Estudios Avanzados del IPN
Unidad Guadaljara
adiaz@cinvestav.mx
2.
1. Complex Networks
2.Metrics
3. Degree and average degree
4. Small World
5. Hierarchy Metrics
6. Centrality Metrics
7. Metrics Correlation
Contenido
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 2
Are Complex NetworksRandom?
4
Meme diffusion related
to the 2011 Arab
Spring from the #Egypt
hashtag.
Credit: Indiana
University
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025
5.
Are Complex NetworksRandom?
Communities
Small-world Scale-free
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 5
6.
Redes Complejas
Definición Formalde Redes Complejas
Una red compleja 𝐺 = (𝑉, 𝐸) es un grafo con un
conjunto de vértices 𝑉 y un conjunto de aristas 𝐸
con:
• 𝑛 = |𝑉| y 𝑚 = 𝐸 en el orden de miles y millones.
• Bajo grado promedio: 𝑘 ≪ 𝑛.
• Baja densidad: 𝑑 ≪ 1.
• Longitud de caminos promedio baja (small-world):
𝐿 ≪ 𝑛
• Distribución libre de escala: 𝑃(𝑘)~𝑘−𝛼
.
• Promedio alto de coeficiente de clustering:
1
n
≪
𝐶𝐶 < 1.
Communities
Small-world Scale-free (Power Law)
Degree Distribution
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 6
Classification of ComplexNetwork Metrics
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 8
9.
• The representationof the essential properties of complex networks in a compact fashion. In
this way, it is possible to focus on a set of statistics of interest instead of trying to decipher the
structure of the whole graph.
• The differentiation among distinct classes of complex networks by measuring the set of
invariant statistical properties that characterize the members of a particular graph class.
• The design of structure-aware algorithms capable of determining the elements of the graph
that show a property of interest for a particular application domain.
Complex Network Metrics Applications
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 9
10.
Local, Global, andScaling Complex Network Metrics
• Much of the work in Network Science has been dedicated to the characterization of the
structure of graphs in terms of complex network metrics
Scaling of metrics
Avg.
Betweenness
Cent. with k
Cum. Degree
Dist. with k
Avg.
Neighbor
Conn. with k
Global metrics
Edges Assortativity
Coef.
Nodes
Max.
Degree
Diameter
Hierarchical
Degree
Local metrics
Local
Clustering
Betweenness
Cent.
Node
Degree
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 10
11.
Clustering
Betweenness
Degree Max. degreeShortest path
Assortativity Straightness
Deg. Scaling
Local metric:
average over all nodes
Global metric
Common Complex Network Metrics
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 11
• A small-worldnetwork is defined to be a network where the typical distance L between two
randomly chosen nodes (the number of steps required) grows proportionally to the logarithm
of the number of nodes in the network
Small-world Networks
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 18
19.
Small-world network example
Hubsare bigger than other nodes Average
degree= 3.833
Average shortest path length = 1.803
Clustering coefficient = 0.522
Random graph example
Average degree = 2.833
Average shortest path length = 2.109
Clustering coefficient = 0.167
Small-world vs. Random Networks
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 19
20.
Mundo Pequeño
Small-World Property
Lasredes tiene pocos caminos-cortos de
“longitud larga” y muchos caminos cortos
entre la mayoría de los pares de nodos,
usualmente creados por ”hubs”
High L, High C Low L, Low C
Low L, High C
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 20
Correlation Patterns ofCN Metrics
Research Question
How to methodologically obtain a set of non-
redundant complex network metrics on a
representative ensemble of complex
networks?
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 36
37.
02-ComplexNetworksMetrics
Análisis de Datos,Redes Complejas y Seguridad 2025
Autonomous System Networks
• An Autonomous System (AS) is a group of
hundreds or millions of host IP addresses that share
common routing policies.
• AS interact with each other through a massive
network of thousand of links to form an AS
Network (ASN).
• Internet measurement may be considered a big
data problem that involves topology
measurements and links discovery [Cho 2012].
• The topology of ASNs is far from being random and
presents properties that encode details about its
functional behavior.
Scale-free
Rich-club
Hierarchical
Disassortative
AS
AS
AS AS
AS
AS AS path
37
02-ComplexNetworksMetrics 37
38.
ASN Datasets
⧫ RV/RIPEDataset: It includes Border Gateway Protocol (BGP) AS-paths obtained from raw BGP table dumps from
two major publicly available collectors: Route Views (RV) and RIPE. RV/ RIPE ASN’s include large/small transit
providers, content/access/hosting providers and Enterprise networks AS’s; and focuses on the modeling of
customer-provider links. The dataset includes 51 ASN’s corresponding to the evolution of the Internet from
January 1998 to January 2010. The smallest ASN contains 3,247 nodes and 5,646 edges, while the largest one has
33,796 nodes and 94,394 edges.
⧫ CAIDA Dataset: It includes ASN’s derived from RV BGP table snapshots. The CAIDA dataset models customer-
provider, peer-to-peer, and sibling-to-sibling AS relationships. It is composed of 61 networks that include ASN’s
from January 2004 to November 2007. The smallest ASN has 8,020 nodes and 18,203 edges, while the largest
one has 26,389 nodes and 52,861 edges.
⧫ DIMES Dataset: Mid-level modeling of the Internet where each node represents a small AS or a Point of
Presence (PoP) of a large/medium size AS. The dataset was built by exploiting a distributed approach where a
large community of host nodes run lightweight measurement agents in background. The DIMES dataset is
composed of 60 networks that include ASN’s from January 2007 to April 2012. The smallest giant component has
16,029 nodes and 27,620 edges, while the largest one has 28,035 nodes and 108,373 edges.
⧫ INET3 Dataset: INET3 is an Internet topology generator that produces random networks that resemble the
topology of the Internet from November 1997 to Feb 2002, and beyond, according to raw BGP tables from The
National Laboratory for Applied Network Research (NLANR) and the RV project (University of Michigan, 2002).
For the INET3 dataset 51 ASN’s were generated with approximately the same number of vertices than the ASN’s
in the RV/RIPE dataset, and the default values were used for the model parameters. The number of edges is
decided by the generator. 02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 38
39.
Selection and normalizationof ASN metrics
• Procedure in [Bonouva and de Weck 2012] to make measurements independent
from network sizes.
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 39
Correlations on theRV-RIPE ASNs
• The three-vertex cluster represents metrics that express properties of the most central
vertex.
• Most of the metrics in the six-vertex cluster describe either density or shortest-path
properties of ASNs.
Correlation heat map (0 ≤ C ≤ 1) Correlation graph (0.9 ≤ C ≤ 1)
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 41
42.
1 Correlation graphs
CorrelationGraphs and Metrics Selection
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Correlation Analysis of Complex Network Metrics on the Topology of the Internet, CEWIT'13, Melville NY, 2013
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 42
43.
Metrics Selection Frequency
2Metrics selection frequency
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 43
44.
1
2
Validation of Non-redundantMetrics
Unsupervised learning
Supervised learning
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 44
45.
PCA visualization ofASN datasets with non-redundant metrics
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 45
46.
PCA visualization ofthe RV/RIPE dataset
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 46
47.
PCA visualization ofthe DIMES Dataset
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 47
48.
PCA visualization ofthe CAIDA Dataset
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 48
Further Reading
• Garcia-RobledoA., Diaz-Perez A., Morales-Luna A., Correlation Analysis of Complex Network
Metrics on the Topology of the Internet, CEWIT'13, Melville NY, 2013
• Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of
Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in
Advanced Methods for Complex Network Analysis, IGI Global, 2016
• Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of
complex networks: A survey of measurements. Advances in physics, 56(1), 167-242.
• Visit https://www.opte.org/the-internet
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 50
51.
Fin de laSesión 02
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 51