Cinvestav
Guadalajara
Lecture 02: Complex Network Metrics
Arturo Díaz Pérez
Centro de Investigación y de Estudios Avanzados del IPN
Unidad Guadaljara
adiaz@cinvestav.mx
1. Complex Networks
2. Metrics
3. Degree and average degree
4. Small World
5. Hierarchy Metrics
6. Centrality Metrics
7. Metrics Correlation
Contenido
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 2
3
Complex Networks
Are Complex Networks Random?
4
Meme diffusion related
to the 2011 Arab
Spring from the #Egypt
hashtag.
Credit: Indiana
University
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025
Are Complex Networks Random?
Communities
Small-world Scale-free
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 5
Redes Complejas
Definición Formal de Redes Complejas
Una red compleja 𝐺 = (𝑉, 𝐸) es un grafo con un
conjunto de vértices 𝑉 y un conjunto de aristas 𝐸
con:
• 𝑛 = |𝑉| y 𝑚 = 𝐸 en el orden de miles y millones.
• Bajo grado promedio: 𝑘 ≪ 𝑛.
• Baja densidad: 𝑑 ≪ 1.
• Longitud de caminos promedio baja (small-world):
𝐿 ≪ 𝑛
• Distribución libre de escala: 𝑃(𝑘)~𝑘−𝛼
.
• Promedio alto de coeficiente de clustering:
1
n
≪
𝐶𝐶 < 1.
Communities
Small-world Scale-free (Power Law)
Degree Distribution
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 6
7
Complex Network Metrics
Classification of Complex Network Metrics
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 8
• The representation of the essential properties of complex networks in a compact fashion. In
this way, it is possible to focus on a set of statistics of interest instead of trying to decipher the
structure of the whole graph.
• The differentiation among distinct classes of complex networks by measuring the set of
invariant statistical properties that characterize the members of a particular graph class.
• The design of structure-aware algorithms capable of determining the elements of the graph
that show a property of interest for a particular application domain.
Complex Network Metrics Applications
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 9
Local, Global, and Scaling Complex Network Metrics
• Much of the work in Network Science has been dedicated to the characterization of the
structure of graphs in terms of complex network metrics
Scaling of metrics
Avg.
Betweenness
Cent. with k
Cum. Degree
Dist. with k
Avg.
Neighbor
Conn. with k
Global metrics
Edges Assortativity
Coef.
Nodes
Max.
Degree
Diameter
Hierarchical
Degree
Local metrics
Local
Clustering
Betweenness
Cent.
Node
Degree
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 10
Clustering
Betweenness
Degree Max. degree Shortest path
Assortativity Straightness
Deg. Scaling
Local metric:
average over all nodes
Global metric
Common Complex Network Metrics
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 11
Degree and Average Degree
Degree and Average Degree
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 13
Density of a Network
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 14
Average Path Length of Networks
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 15
Local Clustering Coefficient of a Vertex
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 16
Small World Networks
• A small-world network is defined to be a network where the typical distance L between two
randomly chosen nodes (the number of steps required) grows proportionally to the logarithm
of the number of nodes in the network
Small-world Networks
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 18
Small-world network example
Hubs are bigger than other nodes Average
degree= 3.833
Average shortest path length = 1.803
Clustering coefficient = 0.522
Random graph example
Average degree = 2.833
Average shortest path length = 2.109
Clustering coefficient = 0.167
Small-world vs. Random Networks
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 19
Mundo Pequeño
Small-World Property
Las redes tiene pocos caminos-cortos de
“longitud larga” y muchos caminos cortos
entre la mayoría de los pares de nodos,
usualmente creados por ”hubs”
High L, High C Low L, Low C
Low L, High C
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 20
Complex Network Measurements
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 21
Hierarchy Metrics
Virtual Hierarchy in Complex Networks
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 23
Virtual Hierarchy of the Oregon AS Network
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 24
Hierarchical Coefficient at Distance l
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 25
Centrality Metrics
Betweenness Centrality
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 27
Central Point Dominance
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 28
Closeness Centrality
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 29
Centrality Metrics
A) Betweenness centrality
B) Closeness centrality
C) Eigenvector centrality
D) Degree centrality
F) Harmonic centrality
E) Katz centrality
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 30
Red Eléctrica
Red eléctrica de 4602 nodos
Comunidades
detectadas
50
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 31
Centralidad de Grados y de Intermediación
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 32
Centralidad de Cercanía y de Excentricidad
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 33
Centralidad de Intermediación de Aristas
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 34
Metrics Correlation Patterns
Correlation Patterns of CN Metrics
Research Question
How to methodologically obtain a set of non-
redundant complex network metrics on a
representative ensemble of complex
networks?
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 36
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025
Autonomous System Networks
• An Autonomous System (AS) is a group of
hundreds or millions of host IP addresses that share
common routing policies.
• AS interact with each other through a massive
network of thousand of links to form an AS
Network (ASN).
• Internet measurement may be considered a big
data problem that involves topology
measurements and links discovery [Cho 2012].
• The topology of ASNs is far from being random and
presents properties that encode details about its
functional behavior.
Scale-free
Rich-club
Hierarchical
Disassortative
AS
AS
AS AS
AS
AS AS path
37
02-ComplexNetworksMetrics 37
ASN Datasets
⧫ RV/RIPE Dataset: It includes Border Gateway Protocol (BGP) AS-paths obtained from raw BGP table dumps from
two major publicly available collectors: Route Views (RV) and RIPE. RV/ RIPE ASN’s include large/small transit
providers, content/access/hosting providers and Enterprise networks AS’s; and focuses on the modeling of
customer-provider links. The dataset includes 51 ASN’s corresponding to the evolution of the Internet from
January 1998 to January 2010. The smallest ASN contains 3,247 nodes and 5,646 edges, while the largest one has
33,796 nodes and 94,394 edges.
⧫ CAIDA Dataset: It includes ASN’s derived from RV BGP table snapshots. The CAIDA dataset models customer-
provider, peer-to-peer, and sibling-to-sibling AS relationships. It is composed of 61 networks that include ASN’s
from January 2004 to November 2007. The smallest ASN has 8,020 nodes and 18,203 edges, while the largest
one has 26,389 nodes and 52,861 edges.
⧫ DIMES Dataset: Mid-level modeling of the Internet where each node represents a small AS or a Point of
Presence (PoP) of a large/medium size AS. The dataset was built by exploiting a distributed approach where a
large community of host nodes run lightweight measurement agents in background. The DIMES dataset is
composed of 60 networks that include ASN’s from January 2007 to April 2012. The smallest giant component has
16,029 nodes and 27,620 edges, while the largest one has 28,035 nodes and 108,373 edges.
⧫ INET3 Dataset: INET3 is an Internet topology generator that produces random networks that resemble the
topology of the Internet from November 1997 to Feb 2002, and beyond, according to raw BGP tables from The
National Laboratory for Applied Network Research (NLANR) and the RV project (University of Michigan, 2002).
For the INET3 dataset 51 ASN’s were generated with approximately the same number of vertices than the ASN’s
in the RV/RIPE dataset, and the default values were used for the model parameters. The number of edges is
decided by the generator. 02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 38
Selection and normalization of ASN metrics
• Procedure in [Bonouva and de Weck 2012] to make measurements independent
from network sizes.
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 39
Pair-wise metric correlations
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 40
Correlations on the RV-RIPE ASNs
• The three-vertex cluster represents metrics that express properties of the most central
vertex.
• Most of the metrics in the six-vertex cluster describe either density or shortest-path
properties of ASNs.
Correlation heat map (0 ≤ C ≤ 1) Correlation graph (0.9 ≤ C ≤ 1)
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 41
1 Correlation graphs
Correlation Graphs and Metrics Selection
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Correlation Analysis of Complex Network Metrics on the Topology of the Internet, CEWIT'13, Melville NY, 2013
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 42
Metrics Selection Frequency
2 Metrics selection frequency
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 43
1
2
Validation of Non-redundant Metrics
Unsupervised learning
Supervised learning
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 44
PCA visualization of ASN datasets with non-redundant metrics
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 45
PCA visualization of the RV/RIPE dataset
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 46
PCA visualization of the DIMES Dataset
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 47
PCA visualization of the CAIDA Dataset
Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and
Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 48
Referencias
Further Reading
• Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Correlation Analysis of Complex Network
Metrics on the Topology of the Internet, CEWIT'13, Melville NY, 2013
• Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of
Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in
Advanced Methods for Complex Network Analysis, IGI Global, 2016
• Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of
complex networks: A survey of measurements. Advances in physics, 56(1), 167-242.
• Visit https://www.opte.org/the-internet
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 50
Fin de la Sesión 02
02-ComplexNetworksMetrics
Análisis de Datos, Redes Complejas y Seguridad 2025 51

02-CN&S2025-ComplexNetworkMetricsRedesComplejas.pdf

  • 1.
    Cinvestav Guadalajara Lecture 02: ComplexNetwork Metrics Arturo Díaz Pérez Centro de Investigación y de Estudios Avanzados del IPN Unidad Guadaljara adiaz@cinvestav.mx
  • 2.
    1. Complex Networks 2.Metrics 3. Degree and average degree 4. Small World 5. Hierarchy Metrics 6. Centrality Metrics 7. Metrics Correlation Contenido 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 2
  • 3.
  • 4.
    Are Complex NetworksRandom? 4 Meme diffusion related to the 2011 Arab Spring from the #Egypt hashtag. Credit: Indiana University 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025
  • 5.
    Are Complex NetworksRandom? Communities Small-world Scale-free 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 5
  • 6.
    Redes Complejas Definición Formalde Redes Complejas Una red compleja 𝐺 = (𝑉, 𝐸) es un grafo con un conjunto de vértices 𝑉 y un conjunto de aristas 𝐸 con: • 𝑛 = |𝑉| y 𝑚 = 𝐸 en el orden de miles y millones. • Bajo grado promedio: 𝑘 ≪ 𝑛. • Baja densidad: 𝑑 ≪ 1. • Longitud de caminos promedio baja (small-world): 𝐿 ≪ 𝑛 • Distribución libre de escala: 𝑃(𝑘)~𝑘−𝛼 . • Promedio alto de coeficiente de clustering: 1 n ≪ 𝐶𝐶 < 1. Communities Small-world Scale-free (Power Law) Degree Distribution 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 6
  • 7.
  • 8.
    Classification of ComplexNetwork Metrics 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 8
  • 9.
    • The representationof the essential properties of complex networks in a compact fashion. In this way, it is possible to focus on a set of statistics of interest instead of trying to decipher the structure of the whole graph. • The differentiation among distinct classes of complex networks by measuring the set of invariant statistical properties that characterize the members of a particular graph class. • The design of structure-aware algorithms capable of determining the elements of the graph that show a property of interest for a particular application domain. Complex Network Metrics Applications 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 9
  • 10.
    Local, Global, andScaling Complex Network Metrics • Much of the work in Network Science has been dedicated to the characterization of the structure of graphs in terms of complex network metrics Scaling of metrics Avg. Betweenness Cent. with k Cum. Degree Dist. with k Avg. Neighbor Conn. with k Global metrics Edges Assortativity Coef. Nodes Max. Degree Diameter Hierarchical Degree Local metrics Local Clustering Betweenness Cent. Node Degree 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 10
  • 11.
    Clustering Betweenness Degree Max. degreeShortest path Assortativity Straightness Deg. Scaling Local metric: average over all nodes Global metric Common Complex Network Metrics 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 11
  • 12.
  • 13.
    Degree and AverageDegree 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 13
  • 14.
    Density of aNetwork 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 14
  • 15.
    Average Path Lengthof Networks 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 15
  • 16.
    Local Clustering Coefficientof a Vertex 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 16
  • 17.
  • 18.
    • A small-worldnetwork is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes in the network Small-world Networks 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 18
  • 19.
    Small-world network example Hubsare bigger than other nodes Average degree= 3.833 Average shortest path length = 1.803 Clustering coefficient = 0.522 Random graph example Average degree = 2.833 Average shortest path length = 2.109 Clustering coefficient = 0.167 Small-world vs. Random Networks 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 19
  • 20.
    Mundo Pequeño Small-World Property Lasredes tiene pocos caminos-cortos de “longitud larga” y muchos caminos cortos entre la mayoría de los pares de nodos, usualmente creados por ”hubs” High L, High C Low L, Low C Low L, High C 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 20
  • 21.
    Complex Network Measurements 02-ComplexNetworksMetrics Análisisde Datos, Redes Complejas y Seguridad 2025 21
  • 22.
  • 23.
    Virtual Hierarchy inComplex Networks 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 23
  • 24.
    Virtual Hierarchy ofthe Oregon AS Network 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 24
  • 25.
    Hierarchical Coefficient atDistance l 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 25
  • 26.
  • 27.
    Betweenness Centrality 02-ComplexNetworksMetrics Análisis deDatos, Redes Complejas y Seguridad 2025 27
  • 28.
    Central Point Dominance 02-ComplexNetworksMetrics Análisisde Datos, Redes Complejas y Seguridad 2025 28
  • 29.
    Closeness Centrality 02-ComplexNetworksMetrics Análisis deDatos, Redes Complejas y Seguridad 2025 29
  • 30.
    Centrality Metrics A) Betweennesscentrality B) Closeness centrality C) Eigenvector centrality D) Degree centrality F) Harmonic centrality E) Katz centrality 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 30
  • 31.
    Red Eléctrica Red eléctricade 4602 nodos Comunidades detectadas 50 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 31
  • 32.
    Centralidad de Gradosy de Intermediación 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 32
  • 33.
    Centralidad de Cercaníay de Excentricidad 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 33
  • 34.
    Centralidad de Intermediaciónde Aristas 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 34
  • 35.
  • 36.
    Correlation Patterns ofCN Metrics Research Question How to methodologically obtain a set of non- redundant complex network metrics on a representative ensemble of complex networks? 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 36
  • 37.
    02-ComplexNetworksMetrics Análisis de Datos,Redes Complejas y Seguridad 2025 Autonomous System Networks • An Autonomous System (AS) is a group of hundreds or millions of host IP addresses that share common routing policies. • AS interact with each other through a massive network of thousand of links to form an AS Network (ASN). • Internet measurement may be considered a big data problem that involves topology measurements and links discovery [Cho 2012]. • The topology of ASNs is far from being random and presents properties that encode details about its functional behavior. Scale-free Rich-club Hierarchical Disassortative AS AS AS AS AS AS AS path 37 02-ComplexNetworksMetrics 37
  • 38.
    ASN Datasets ⧫ RV/RIPEDataset: It includes Border Gateway Protocol (BGP) AS-paths obtained from raw BGP table dumps from two major publicly available collectors: Route Views (RV) and RIPE. RV/ RIPE ASN’s include large/small transit providers, content/access/hosting providers and Enterprise networks AS’s; and focuses on the modeling of customer-provider links. The dataset includes 51 ASN’s corresponding to the evolution of the Internet from January 1998 to January 2010. The smallest ASN contains 3,247 nodes and 5,646 edges, while the largest one has 33,796 nodes and 94,394 edges. ⧫ CAIDA Dataset: It includes ASN’s derived from RV BGP table snapshots. The CAIDA dataset models customer- provider, peer-to-peer, and sibling-to-sibling AS relationships. It is composed of 61 networks that include ASN’s from January 2004 to November 2007. The smallest ASN has 8,020 nodes and 18,203 edges, while the largest one has 26,389 nodes and 52,861 edges. ⧫ DIMES Dataset: Mid-level modeling of the Internet where each node represents a small AS or a Point of Presence (PoP) of a large/medium size AS. The dataset was built by exploiting a distributed approach where a large community of host nodes run lightweight measurement agents in background. The DIMES dataset is composed of 60 networks that include ASN’s from January 2007 to April 2012. The smallest giant component has 16,029 nodes and 27,620 edges, while the largest one has 28,035 nodes and 108,373 edges. ⧫ INET3 Dataset: INET3 is an Internet topology generator that produces random networks that resemble the topology of the Internet from November 1997 to Feb 2002, and beyond, according to raw BGP tables from The National Laboratory for Applied Network Research (NLANR) and the RV project (University of Michigan, 2002). For the INET3 dataset 51 ASN’s were generated with approximately the same number of vertices than the ASN’s in the RV/RIPE dataset, and the default values were used for the model parameters. The number of edges is decided by the generator. 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 38
  • 39.
    Selection and normalizationof ASN metrics • Procedure in [Bonouva and de Weck 2012] to make measurements independent from network sizes. 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 39
  • 40.
    Pair-wise metric correlations 02-ComplexNetworksMetrics Análisisde Datos, Redes Complejas y Seguridad 2025 40
  • 41.
    Correlations on theRV-RIPE ASNs • The three-vertex cluster represents metrics that express properties of the most central vertex. • Most of the metrics in the six-vertex cluster describe either density or shortest-path properties of ASNs. Correlation heat map (0 ≤ C ≤ 1) Correlation graph (0.9 ≤ C ≤ 1) 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 41
  • 42.
    1 Correlation graphs CorrelationGraphs and Metrics Selection Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Correlation Analysis of Complex Network Metrics on the Topology of the Internet, CEWIT'13, Melville NY, 2013 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 42
  • 43.
    Metrics Selection Frequency 2Metrics selection frequency 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 43
  • 44.
    1 2 Validation of Non-redundantMetrics Unsupervised learning Supervised learning 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 44
  • 45.
    PCA visualization ofASN datasets with non-redundant metrics Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 45
  • 46.
    PCA visualization ofthe RV/RIPE dataset Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 46
  • 47.
    PCA visualization ofthe DIMES Dataset Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 47
  • 48.
    PCA visualization ofthe CAIDA Dataset Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 48
  • 49.
  • 50.
    Further Reading • Garcia-RobledoA., Diaz-Perez A., Morales-Luna A., Correlation Analysis of Complex Network Metrics on the Topology of the Internet, CEWIT'13, Melville NY, 2013 • Garcia-Robledo A., Diaz-Perez A., Morales-Luna A., Characterization and Coarsening of Autonomous System Networks: Measuring and Simplifying the Internet, Book chapter in Advanced Methods for Complex Network Analysis, IGI Global, 2016 • Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in physics, 56(1), 167-242. • Visit https://www.opte.org/the-internet 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 50
  • 51.
    Fin de laSesión 02 02-ComplexNetworksMetrics Análisis de Datos, Redes Complejas y Seguridad 2025 51