Marketics: Adapted Analytics for 
Marketing Applications 
Prof. dr. ir. Wouter Verbeke 
BaqMar – November 26th 2014
3-12-2014 pag. 2 
Who? 
• Professor of Business Informatics & Business Analytics 
– Faculty of Economic and Social Sciences and Solvay Business School, VU Brussels, Belgium 
– Associated with BUTO, MOBI, SMIT - iMinds 
– Business Analytics Team: 4 Ph.D. students 
• Research topics: 
– Business Analytics: focus on business user requirements 
• End use optimization: ROI, profit, … optimizing analytics 
• Comprehensibility 
• Justifiability 
• … 
– Application driven research 
• Credit risk management 
• Customer relationship management 
• Demand forecasting 
• Fraud detection 
• … 
– Network analytics
3-12-2014 pag. 3 
Observation #1
3-12-2014 pag. 4 
Observation #2
3-12-2014 pag. 5 
Marketing analytics 
Operations 
Data 
Decision 
making 
Evaluation
3-12-2014 pag. 6 
• Correct evaluation 
– Evaluation measure 
Verbeke W., Dejaeger K., Martens D., Hur J., Baesens B., New Insights into Churn Prediction in the Telco Sector: a Profit 
Driven Data Mining Approach, European Journal of Operations Research, 218 (1), pp. 211–229, 2012
Optimizing return of retention campaigns 
Churners 
3-12-2014 pag. 7 
• Customer churn and retention: 
dynamics within customer base 
New 
customers 
• Return of a retention campaign: 
Π=푁훼{훽훾(퐶퐿푉−푐−훿)+ 훽(1−훾)(−푐)+(1−훽)(−푐−훿)}−퐴 
Outflow 
Customer 
base 
(size N) 
True would-be 
churners 
(β) 
False would-be 
churners 
(1-β) 
Inflow 
Nα customers included in a 
retention campaign and 
offered an incentive (δ) 
All retained 
Fraction γ 
retained 
Fraction 1-γ not retained
• The term β represents the ability of the model to identify would-be 
3-12-2014 pag. 8 
churners, and 훽 = 훽0휆(훼): 
Π = 푁훼 [훾퐶퐿푉 + 훿(1 − 훾)]훽0휆(훼) − 훿 − 푐 − 퐴 
• The maximum profit measure is defined as: 
MP = max 
훼 
(П) 
• Managerial implications: 훼표푝푡푖푚푎푙 
• Benchmarking study: significant profit gains!
3-12-2014 pag. 9 
• Correct evaluation 
– Evaluation measure 
– Evaluate campaign effect: control groups
3-12-2014 pag. 10 
• Control groups: campaign measurement of model 
effectiveness 
Treatment Control 
Target 
group 
Non-target 
group 
Random 
target 
group 
Random 
non-target 
group 
Model 
Random 
Lo, V., The true lift model – a novel data mining approach to response modeling in database marketing
3-12-2014 pag. 11 
Operations 
Data 
Decision 
making 
Evaluation 
Evaluation 
data
3-12-2014 pag. 12 
• Netlift modeling: 
age usage trend gender targeted churn 
21 +5,2 M Yes Yes 
37 +0,1 F Yes No 
19 -3,2 U Yes No 
45 +4,2 F No Yes 
28 +2,1 M No No 
62 -2,3 F No No 
… … … … …
3-12-2014 pag. 13 
• P(churn|X) = f(age,usage trend, gender, targeted) 
– Future customers: targeted? 
Marc Thomas 
– P(churn|targeted = no) = 0,6 = 0,8 
– P(churn|targeted = yes) = 0,2 = 0,7 
– Net lift = 0,4 = 0,1 
• Balancing?
3-12-2014 pag. 14 
Data 
Decision 
making 
Evaluation 
Evaluation 
data 
Test beds 
Exp. data 
Operations 
Improved 
decision 
making
3-12-2014 pag. 15 
Go further
3-12-2014 pag. 16 
Go further
3-12-2014 pag. 17 
Go further 
• Objective function = evaluation criterion? 
– Cost-sensitive learning 
• At the class level: cost of misidentification 
• At the individual level 
– Customer lifetime value 
– Balancing
3-12-2014 pag. 18 
Go further 
Christakis, Nicholas; Fowler, James H. - Dynamic Spread of Happiness in a Large Social Network: Longitudinal Analysis Over 20 Years in the 
Framingham Heart Study (http://dash.harvard.edu/handle/1/3685822)
3-12-2014 pag. 19 
Social network analytics 
• Social network analysis for customer churn prediction 
– Featurization, propositionalization, … 
– Network analytics: 
• Predictive 
– Relational learning 
– Viral approaches 
– Graph based 
• Descriptive 
– Centrality measures 
– Link, node, degree distributions 
Verbeke W., Martens D., Baesens B., Social network analysis for customer churn prediction, Applied Soft Computing, 14, pp. 431-446, 2014
3-12-2014 pag. 20 
Social network effects?
8 7 2 3 
9 7 2 
4 3 2 
3 2 9 
3-12-2014 pag. 21 
Relational learning 
181806208300809 32462208699 206105300897975 357014032645640 I 32461002530 9 MOBISTAR MOBILE 99 21JAN2010:23:45:44 0 0 0 0 2 1 1 … 
195455641 32475611232 206102200262341 351913035725230 I 32476000005 10 Base SMSC Platform 99 21JAN2010:23:46:02 0 0 0 0 2 1 1 … 
187097451101277 32465245451 206101100499483 356712034636630 I 32473161616 8 Proximus SMSC Platform 99 21JAN2010:23:45:44 0 0 0 0 2 1 1 … 
Raw 
CDRs 
21 
8 9 4 3 
21 
3 
2 
3 3 
2 3 8 
9 8 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
A B C D E F G H I J 
Sparse 
connectivity 
matrix 
C 
A D 
E 
F B 
J 
H 
I 
G 
Weighted 
network 
8 
9 
4 
3 
2 
3 
3 
3 
2 2 
9 
8 
7
3-12-2014 pag. 22 
Findings 
• Predictive power? 
• Featurization? 
• Combine with traditional model?
3-12-2014 pag. 23 
Go further 
• Survival analysis 
• Survival analysis … 
… with netlift modeling 
Thomas 
Marc 
Loyalty 
Time 
Marketing 
campaign #1 
Loyalty 
Time 
Thomas 
Marc 
Marketing 
campaign #2
3-12-2014 pag. 24 
What did we learn today? 
• Checklist 
– Evaluation 
– Let’s test 
– Bring in the next steps 
– It’s the data, stupid! 
– Parallel models 
– Towards real-time customer tracking
3-12-2014 pag. 25 
Q&A 
Wouter.Verbeke@vub.ac.be 
@LinkedIn 
www.wverbeke.net

Wouter Verbeke - Marketics: Adapted Analytics for Marketing Applications

  • 1.
    Marketics: Adapted Analyticsfor Marketing Applications Prof. dr. ir. Wouter Verbeke BaqMar – November 26th 2014
  • 2.
    3-12-2014 pag. 2 Who? • Professor of Business Informatics & Business Analytics – Faculty of Economic and Social Sciences and Solvay Business School, VU Brussels, Belgium – Associated with BUTO, MOBI, SMIT - iMinds – Business Analytics Team: 4 Ph.D. students • Research topics: – Business Analytics: focus on business user requirements • End use optimization: ROI, profit, … optimizing analytics • Comprehensibility • Justifiability • … – Application driven research • Credit risk management • Customer relationship management • Demand forecasting • Fraud detection • … – Network analytics
  • 3.
    3-12-2014 pag. 3 Observation #1
  • 4.
    3-12-2014 pag. 4 Observation #2
  • 5.
    3-12-2014 pag. 5 Marketing analytics Operations Data Decision making Evaluation
  • 6.
    3-12-2014 pag. 6 • Correct evaluation – Evaluation measure Verbeke W., Dejaeger K., Martens D., Hur J., Baesens B., New Insights into Churn Prediction in the Telco Sector: a Profit Driven Data Mining Approach, European Journal of Operations Research, 218 (1), pp. 211–229, 2012
  • 7.
    Optimizing return ofretention campaigns Churners 3-12-2014 pag. 7 • Customer churn and retention: dynamics within customer base New customers • Return of a retention campaign: Π=푁훼{훽훾(퐶퐿푉−푐−훿)+ 훽(1−훾)(−푐)+(1−훽)(−푐−훿)}−퐴 Outflow Customer base (size N) True would-be churners (β) False would-be churners (1-β) Inflow Nα customers included in a retention campaign and offered an incentive (δ) All retained Fraction γ retained Fraction 1-γ not retained
  • 8.
    • The termβ represents the ability of the model to identify would-be 3-12-2014 pag. 8 churners, and 훽 = 훽0휆(훼): Π = 푁훼 [훾퐶퐿푉 + 훿(1 − 훾)]훽0휆(훼) − 훿 − 푐 − 퐴 • The maximum profit measure is defined as: MP = max 훼 (П) • Managerial implications: 훼표푝푡푖푚푎푙 • Benchmarking study: significant profit gains!
  • 9.
    3-12-2014 pag. 9 • Correct evaluation – Evaluation measure – Evaluate campaign effect: control groups
  • 10.
    3-12-2014 pag. 10 • Control groups: campaign measurement of model effectiveness Treatment Control Target group Non-target group Random target group Random non-target group Model Random Lo, V., The true lift model – a novel data mining approach to response modeling in database marketing
  • 11.
    3-12-2014 pag. 11 Operations Data Decision making Evaluation Evaluation data
  • 12.
    3-12-2014 pag. 12 • Netlift modeling: age usage trend gender targeted churn 21 +5,2 M Yes Yes 37 +0,1 F Yes No 19 -3,2 U Yes No 45 +4,2 F No Yes 28 +2,1 M No No 62 -2,3 F No No … … … … …
  • 13.
    3-12-2014 pag. 13 • P(churn|X) = f(age,usage trend, gender, targeted) – Future customers: targeted? Marc Thomas – P(churn|targeted = no) = 0,6 = 0,8 – P(churn|targeted = yes) = 0,2 = 0,7 – Net lift = 0,4 = 0,1 • Balancing?
  • 14.
    3-12-2014 pag. 14 Data Decision making Evaluation Evaluation data Test beds Exp. data Operations Improved decision making
  • 15.
    3-12-2014 pag. 15 Go further
  • 16.
    3-12-2014 pag. 16 Go further
  • 17.
    3-12-2014 pag. 17 Go further • Objective function = evaluation criterion? – Cost-sensitive learning • At the class level: cost of misidentification • At the individual level – Customer lifetime value – Balancing
  • 18.
    3-12-2014 pag. 18 Go further Christakis, Nicholas; Fowler, James H. - Dynamic Spread of Happiness in a Large Social Network: Longitudinal Analysis Over 20 Years in the Framingham Heart Study (http://dash.harvard.edu/handle/1/3685822)
  • 19.
    3-12-2014 pag. 19 Social network analytics • Social network analysis for customer churn prediction – Featurization, propositionalization, … – Network analytics: • Predictive – Relational learning – Viral approaches – Graph based • Descriptive – Centrality measures – Link, node, degree distributions Verbeke W., Martens D., Baesens B., Social network analysis for customer churn prediction, Applied Soft Computing, 14, pp. 431-446, 2014
  • 20.
    3-12-2014 pag. 20 Social network effects?
  • 21.
    8 7 23 9 7 2 4 3 2 3 2 9 3-12-2014 pag. 21 Relational learning 181806208300809 32462208699 206105300897975 357014032645640 I 32461002530 9 MOBISTAR MOBILE 99 21JAN2010:23:45:44 0 0 0 0 2 1 1 … 195455641 32475611232 206102200262341 351913035725230 I 32476000005 10 Base SMSC Platform 99 21JAN2010:23:46:02 0 0 0 0 2 1 1 … 187097451101277 32465245451 206101100499483 356712034636630 I 32473161616 8 Proximus SMSC Platform 99 21JAN2010:23:45:44 0 0 0 0 2 1 1 … Raw CDRs 21 8 9 4 3 21 3 2 3 3 2 3 8 9 8 A B C D E F G H I J A B C D E F G H I J Sparse connectivity matrix C A D E F B J H I G Weighted network 8 9 4 3 2 3 3 3 2 2 9 8 7
  • 22.
    3-12-2014 pag. 22 Findings • Predictive power? • Featurization? • Combine with traditional model?
  • 23.
    3-12-2014 pag. 23 Go further • Survival analysis • Survival analysis … … with netlift modeling Thomas Marc Loyalty Time Marketing campaign #1 Loyalty Time Thomas Marc Marketing campaign #2
  • 24.
    3-12-2014 pag. 24 What did we learn today? • Checklist – Evaluation – Let’s test – Bring in the next steps – It’s the data, stupid! – Parallel models – Towards real-time customer tracking
  • 25.
    3-12-2014 pag. 25 Q&A Wouter.Verbeke@vub.ac.be @LinkedIn www.wverbeke.net