SlideShare a Scribd company logo
1 of 30
Small Solar Thermal Power
                       Systems/ Pequeños Sistemas
                             para Centrales Solares
                                    Termoeléctricas

                                   Jornada de difusión técnica
                                     Madrid, 1 de julio de 2010


  UNION EUROPEA
FONDO SOCIAL EUROPEO
IMDEA Energía

• Mission:
    • To promote the development of renewable
      energies.
    • To promote the development of clean energy
      technologies having none or minimum
      environmental impact.

• Research topics:
     • Solar energy (high flux/high temperature).
     • Sustainable fuels: biofuels, wastes, hydrogen.
     • Energy storage.
     • Smart energy networks.
     • Efficient end-use of energy
     • CO2 valorisation
• 40 Researchers (18 PhD; 16
from foreign R&D Centers)
High Temperature Processes Unit

                                  Objectives
Development of efficient and cost-effective high temperature technologies
and applications with special emphasis on Concentrating Solar Power
Systems and production of Solar Fuels and Chemicals.


     R&D lines
 Modular concepts with minimum environmental
  impact
 Advanced thermal fluids for high temperature
  applications and energy storage
 Solar receivers and reactors
 Solar concentration optics
 High flux/high temperature characterization
  techniques and simulation tools
 Efficient integration schemes into power
  conversion systems
 Solar-driven high temperature production of H2
  /Chemicals
CSP in the world




     Source: Photon International (December 2009)
     - Spain: 831 MW grid-connected by December 2010 and
     permits assigned for 2,5 GW by 2013.
     -USA: Near- to medium-term CSP pipeline over 10 GW,
     with 4.5 GW to break ground by the end of 2010.
Concentrating Solar Power:

                Cost and Availability
                                                         • Future costs depend on many things
                                                            –   technology progress
                                                            –   production rates and continuity
           Initial SEGS Plants
                                                            –   political, economic, and financial issues
                                                            –   market needs and acceptance
                Larger SEGS Plants

                     O&M Cost Reduction at SEGS Plants




             Impact of 1-2¢ adder
                 for green power

        Conventional Technology
for Peaking or Intermediate Power
        (IEA market assumptions)
Limitations of first-generation CSP

Commercial projects use technologies of parabolic troughs with low
concentration in two dimensions and linear focus, or systems of
central tower and heliostat fields, operating with thermal fluids at
relatively modest temperatures, below 400 ºC .

The most immediate consequences of these conservative designs
are:
   the use of systems with efficiencies below 20% nominal in the
    conversion of direct solar radiation to electricity,
   the tight limitation in the use of efficient energy storage          Extresol 1 and 2 (ACS/Cobra)
    systems,
   the high water consumption and land extension due to the
    inefficiency of the integration with the power block,
   the lack of rational schemes for their integration in distributed
    generation architectures and
   the limitation to reach the temperatures needed for the
    generation processes following thermochemical routes of
    solar fuels like hydrogen.



                                                                        PS10 and PS20 (Abengoa Solar)
Impact of innovation on cost reduction


100
                                              Scaling up
                                              15%
90

80
                                              R+D
                                              60%
70

60
                                              Market
50                                            series
                                              25%
40


      2005    2010     2015      2020      2025   Year
Concentrating Solar Power:

                                  Applications and Features
                   Distributed Power                                       Dispatchable Power
•           distributed, on-grid (e.g., line support)                  •   utility peak and intermediate
•           stand-alone, off-grid (e.g., water                         •   high-value, green markets
            pumping, village electrification)




                     kW's to MW’s                                          10's to 100’s of MW's

    Dispatchability:
    l       hybridization with gas or liquid                hybrid gas combined         l   thermal storage for peaking,
            fuels for extended Stirling or                  cycle                           load following, or extended
            Brayton engine operation                    l   coal, fuel oil, or gas          operation
                                                            steam cycle

        Manufacturing:
        l   Relatively conventional technology (glass, steel, gears, heat engines, etc.) allows
            rapid manufacturing scale-up, low risk, conventional maintenance
Aprovechamiento Térmico de la Energía Solar de manera
Gestionable, Eficiente y Modular en Sistemas de Alta
Concentración
SOLGEMAC

                  TODAY
Conservative first-generation schemes




                                                         1500 ºC
                SOLGEMAC                                                                                                                                • Combustibles y química
                                                                                                                                                        • Ciclo Brayton
Efficiency (high-temperature/high-flux)                                                                                                                • Calentamiento aire

Dispatchability (storage/hybrid)                                                                                                  • Ciclo Brayton
                                                                                                                                   • Calentamiento aire
Modularity (small size)
Environmental impact (water)                                                                                      • Calentamiento aire
                                                                                                                                                      Receptores
                                                                                                                                                      cerámicos
Solar fuels                                                                                                                           Receptores Alta presión




                                                         1000 ºC
                                                                                                                                        cerámicos Alta temperatura Receptores
                                                                                                                                      Baja presión               Partículas sólidas
                                                                                                                                     Alta temperatura

                                           Temperatura
                                                                                                                      Motores Stirling
                                                                                                                       solarizados
                                                                        • Ciclo Brayton          Receptores                               • Disco Stirling
                                                                        • Precalentamiento aire metálicos aire
                                                         500 ºC




                                                                                   Receptores Receptores
                                                                                     Sodio Sales nitrosas
                                                                     Receptores                              • Calentamiento aire
                                                                     Agua/vapor                              • Ciclo Rankine
                                                                                                             • Calentamiento de vapor
                                                                                  • Ciclo Rankine
                                                                                  • Calentamiento de vapor
                                                                   Receptores
                                                                     Aceite                                         Actualidad
                                                                                • Calentamiento de vapor



                                                                       Conceptos tecnológicos ACTUALES                                  Conceptos tecnológicos AVANZADOS
SOLGEMAC
                                                      (Imdea Energía Coord.)

     MODULARITY                                         EFFICIENCY                                        DISPATCHABILITY
                                                                                                 A.3. ENERGY STORAGE FOR DISTRIBUTED
                                                A.2. SOLAR RECEIVERS/REACTORS FOR                GENERATION CONCENTRATING SOLAR SYSTEMS.
A.1. MODULAR CONCENTRATING                      HIGH FLUX/HIGH TEMPERATURES.
SYSTEMS                                                                                          A.3.1.Hydrogen production with thermochemical cycles
                                                A.2.1. Volumetric receivers with metallic        A.3.2. Hydrogen storage with MOF-type materiales.
A.1.1. Systemas dish/Stirling                   absorbers                                        A.3.3. Electrochemical storage
A.1.2. Multitower Modular Arrays                A.2.2. Volumetric receivers with ceramic         A.3.4. End-use of hydrogen in microturbines
A.1.3. Solarization of gas microturbines        absorbers
                                                A.2.3. Particle receivers
                                                A.2.4. Materials
                                                                                                 URJC (Coord.)
                                                                                                 CIEMAT-DQ
                                                CIEMAT-SSC (Coord.)                              CIEMAT-SSC
Imdea Energía (Coord.)
                                                Imdea Energía                                    Imdea Energía
INTA                                                                                             UAM
                                                URJC
CIEMAT-SSC                                      TORRESOL                                         INTA
TORRESOL                                        Hynergreen                                       Hynergreen



                                     A4. INTEGRATION                                 INTA (Coord.)
     INTEGRATION                     A.4.1. Comparison of technologies
                                     A.4.2. Integration schemes                      URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ,
                                     A.4.3. LCA and impact                           TORRESOL, Hynergreen
STEPS TO SCALING-UP SOLAR CSP & CSFC




1-5 kW
Solar Simulator
                                               30-50 kW
                                               Solar Furnace




1-100 MW                                     100-500 kW
Central Receiver System                      Mini-tower
Discos parabólicos


 Motor solar de Augustin
Mouchot en la exposición de       Discos-Stirling Eurodish en la
   Paris de 1861 Paris             Plataforma Solar de Almería
Discos Parabólicos con generador Stirling:

       Estado de la Tecnología

                          Varios diseños de disco y de
                           receptor han demostrado la alta
                           eficiencia necesaria para sistemas
                           comerciales
                          La durabilidad del receptor aún
                           necesita mejorarse
                          El coste del disco
                           colector/concentrador es crítico para
                           dar paso a las primeras
                           producciones comerciales.


                                                 STM
Solo


             Motores Stirling
              avanzados están
              mostrando altas eficiencias
              y durabilidades
Expectations for Cost Degression

                        225


                        200


                        175
Investment cost in k€




                        150


                        125                                                                             Transport, Assembly
                                                                                                        Concentrator
                                                                                                        Drives
                        100                                                                             Stirlingmotor
                                                                                                        Control
                        75                                                                              Turntable
                                                                                                        Foundation

                        50


                        25

                         0
                              Prototype   DISTAL 1   DISTAL 2   EuroDish    100/Year   1000/Year   3000/Year   10000/Year
                              Stuttgart     1991       1995     2000/2001
                                1989
Pequeños sistemas de receptor central

Pequeños campos con pequeños       Configuraciones multitorre
helióstatos




                                        Multitower arrays
Mini-campos con mini-helióstatos
              agrupados: Recordando al Prof. Francia


                                       • Planta construida en Italia y
                                         montada en los EEUU en el
                                         año 1977 en el Instituto
                                         Tecnológico    de    Georgia
                                         (Advanced Component Test
                                         Facility)
                                           •550 helióstatos
                                           •Potencia térmica 400 kW.
                                           •Campo octogonal y torre
                                           central (22,8 m)
                                           •Foco rectangular de 2,44
                                           m.
                                           •Espejos con seguimiento
                                           polar y tracking colectivo.

ACTF de Georgia
Sistemas modulares multitorre

Comparison of Solar Power Technologies with respect to Integration in the Urban
                                 Environment
                      P. Schramek, D.R. Mills and W. Lang
Advantages of the MIUS concept

• Origin: In 1972 by US HUD. Related to Total Energy Systems,
  Power Islands, District Heating, Energy Cascade and Cogeneration
• Distributed Utility structure for large residential, commercial or
  institutional building complexes.
• Typical size: 300-1,000 dwelling units
• Reduction of transmission and distribution costs
• Modular track of demand and spread construction costs over time
• Maximum utilization about 4,500 hours
• Use of single-cycle high efficiency gas turbines plus waste heat
  applications like district heating, cooling, desalination or water
  treatment
• Increment of solar share to 50 %
                                              •Find a niche of size (a few
                     The keys for             MWe)
                                            •Find modular small CRS design
                   CRS in MIUS
                                            •Competitive investment cost
                                            •Perform with high efficiencies
INTEGRATION OF CRS INTO MIUS STRUCTURE


                                                             Water
                                       7,965 GJ                              13,280 GJ
             Exhaust gases
                                                    Auxiliary boiler
                                                                             Fuel            Space heating

                             Water                                                            2,690 GJ
                                              14,690 GJ
                                                            Hot water
                                                                                               12,000 GJ
                            Steam             Wasted
                                              4,252 GJ                                   Domestic hot water
                         22,000 GJ
      Fuel            Hot gases                              Absorption
                                              11,023 GJ      chiller

                                                                                     Rejected heat
                                  5.50 GWhe                                          22,793 GWh
60,526 GJ

                                                          Compression
                                      0.21 GWhe           air-conditioning
Air

                                                                             Domestic and auxiliary
                                       5.29 GWhe                             electricity


         SOLAR TOWER

                              Example of a 450-unit apartment complex in Spain
MIUS Solar Tower:
                                                Application to a shopping center

                                                1400
- Stable demand
- 85 % during day-time                          1200
                                                                                                                       October
- High consumption at                                                                                                  November
  peak periods

                           Power Demand (kWe)
                                                1000                                                                   December
- Monthly differences                                                                                                  January
  between 800-1,300 kW                          800                                                                    February
                                                                                                                       March
- Demand increase
                                                                                                                       april
  between June and                              600                                                                    may
  October.
                                                                                                                       June
- Peaks in July and                             400                                                                    July
  Christmas                                                                                                            August
                                                                                                                       September
                                                200


Operation strategy:                               0
                                                       0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
- Night-time: Grid
                                                                               Solar Time (h)
- From 6:00 to 20:00 solar
  hybrid turbine in power island                         Demand from 6 to 20 h: 4,348 MWe and
  mode                                                   18,890 MWth
Proposal of a small-size tower plant


 Small tower and heliostats that reduce visual impact and
  achieve higher field efficiencies (up to 4% more than large
  area heliostats).
 Air as heat transfer media in a pressurized volumetric
  receiver (3.4 MWth outlet).
 Use of an efficient (39.5 %) small solar-gas turbine (1.36
  MWe) with intercooling, heat recuperation and low working
  temperature (860 ºC).
 Waste heat (670 kWth) at 198 ºC for water heating and
  space cooling/heating.
 Operation in a fuel-saver mode
 As in the case of dish system parks, the small tower fields
  for distributed power should target maximum unattended
  operation, to minimize O&M costs.
MIUS solar tower technical specifications
       Tower optical height (m)                             26
       Number heliostats                                   345
       Heliostat surface (m2)                             19.2
       Receiver surface (m2)                              16.5
       Receiver tilt angle (º)                              30
       Land (m2)                                        38,000
       Design point                             Power     Efficiency
       DNI (W/m2)                                875         ----
       Power onto mirrors area (MWt)              5.8       100 %
       Gross power onto receiver (MWt)            4.3        74 %
       Power to turbine (MWt)                     3.4        80 %
       Gross electric power (MWe)                 1.4        39 %
       Total efficiency                          ----        23 %
       Investment
       Heliostats                                         995,765 $
       Land                                                62,745 $
       Tower                                              104,575 $
       Receiver                                           484,750 $
       Inst.&Control                                      107,000 $
       Power block                                      1,146,000 $
       Fixed cost                                          65,350 $
       Direct capital cost                           2.97 M$
       Installed cost (including turbine set)      2,120 $/kW
Heron H1 Technical Specifications




Electrical power                       1,407 kWe
Thermal power                         1,200 kWth
Fuel consumption                        3,280 kW
Heat rate                           8,392 kJ/kWh
Electrical efficiency                      42.9 %
Thermal efficiency                         36.6 %
Total efficiency                           79.5 %
NOx emission                             <20 g/GJ
Theoretical solarization based on Turbine Heron H-1 and 10
                                        pressurized volumetric receivers

                                             1.0 bar
                                                                                                    1.0 bar
                                             198 ºC                                                 573 ºC
    Intercooler
                                 8.9 bar
                                 151 ºC                      Recuperator
                                                                                     8.9 bar
                 3.0 bar                                                             573 ºC
                 25 ºC                                                                              740 ºC
                                                  661 ºC    757 ºC

                                             R1        R2        R3                            R7        R8
3.0 bar
137 ºC                                                                          3.1 bar
                                                                                635 ºC
                                             R4        R5        R6                            R9       R10



                                                   HPC                                          LPC
                                                                      8.9 bar                                 3.1 bar
                                                                      860 ºC                                  860 ºC
          C1                C2                                                  C3                                      PT

                                    PR=3.0                           PR=2.7                                                  1.36 MWe
  PR=3.0
                 1.0 bar
                 15 ºC


               Air filter                                  Heatflow SOLAR R1-R6                       = 1.95 MW
                                                           Heatflow SOLAR R7-R10                      = 1.49 MW
          1.0 bar                                                          Total                      = 3.44 MW
          15 ºC        Air inlet
                       m=5.15 kg/s
MIUS Solar Tower: Application to a shopping center




Solar electricity production =    2,456 MWh
Fossil electricity production =   1,892 MWh
Solar electricity excess =          428 MWh
MIUS Solar Tower: Application to a shopping center




56 % power demand supplied    Few hours at loads of 20 %
by solar (683 toe)            during start-ups
                              Typical solar working load 75 %
MIUS Solar Tower: Application to a shopping center




 Solar is contributing to the waste heat produced with 4,374 GJ that
 represents 49.5% of the heat demand.
CONCLUSIONS


CSP is focusing its growth still on first generation
 large-fields
The solar field should be small and modular to account
 for the maximum flexibility in approaching real
 systems.
Up to 60% future cost reduction should come from
 R&D.
Solgemac     project    objectives   are    modularity,
 dispatchability and efficiency by high flux/high T.
A potential niche for the application of dish-engine
 systems and small solar towers to Modular Integrated
 Utility Systems has been identified.

More Related Content

What's hot

Energy saving audit project( mgtc)
Energy saving audit project( mgtc)Energy saving audit project( mgtc)
Energy saving audit project( mgtc)
moffaz
 
Atlanta smart grid presentatin 8 30 2011 r3
Atlanta smart grid presentatin 8 30 2011 r3Atlanta smart grid presentatin 8 30 2011 r3
Atlanta smart grid presentatin 8 30 2011 r3
Melanie Brandt
 
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
ICLEI Local Governments for Sustainability
 
A_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_TechnologyA_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_Technology
Mark Quinn
 
Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011
simon5678
 

What's hot (20)

D146248
D146248D146248
D146248
 
Concentrated Solar Power Course - Session 4 - Thermal Storage and Hybridization
Concentrated Solar Power Course - Session 4 - Thermal Storage and HybridizationConcentrated Solar Power Course - Session 4 - Thermal Storage and Hybridization
Concentrated Solar Power Course - Session 4 - Thermal Storage and Hybridization
 
Energy saving audit project( mgtc)
Energy saving audit project( mgtc)Energy saving audit project( mgtc)
Energy saving audit project( mgtc)
 
Romelectro general presentation
Romelectro general presentation Romelectro general presentation
Romelectro general presentation
 
Thermax solar cooling gunjan-rustagi
Thermax   solar cooling gunjan-rustagiThermax   solar cooling gunjan-rustagi
Thermax solar cooling gunjan-rustagi
 
Atlanta smart grid presentatin 8 30 2011 r3
Atlanta smart grid presentatin 8 30 2011 r3Atlanta smart grid presentatin 8 30 2011 r3
Atlanta smart grid presentatin 8 30 2011 r3
 
Tom Georgis | SolarReserve
Tom Georgis | SolarReserveTom Georgis | SolarReserve
Tom Georgis | SolarReserve
 
Design of an advanced integrated energy system based on micro gas turbines fo...
Design of an advanced integrated energy system based on micro gas turbines fo...Design of an advanced integrated energy system based on micro gas turbines fo...
Design of an advanced integrated energy system based on micro gas turbines fo...
 
Solar Thermal System Applications in UAE
Solar Thermal System Applications in UAESolar Thermal System Applications in UAE
Solar Thermal System Applications in UAE
 
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
 
Market opportunities for waste derived fuels and process heat
Market opportunities for waste derived fuels and process heatMarket opportunities for waste derived fuels and process heat
Market opportunities for waste derived fuels and process heat
 
Abb power generation solar presentacion ieee costa rica
Abb power generation   solar  presentacion ieee costa ricaAbb power generation   solar  presentacion ieee costa rica
Abb power generation solar presentacion ieee costa rica
 
Noether Associates--China Renewable Energy Resources
Noether Associates--China Renewable Energy ResourcesNoether Associates--China Renewable Energy Resources
Noether Associates--China Renewable Energy Resources
 
G.E.T. Smart - Smart Fuels: Farm Power Northwest Presentation
G.E.T. Smart - Smart Fuels: Farm Power Northwest PresentationG.E.T. Smart - Smart Fuels: Farm Power Northwest Presentation
G.E.T. Smart - Smart Fuels: Farm Power Northwest Presentation
 
21st Century Coal Power: Recent Developments in Coal Power Generation Technol...
21st Century Coal Power: Recent Developments in Coal Power Generation Technol...21st Century Coal Power: Recent Developments in Coal Power Generation Technol...
21st Century Coal Power: Recent Developments in Coal Power Generation Technol...
 
Impacts of Weather, Climate and Climate Change on the Electricity Sector
Impacts of Weather, Climate and Climate Change on the Electricity SectorImpacts of Weather, Climate and Climate Change on the Electricity Sector
Impacts of Weather, Climate and Climate Change on the Electricity Sector
 
A_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_TechnologyA_Brief_Presentation_of_Suberia_Technology
A_Brief_Presentation_of_Suberia_Technology
 
Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011Alan Pears - slides - price on carbon forum Aug 2011
Alan Pears - slides - price on carbon forum Aug 2011
 
Siliken Corporate Presentation
Siliken Corporate PresentationSiliken Corporate Presentation
Siliken Corporate Presentation
 
Photovoltaic Project
Photovoltaic ProjectPhotovoltaic Project
Photovoltaic Project
 

Similar to Small is beautiful

InterSolar Formal
InterSolar FormalInterSolar Formal
InterSolar Formal
Ivan Menjak
 
James R. Connell P.E. - October 13, 2011
James R. Connell P.E. - October 13, 2011James R. Connell P.E. - October 13, 2011
James R. Connell P.E. - October 13, 2011
p21decision
 
16th Elec Pwr Conf. 4-3-2014 SJ FINAL
16th Elec Pwr Conf. 4-3-2014 SJ FINAL16th Elec Pwr Conf. 4-3-2014 SJ FINAL
16th Elec Pwr Conf. 4-3-2014 SJ FINAL
Suresh Jambunathan
 
InterSolar informal 3a
InterSolar informal 3aInterSolar informal 3a
InterSolar informal 3a
Ivan Menjak
 

Similar to Small is beautiful (20)

Concerntatini solar plant ppt
Concerntatini solar plant pptConcerntatini solar plant ppt
Concerntatini solar plant ppt
 
InterSolar Formal
InterSolar FormalInterSolar Formal
InterSolar Formal
 
James R. Connell P.E. - October 13, 2011
James R. Connell P.E. - October 13, 2011James R. Connell P.E. - October 13, 2011
James R. Connell P.E. - October 13, 2011
 
Gould - Thermal Energy Storage
Gould - Thermal Energy StorageGould - Thermal Energy Storage
Gould - Thermal Energy Storage
 
16th Elec Pwr Conf. 4-3-2014 SJ FINAL
16th Elec Pwr Conf. 4-3-2014 SJ FINAL16th Elec Pwr Conf. 4-3-2014 SJ FINAL
16th Elec Pwr Conf. 4-3-2014 SJ FINAL
 
Concentrated Solar Power Course - Session 3 : Central Receiver and Parabolic ...
Concentrated Solar Power Course - Session 3 : Central Receiver and Parabolic ...Concentrated Solar Power Course - Session 3 : Central Receiver and Parabolic ...
Concentrated Solar Power Course - Session 3 : Central Receiver and Parabolic ...
 
Distributed generation &amp; power quality unit 5
Distributed generation &amp; power quality unit 5Distributed generation &amp; power quality unit 5
Distributed generation &amp; power quality unit 5
 
CLFR Thailand
CLFR ThailandCLFR Thailand
CLFR Thailand
 
Energy efficiency
Energy efficiencyEnergy efficiency
Energy efficiency
 
Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20
 
Invest in NI - Olive Hill - CBI NI Annual Energy Forum
Invest in NI - Olive Hill - CBI NI Annual Energy ForumInvest in NI - Olive Hill - CBI NI Annual Energy Forum
Invest in NI - Olive Hill - CBI NI Annual Energy Forum
 
Arik Ring Webinar 2012
Arik Ring Webinar 2012Arik Ring Webinar 2012
Arik Ring Webinar 2012
 
Planning & Operating Electricty Network with Renewable Generation-5
Planning & Operating Electricty Network with Renewable Generation-5Planning & Operating Electricty Network with Renewable Generation-5
Planning & Operating Electricty Network with Renewable Generation-5
 
DISTRIBUTED GENERATION & POWER QUALITY
DISTRIBUTED GENERATION & POWER QUALITY DISTRIBUTED GENERATION & POWER QUALITY
DISTRIBUTED GENERATION & POWER QUALITY
 
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
OVERVIEW OF COGENERATION OPPORTUNITIES IN NEPALESE SUGAR SECTOR
 
InterSolar informal 3a
InterSolar informal 3aInterSolar informal 3a
InterSolar informal 3a
 
EE494_SENIOR_DESIGN_PRESENTATION_2015_V3
EE494_SENIOR_DESIGN_PRESENTATION_2015_V3EE494_SENIOR_DESIGN_PRESENTATION_2015_V3
EE494_SENIOR_DESIGN_PRESENTATION_2015_V3
 
CLFR with Biomass 250 kW, Thailand
CLFR with Biomass 250 kW, ThailandCLFR with Biomass 250 kW, Thailand
CLFR with Biomass 250 kW, Thailand
 
+Frede-Blaabjerg-Introduction-to-renewables-systems.pdf
+Frede-Blaabjerg-Introduction-to-renewables-systems.pdf+Frede-Blaabjerg-Introduction-to-renewables-systems.pdf
+Frede-Blaabjerg-Introduction-to-renewables-systems.pdf
 
Energy Systems Optimization
Energy Systems OptimizationEnergy Systems Optimization
Energy Systems Optimization
 

More from EOI Escuela de Organización Industrial

More from EOI Escuela de Organización Industrial (20)

Establecimiento de la oficina de asesoramiento nacional.
Establecimiento de la oficina de asesoramiento nacional.Establecimiento de la oficina de asesoramiento nacional.
Establecimiento de la oficina de asesoramiento nacional.
 
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
Servicios de asesoramiento en digitalización. Unión de Pequeños Agricultores....
 
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
Prestación de asesoramiento y creación de un servicio de asesoramiento - Juan...
 
El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...El asesoramiento para la transición digital en el sector agroalimentario espa...
El asesoramiento para la transición digital en el sector agroalimentario espa...
 
SPEECH EEPA AWARDS_the break.pdf
SPEECH EEPA AWARDS_the break.pdfSPEECH EEPA AWARDS_the break.pdf
SPEECH EEPA AWARDS_the break.pdf
 
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...Programas Generación Digital PYMES y Generación Digital Agentes del Cambio,  ...
Programas Generación Digital PYMES y Generación Digital Agentes del Cambio, ...
 
Generación D
Generación DGeneración D
Generación D
 
Centro de Competencias para la formación digital agroalimentaria
Centro de Competencias para la formación digital agroalimentariaCentro de Competencias para la formación digital agroalimentaria
Centro de Competencias para la formación digital agroalimentaria
 
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalizaciónAyudas para divulgación, actividades demostrativas y cursos de digitalización
Ayudas para divulgación, actividades demostrativas y cursos de digitalización
 
Paquete de Digitalización
Paquete de DigitalizaciónPaquete de Digitalización
Paquete de Digitalización
 
Plan de Recuperación, Transformación y Resiliencia
Plan de Recuperación, Transformación y ResilienciaPlan de Recuperación, Transformación y Resiliencia
Plan de Recuperación, Transformación y Resiliencia
 
Programa Kit Digital PKD enero 2022
Programa Kit Digital PKD enero 2022Programa Kit Digital PKD enero 2022
Programa Kit Digital PKD enero 2022
 
La gestión de la diversidad en las empresas españolas (2009)
La gestión de la diversidad en las empresas españolas (2009)La gestión de la diversidad en las empresas españolas (2009)
La gestión de la diversidad en las empresas españolas (2009)
 
Tecnología para alimentar el mundo por Alberto Oikawa
Tecnología para alimentar el mundo por Alberto  OikawaTecnología para alimentar el mundo por Alberto  Oikawa
Tecnología para alimentar el mundo por Alberto Oikawa
 
Globalización post covid-19 por Stefano Pilotto
Globalización post covid-19 por Stefano PilottoGlobalización post covid-19 por Stefano Pilotto
Globalización post covid-19 por Stefano Pilotto
 
Marketing del día después por José María Corella
Marketing del día después por José María CorellaMarketing del día después por José María Corella
Marketing del día después por José María Corella
 
Carrera Internacional por Begoña Lanzazuri
Carrera Internacional por Begoña LanzazuriCarrera Internacional por Begoña Lanzazuri
Carrera Internacional por Begoña Lanzazuri
 
Organizarse mejor en tiempos de teletrabajo por Consuelo Verdú
Organizarse mejor en tiempos de teletrabajo por Consuelo VerdúOrganizarse mejor en tiempos de teletrabajo por Consuelo Verdú
Organizarse mejor en tiempos de teletrabajo por Consuelo Verdú
 
Metodologia OKR para lograr el éxito por Javier Martín
Metodologia OKR para lograr el éxito por Javier MartínMetodologia OKR para lograr el éxito por Javier Martín
Metodologia OKR para lograr el éxito por Javier Martín
 
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
¿Buscas salud integral? Usa tu cerebro por Inmaculada Cubero
 

Small is beautiful

  • 1. Small Solar Thermal Power Systems/ Pequeños Sistemas para Centrales Solares Termoeléctricas Jornada de difusión técnica Madrid, 1 de julio de 2010 UNION EUROPEA FONDO SOCIAL EUROPEO
  • 2. IMDEA Energía • Mission: • To promote the development of renewable energies. • To promote the development of clean energy technologies having none or minimum environmental impact. • Research topics: • Solar energy (high flux/high temperature). • Sustainable fuels: biofuels, wastes, hydrogen. • Energy storage. • Smart energy networks. • Efficient end-use of energy • CO2 valorisation • 40 Researchers (18 PhD; 16 from foreign R&D Centers)
  • 3. High Temperature Processes Unit Objectives Development of efficient and cost-effective high temperature technologies and applications with special emphasis on Concentrating Solar Power Systems and production of Solar Fuels and Chemicals. R&D lines  Modular concepts with minimum environmental impact  Advanced thermal fluids for high temperature applications and energy storage  Solar receivers and reactors  Solar concentration optics  High flux/high temperature characterization techniques and simulation tools  Efficient integration schemes into power conversion systems  Solar-driven high temperature production of H2 /Chemicals
  • 4.
  • 5. CSP in the world Source: Photon International (December 2009) - Spain: 831 MW grid-connected by December 2010 and permits assigned for 2,5 GW by 2013. -USA: Near- to medium-term CSP pipeline over 10 GW, with 4.5 GW to break ground by the end of 2010.
  • 6. Concentrating Solar Power: Cost and Availability • Future costs depend on many things – technology progress – production rates and continuity Initial SEGS Plants – political, economic, and financial issues – market needs and acceptance Larger SEGS Plants O&M Cost Reduction at SEGS Plants Impact of 1-2¢ adder for green power Conventional Technology for Peaking or Intermediate Power (IEA market assumptions)
  • 7. Limitations of first-generation CSP Commercial projects use technologies of parabolic troughs with low concentration in two dimensions and linear focus, or systems of central tower and heliostat fields, operating with thermal fluids at relatively modest temperatures, below 400 ºC . The most immediate consequences of these conservative designs are:  the use of systems with efficiencies below 20% nominal in the conversion of direct solar radiation to electricity,  the tight limitation in the use of efficient energy storage Extresol 1 and 2 (ACS/Cobra) systems,  the high water consumption and land extension due to the inefficiency of the integration with the power block,  the lack of rational schemes for their integration in distributed generation architectures and  the limitation to reach the temperatures needed for the generation processes following thermochemical routes of solar fuels like hydrogen. PS10 and PS20 (Abengoa Solar)
  • 8. Impact of innovation on cost reduction 100 Scaling up 15% 90 80 R+D 60% 70 60 Market 50 series 25% 40 2005 2010 2015 2020 2025 Year
  • 9. Concentrating Solar Power: Applications and Features Distributed Power Dispatchable Power • distributed, on-grid (e.g., line support) • utility peak and intermediate • stand-alone, off-grid (e.g., water • high-value, green markets pumping, village electrification) kW's to MW’s 10's to 100’s of MW's Dispatchability: l hybridization with gas or liquid hybrid gas combined l thermal storage for peaking, fuels for extended Stirling or cycle load following, or extended Brayton engine operation l coal, fuel oil, or gas operation steam cycle Manufacturing: l Relatively conventional technology (glass, steel, gears, heat engines, etc.) allows rapid manufacturing scale-up, low risk, conventional maintenance
  • 10. Aprovechamiento Térmico de la Energía Solar de manera Gestionable, Eficiente y Modular en Sistemas de Alta Concentración
  • 11. SOLGEMAC TODAY Conservative first-generation schemes 1500 ºC SOLGEMAC • Combustibles y química • Ciclo Brayton Efficiency (high-temperature/high-flux) • Calentamiento aire Dispatchability (storage/hybrid) • Ciclo Brayton • Calentamiento aire Modularity (small size) Environmental impact (water) • Calentamiento aire Receptores cerámicos Solar fuels Receptores Alta presión 1000 ºC cerámicos Alta temperatura Receptores Baja presión Partículas sólidas Alta temperatura Temperatura Motores Stirling solarizados • Ciclo Brayton Receptores • Disco Stirling • Precalentamiento aire metálicos aire 500 ºC Receptores Receptores Sodio Sales nitrosas Receptores • Calentamiento aire Agua/vapor • Ciclo Rankine • Calentamiento de vapor • Ciclo Rankine • Calentamiento de vapor Receptores Aceite Actualidad • Calentamiento de vapor Conceptos tecnológicos ACTUALES Conceptos tecnológicos AVANZADOS
  • 12. SOLGEMAC (Imdea Energía Coord.) MODULARITY EFFICIENCY DISPATCHABILITY A.3. ENERGY STORAGE FOR DISTRIBUTED A.2. SOLAR RECEIVERS/REACTORS FOR GENERATION CONCENTRATING SOLAR SYSTEMS. A.1. MODULAR CONCENTRATING HIGH FLUX/HIGH TEMPERATURES. SYSTEMS A.3.1.Hydrogen production with thermochemical cycles A.2.1. Volumetric receivers with metallic A.3.2. Hydrogen storage with MOF-type materiales. A.1.1. Systemas dish/Stirling absorbers A.3.3. Electrochemical storage A.1.2. Multitower Modular Arrays A.2.2. Volumetric receivers with ceramic A.3.4. End-use of hydrogen in microturbines A.1.3. Solarization of gas microturbines absorbers A.2.3. Particle receivers A.2.4. Materials URJC (Coord.) CIEMAT-DQ CIEMAT-SSC (Coord.) CIEMAT-SSC Imdea Energía (Coord.) Imdea Energía Imdea Energía INTA UAM URJC CIEMAT-SSC TORRESOL INTA TORRESOL Hynergreen Hynergreen A4. INTEGRATION INTA (Coord.) INTEGRATION A.4.1. Comparison of technologies A.4.2. Integration schemes URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ, A.4.3. LCA and impact TORRESOL, Hynergreen
  • 13. STEPS TO SCALING-UP SOLAR CSP & CSFC 1-5 kW Solar Simulator 30-50 kW Solar Furnace 1-100 MW 100-500 kW Central Receiver System Mini-tower
  • 14. Discos parabólicos Motor solar de Augustin Mouchot en la exposición de Discos-Stirling Eurodish en la Paris de 1861 Paris Plataforma Solar de Almería
  • 15. Discos Parabólicos con generador Stirling: Estado de la Tecnología  Varios diseños de disco y de receptor han demostrado la alta eficiencia necesaria para sistemas comerciales  La durabilidad del receptor aún necesita mejorarse  El coste del disco colector/concentrador es crítico para dar paso a las primeras producciones comerciales. STM Solo  Motores Stirling avanzados están mostrando altas eficiencias y durabilidades
  • 16. Expectations for Cost Degression 225 200 175 Investment cost in k€ 150 125 Transport, Assembly Concentrator Drives 100 Stirlingmotor Control 75 Turntable Foundation 50 25 0 Prototype DISTAL 1 DISTAL 2 EuroDish 100/Year 1000/Year 3000/Year 10000/Year Stuttgart 1991 1995 2000/2001 1989
  • 17. Pequeños sistemas de receptor central Pequeños campos con pequeños Configuraciones multitorre helióstatos Multitower arrays
  • 18. Mini-campos con mini-helióstatos agrupados: Recordando al Prof. Francia • Planta construida en Italia y montada en los EEUU en el año 1977 en el Instituto Tecnológico de Georgia (Advanced Component Test Facility) •550 helióstatos •Potencia térmica 400 kW. •Campo octogonal y torre central (22,8 m) •Foco rectangular de 2,44 m. •Espejos con seguimiento polar y tracking colectivo. ACTF de Georgia
  • 19. Sistemas modulares multitorre Comparison of Solar Power Technologies with respect to Integration in the Urban Environment P. Schramek, D.R. Mills and W. Lang
  • 20. Advantages of the MIUS concept • Origin: In 1972 by US HUD. Related to Total Energy Systems, Power Islands, District Heating, Energy Cascade and Cogeneration • Distributed Utility structure for large residential, commercial or institutional building complexes. • Typical size: 300-1,000 dwelling units • Reduction of transmission and distribution costs • Modular track of demand and spread construction costs over time • Maximum utilization about 4,500 hours • Use of single-cycle high efficiency gas turbines plus waste heat applications like district heating, cooling, desalination or water treatment • Increment of solar share to 50 % •Find a niche of size (a few The keys for MWe) •Find modular small CRS design CRS in MIUS •Competitive investment cost •Perform with high efficiencies
  • 21. INTEGRATION OF CRS INTO MIUS STRUCTURE Water 7,965 GJ 13,280 GJ Exhaust gases Auxiliary boiler Fuel Space heating Water 2,690 GJ 14,690 GJ Hot water 12,000 GJ Steam Wasted 4,252 GJ Domestic hot water 22,000 GJ Fuel Hot gases Absorption 11,023 GJ chiller Rejected heat 5.50 GWhe 22,793 GWh 60,526 GJ Compression 0.21 GWhe air-conditioning Air Domestic and auxiliary 5.29 GWhe electricity SOLAR TOWER Example of a 450-unit apartment complex in Spain
  • 22. MIUS Solar Tower: Application to a shopping center 1400 - Stable demand - 85 % during day-time 1200 October - High consumption at November peak periods Power Demand (kWe) 1000 December - Monthly differences January between 800-1,300 kW 800 February March - Demand increase april between June and 600 may October. June - Peaks in July and 400 July Christmas August September 200 Operation strategy: 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - Night-time: Grid Solar Time (h) - From 6:00 to 20:00 solar hybrid turbine in power island Demand from 6 to 20 h: 4,348 MWe and mode 18,890 MWth
  • 23. Proposal of a small-size tower plant  Small tower and heliostats that reduce visual impact and achieve higher field efficiencies (up to 4% more than large area heliostats).  Air as heat transfer media in a pressurized volumetric receiver (3.4 MWth outlet).  Use of an efficient (39.5 %) small solar-gas turbine (1.36 MWe) with intercooling, heat recuperation and low working temperature (860 ºC).  Waste heat (670 kWth) at 198 ºC for water heating and space cooling/heating.  Operation in a fuel-saver mode  As in the case of dish system parks, the small tower fields for distributed power should target maximum unattended operation, to minimize O&M costs.
  • 24. MIUS solar tower technical specifications Tower optical height (m) 26 Number heliostats 345 Heliostat surface (m2) 19.2 Receiver surface (m2) 16.5 Receiver tilt angle (º) 30 Land (m2) 38,000 Design point Power Efficiency DNI (W/m2) 875 ---- Power onto mirrors area (MWt) 5.8 100 % Gross power onto receiver (MWt) 4.3 74 % Power to turbine (MWt) 3.4 80 % Gross electric power (MWe) 1.4 39 % Total efficiency ---- 23 % Investment Heliostats 995,765 $ Land 62,745 $ Tower 104,575 $ Receiver 484,750 $ Inst.&Control 107,000 $ Power block 1,146,000 $ Fixed cost 65,350 $ Direct capital cost 2.97 M$ Installed cost (including turbine set) 2,120 $/kW
  • 25. Heron H1 Technical Specifications Electrical power 1,407 kWe Thermal power 1,200 kWth Fuel consumption 3,280 kW Heat rate 8,392 kJ/kWh Electrical efficiency 42.9 % Thermal efficiency 36.6 % Total efficiency 79.5 % NOx emission <20 g/GJ
  • 26. Theoretical solarization based on Turbine Heron H-1 and 10 pressurized volumetric receivers 1.0 bar 1.0 bar 198 ºC 573 ºC Intercooler 8.9 bar 151 ºC Recuperator 8.9 bar 3.0 bar 573 ºC 25 ºC 740 ºC 661 ºC 757 ºC R1 R2 R3 R7 R8 3.0 bar 137 ºC 3.1 bar 635 ºC R4 R5 R6 R9 R10 HPC LPC 8.9 bar 3.1 bar 860 ºC 860 ºC C1 C2 C3 PT PR=3.0 PR=2.7 1.36 MWe PR=3.0 1.0 bar 15 ºC Air filter Heatflow SOLAR R1-R6 = 1.95 MW Heatflow SOLAR R7-R10 = 1.49 MW 1.0 bar Total = 3.44 MW 15 ºC Air inlet m=5.15 kg/s
  • 27. MIUS Solar Tower: Application to a shopping center Solar electricity production = 2,456 MWh Fossil electricity production = 1,892 MWh Solar electricity excess = 428 MWh
  • 28. MIUS Solar Tower: Application to a shopping center 56 % power demand supplied Few hours at loads of 20 % by solar (683 toe) during start-ups Typical solar working load 75 %
  • 29. MIUS Solar Tower: Application to a shopping center Solar is contributing to the waste heat produced with 4,374 GJ that represents 49.5% of the heat demand.
  • 30. CONCLUSIONS CSP is focusing its growth still on first generation large-fields The solar field should be small and modular to account for the maximum flexibility in approaching real systems. Up to 60% future cost reduction should come from R&D. Solgemac project objectives are modularity, dispatchability and efficiency by high flux/high T. A potential niche for the application of dish-engine systems and small solar towers to Modular Integrated Utility Systems has been identified.