Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Small Solar Thermal Power
                       Systems/ Pequeños Sistemas
                             para Centrales So...
IMDEA Energía

• Mission:
    • To promote the development of renewable
      energies.
    • To promote the development o...
High Temperature Processes Unit

                                  Objectives
Development of efficient and cost-effective ...
CSP in the world




     Source: Photon International (December 2009)
     - Spain: 831 MW grid-connected by December 201...
Concentrating Solar Power:

                Cost and Availability
                                                        ...
Limitations of first-generation CSP

Commercial projects use technologies of parabolic troughs with low
concentration in t...
Impact of innovation on cost reduction


100
                                              Scaling up
                    ...
Concentrating Solar Power:

                                  Applications and Features
                   Distributed Pow...
Aprovechamiento Térmico de la Energía Solar de manera
Gestionable, Eficiente y Modular en Sistemas de Alta
Concentración
SOLGEMAC

                  TODAY
Conservative first-generation schemes




                                             ...
SOLGEMAC
                                                      (Imdea Energía Coord.)

     MODULARITY                    ...
STEPS TO SCALING-UP SOLAR CSP & CSFC




1-5 kW
Solar Simulator
                                               30-50 kW
  ...
Discos parabólicos


 Motor solar de Augustin
Mouchot en la exposición de       Discos-Stirling Eurodish en la
   Paris de...
Discos Parabólicos con generador Stirling:

       Estado de la Tecnología

                          Varios diseños de d...
Expectations for Cost Degression

                        225


                        200


                        175
...
Pequeños sistemas de receptor central

Pequeños campos con pequeños       Configuraciones multitorre
helióstatos




     ...
Mini-campos con mini-helióstatos
              agrupados: Recordando al Prof. Francia


                                  ...
Sistemas modulares multitorre

Comparison of Solar Power Technologies with respect to Integration in the Urban
           ...
Advantages of the MIUS concept

• Origin: In 1972 by US HUD. Related to Total Energy Systems,
  Power Islands, District He...
INTEGRATION OF CRS INTO MIUS STRUCTURE


                                                             Water
              ...
MIUS Solar Tower:
                                                Application to a shopping center

                      ...
Proposal of a small-size tower plant


 Small tower and heliostats that reduce visual impact and
  achieve higher field e...
MIUS solar tower technical specifications
       Tower optical height (m)                             26
       Number hel...
Heron H1 Technical Specifications




Electrical power                       1,407 kWe
Thermal power                      ...
Theoretical solarization based on Turbine Heron H-1 and 10
                                        pressurized volumetric ...
MIUS Solar Tower: Application to a shopping center




Solar electricity production =    2,456 MWh
Fossil electricity prod...
MIUS Solar Tower: Application to a shopping center




56 % power demand supplied    Few hours at loads of 20 %
by solar (...
MIUS Solar Tower: Application to a shopping center




 Solar is contributing to the waste heat produced with 4,374 GJ tha...
CONCLUSIONS


CSP is focusing its growth still on first generation
 large-fields
The solar field should be small and mod...
Small is beautiful
Upcoming SlideShare
Loading in …5
×

Small is beautiful

1,715 views

Published on

Conferencia de Manuel Romero, IMDEA Energía, en el marco de la jornada sobre Pequeños sistemas modulares para centrales termoeléctricas.
1_07_2010

  • Be the first to comment

  • Be the first to like this

Small is beautiful

  1. 1. Small Solar Thermal Power Systems/ Pequeños Sistemas para Centrales Solares Termoeléctricas Jornada de difusión técnica Madrid, 1 de julio de 2010 UNION EUROPEA FONDO SOCIAL EUROPEO
  2. 2. IMDEA Energía • Mission: • To promote the development of renewable energies. • To promote the development of clean energy technologies having none or minimum environmental impact. • Research topics: • Solar energy (high flux/high temperature). • Sustainable fuels: biofuels, wastes, hydrogen. • Energy storage. • Smart energy networks. • Efficient end-use of energy • CO2 valorisation • 40 Researchers (18 PhD; 16 from foreign R&D Centers)
  3. 3. High Temperature Processes Unit Objectives Development of efficient and cost-effective high temperature technologies and applications with special emphasis on Concentrating Solar Power Systems and production of Solar Fuels and Chemicals. R&D lines  Modular concepts with minimum environmental impact  Advanced thermal fluids for high temperature applications and energy storage  Solar receivers and reactors  Solar concentration optics  High flux/high temperature characterization techniques and simulation tools  Efficient integration schemes into power conversion systems  Solar-driven high temperature production of H2 /Chemicals
  4. 4. CSP in the world Source: Photon International (December 2009) - Spain: 831 MW grid-connected by December 2010 and permits assigned for 2,5 GW by 2013. -USA: Near- to medium-term CSP pipeline over 10 GW, with 4.5 GW to break ground by the end of 2010.
  5. 5. Concentrating Solar Power: Cost and Availability • Future costs depend on many things – technology progress – production rates and continuity Initial SEGS Plants – political, economic, and financial issues – market needs and acceptance Larger SEGS Plants O&M Cost Reduction at SEGS Plants Impact of 1-2¢ adder for green power Conventional Technology for Peaking or Intermediate Power (IEA market assumptions)
  6. 6. Limitations of first-generation CSP Commercial projects use technologies of parabolic troughs with low concentration in two dimensions and linear focus, or systems of central tower and heliostat fields, operating with thermal fluids at relatively modest temperatures, below 400 ºC . The most immediate consequences of these conservative designs are:  the use of systems with efficiencies below 20% nominal in the conversion of direct solar radiation to electricity,  the tight limitation in the use of efficient energy storage Extresol 1 and 2 (ACS/Cobra) systems,  the high water consumption and land extension due to the inefficiency of the integration with the power block,  the lack of rational schemes for their integration in distributed generation architectures and  the limitation to reach the temperatures needed for the generation processes following thermochemical routes of solar fuels like hydrogen. PS10 and PS20 (Abengoa Solar)
  7. 7. Impact of innovation on cost reduction 100 Scaling up 15% 90 80 R+D 60% 70 60 Market 50 series 25% 40 2005 2010 2015 2020 2025 Year
  8. 8. Concentrating Solar Power: Applications and Features Distributed Power Dispatchable Power • distributed, on-grid (e.g., line support) • utility peak and intermediate • stand-alone, off-grid (e.g., water • high-value, green markets pumping, village electrification) kW's to MW’s 10's to 100’s of MW's Dispatchability: l hybridization with gas or liquid hybrid gas combined l thermal storage for peaking, fuels for extended Stirling or cycle load following, or extended Brayton engine operation l coal, fuel oil, or gas operation steam cycle Manufacturing: l Relatively conventional technology (glass, steel, gears, heat engines, etc.) allows rapid manufacturing scale-up, low risk, conventional maintenance
  9. 9. Aprovechamiento Térmico de la Energía Solar de manera Gestionable, Eficiente y Modular en Sistemas de Alta Concentración
  10. 10. SOLGEMAC TODAY Conservative first-generation schemes 1500 ºC SOLGEMAC • Combustibles y química • Ciclo Brayton Efficiency (high-temperature/high-flux) • Calentamiento aire Dispatchability (storage/hybrid) • Ciclo Brayton • Calentamiento aire Modularity (small size) Environmental impact (water) • Calentamiento aire Receptores cerámicos Solar fuels Receptores Alta presión 1000 ºC cerámicos Alta temperatura Receptores Baja presión Partículas sólidas Alta temperatura Temperatura Motores Stirling solarizados • Ciclo Brayton Receptores • Disco Stirling • Precalentamiento aire metálicos aire 500 ºC Receptores Receptores Sodio Sales nitrosas Receptores • Calentamiento aire Agua/vapor • Ciclo Rankine • Calentamiento de vapor • Ciclo Rankine • Calentamiento de vapor Receptores Aceite Actualidad • Calentamiento de vapor Conceptos tecnológicos ACTUALES Conceptos tecnológicos AVANZADOS
  11. 11. SOLGEMAC (Imdea Energía Coord.) MODULARITY EFFICIENCY DISPATCHABILITY A.3. ENERGY STORAGE FOR DISTRIBUTED A.2. SOLAR RECEIVERS/REACTORS FOR GENERATION CONCENTRATING SOLAR SYSTEMS. A.1. MODULAR CONCENTRATING HIGH FLUX/HIGH TEMPERATURES. SYSTEMS A.3.1.Hydrogen production with thermochemical cycles A.2.1. Volumetric receivers with metallic A.3.2. Hydrogen storage with MOF-type materiales. A.1.1. Systemas dish/Stirling absorbers A.3.3. Electrochemical storage A.1.2. Multitower Modular Arrays A.2.2. Volumetric receivers with ceramic A.3.4. End-use of hydrogen in microturbines A.1.3. Solarization of gas microturbines absorbers A.2.3. Particle receivers A.2.4. Materials URJC (Coord.) CIEMAT-DQ CIEMAT-SSC (Coord.) CIEMAT-SSC Imdea Energía (Coord.) Imdea Energía Imdea Energía INTA UAM URJC CIEMAT-SSC TORRESOL INTA TORRESOL Hynergreen Hynergreen A4. INTEGRATION INTA (Coord.) INTEGRATION A.4.1. Comparison of technologies A.4.2. Integration schemes URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ, A.4.3. LCA and impact TORRESOL, Hynergreen
  12. 12. STEPS TO SCALING-UP SOLAR CSP & CSFC 1-5 kW Solar Simulator 30-50 kW Solar Furnace 1-100 MW 100-500 kW Central Receiver System Mini-tower
  13. 13. Discos parabólicos Motor solar de Augustin Mouchot en la exposición de Discos-Stirling Eurodish en la Paris de 1861 Paris Plataforma Solar de Almería
  14. 14. Discos Parabólicos con generador Stirling: Estado de la Tecnología  Varios diseños de disco y de receptor han demostrado la alta eficiencia necesaria para sistemas comerciales  La durabilidad del receptor aún necesita mejorarse  El coste del disco colector/concentrador es crítico para dar paso a las primeras producciones comerciales. STM Solo  Motores Stirling avanzados están mostrando altas eficiencias y durabilidades
  15. 15. Expectations for Cost Degression 225 200 175 Investment cost in k€ 150 125 Transport, Assembly Concentrator Drives 100 Stirlingmotor Control 75 Turntable Foundation 50 25 0 Prototype DISTAL 1 DISTAL 2 EuroDish 100/Year 1000/Year 3000/Year 10000/Year Stuttgart 1991 1995 2000/2001 1989
  16. 16. Pequeños sistemas de receptor central Pequeños campos con pequeños Configuraciones multitorre helióstatos Multitower arrays
  17. 17. Mini-campos con mini-helióstatos agrupados: Recordando al Prof. Francia • Planta construida en Italia y montada en los EEUU en el año 1977 en el Instituto Tecnológico de Georgia (Advanced Component Test Facility) •550 helióstatos •Potencia térmica 400 kW. •Campo octogonal y torre central (22,8 m) •Foco rectangular de 2,44 m. •Espejos con seguimiento polar y tracking colectivo. ACTF de Georgia
  18. 18. Sistemas modulares multitorre Comparison of Solar Power Technologies with respect to Integration in the Urban Environment P. Schramek, D.R. Mills and W. Lang
  19. 19. Advantages of the MIUS concept • Origin: In 1972 by US HUD. Related to Total Energy Systems, Power Islands, District Heating, Energy Cascade and Cogeneration • Distributed Utility structure for large residential, commercial or institutional building complexes. • Typical size: 300-1,000 dwelling units • Reduction of transmission and distribution costs • Modular track of demand and spread construction costs over time • Maximum utilization about 4,500 hours • Use of single-cycle high efficiency gas turbines plus waste heat applications like district heating, cooling, desalination or water treatment • Increment of solar share to 50 % •Find a niche of size (a few The keys for MWe) •Find modular small CRS design CRS in MIUS •Competitive investment cost •Perform with high efficiencies
  20. 20. INTEGRATION OF CRS INTO MIUS STRUCTURE Water 7,965 GJ 13,280 GJ Exhaust gases Auxiliary boiler Fuel Space heating Water 2,690 GJ 14,690 GJ Hot water 12,000 GJ Steam Wasted 4,252 GJ Domestic hot water 22,000 GJ Fuel Hot gases Absorption 11,023 GJ chiller Rejected heat 5.50 GWhe 22,793 GWh 60,526 GJ Compression 0.21 GWhe air-conditioning Air Domestic and auxiliary 5.29 GWhe electricity SOLAR TOWER Example of a 450-unit apartment complex in Spain
  21. 21. MIUS Solar Tower: Application to a shopping center 1400 - Stable demand - 85 % during day-time 1200 October - High consumption at November peak periods Power Demand (kWe) 1000 December - Monthly differences January between 800-1,300 kW 800 February March - Demand increase april between June and 600 may October. June - Peaks in July and 400 July Christmas August September 200 Operation strategy: 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - Night-time: Grid Solar Time (h) - From 6:00 to 20:00 solar hybrid turbine in power island Demand from 6 to 20 h: 4,348 MWe and mode 18,890 MWth
  22. 22. Proposal of a small-size tower plant  Small tower and heliostats that reduce visual impact and achieve higher field efficiencies (up to 4% more than large area heliostats).  Air as heat transfer media in a pressurized volumetric receiver (3.4 MWth outlet).  Use of an efficient (39.5 %) small solar-gas turbine (1.36 MWe) with intercooling, heat recuperation and low working temperature (860 ºC).  Waste heat (670 kWth) at 198 ºC for water heating and space cooling/heating.  Operation in a fuel-saver mode  As in the case of dish system parks, the small tower fields for distributed power should target maximum unattended operation, to minimize O&M costs.
  23. 23. MIUS solar tower technical specifications Tower optical height (m) 26 Number heliostats 345 Heliostat surface (m2) 19.2 Receiver surface (m2) 16.5 Receiver tilt angle (º) 30 Land (m2) 38,000 Design point Power Efficiency DNI (W/m2) 875 ---- Power onto mirrors area (MWt) 5.8 100 % Gross power onto receiver (MWt) 4.3 74 % Power to turbine (MWt) 3.4 80 % Gross electric power (MWe) 1.4 39 % Total efficiency ---- 23 % Investment Heliostats 995,765 $ Land 62,745 $ Tower 104,575 $ Receiver 484,750 $ Inst.&Control 107,000 $ Power block 1,146,000 $ Fixed cost 65,350 $ Direct capital cost 2.97 M$ Installed cost (including turbine set) 2,120 $/kW
  24. 24. Heron H1 Technical Specifications Electrical power 1,407 kWe Thermal power 1,200 kWth Fuel consumption 3,280 kW Heat rate 8,392 kJ/kWh Electrical efficiency 42.9 % Thermal efficiency 36.6 % Total efficiency 79.5 % NOx emission <20 g/GJ
  25. 25. Theoretical solarization based on Turbine Heron H-1 and 10 pressurized volumetric receivers 1.0 bar 1.0 bar 198 ºC 573 ºC Intercooler 8.9 bar 151 ºC Recuperator 8.9 bar 3.0 bar 573 ºC 25 ºC 740 ºC 661 ºC 757 ºC R1 R2 R3 R7 R8 3.0 bar 137 ºC 3.1 bar 635 ºC R4 R5 R6 R9 R10 HPC LPC 8.9 bar 3.1 bar 860 ºC 860 ºC C1 C2 C3 PT PR=3.0 PR=2.7 1.36 MWe PR=3.0 1.0 bar 15 ºC Air filter Heatflow SOLAR R1-R6 = 1.95 MW Heatflow SOLAR R7-R10 = 1.49 MW 1.0 bar Total = 3.44 MW 15 ºC Air inlet m=5.15 kg/s
  26. 26. MIUS Solar Tower: Application to a shopping center Solar electricity production = 2,456 MWh Fossil electricity production = 1,892 MWh Solar electricity excess = 428 MWh
  27. 27. MIUS Solar Tower: Application to a shopping center 56 % power demand supplied Few hours at loads of 20 % by solar (683 toe) during start-ups Typical solar working load 75 %
  28. 28. MIUS Solar Tower: Application to a shopping center Solar is contributing to the waste heat produced with 4,374 GJ that represents 49.5% of the heat demand.
  29. 29. CONCLUSIONS CSP is focusing its growth still on first generation large-fields The solar field should be small and modular to account for the maximum flexibility in approaching real systems. Up to 60% future cost reduction should come from R&D. Solgemac project objectives are modularity, dispatchability and efficiency by high flux/high T. A potential niche for the application of dish-engine systems and small solar towers to Modular Integrated Utility Systems has been identified.

×