Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Customer Profiles
Extracting Usage Models from Log Files
Miroslav Janeski PDEng
Context
Customer Profiles
Developer Customer
Maximize the Chance of Success
Envisioned
Usage
Actual
Extracting Actual Usage from Log Files
• Model Extraction
– Typical Behavior and
Atypical Behavior
• Visualization
– Actua...
Log Data
• Huge Amount
• Different Purpose
• Informal Diagnostic
• Unstructured Syntax
Extracting Actual Usage from Log Files
Process
Mining
Process Model
Visualization
Actual Log
Visualization
Trace
PDEng Fin...
Extracting Events
Enrich Events
Requirements
• Functional:
– Extract
– Enrich
– Combine
– Transform
• Non-functional:
– Portability
• Architectural:
– Pro...
Architecture Criteria
• Number of data sources?
• Complete or incomplete event instances?
• Complementary information avai...
Prototype Architecture for ASML
out
«generic»
Log File B
out
out
«generic»
Log File C
out
out
«generic»
Log File A
out
in ...
Customer Profile – Dotted Graph
Absolute Time
LOT
Customer Profile – Petri Net Model
Lessons Learned
Building a Bridge between Industry and Academia
Process Mining
Applied
Process Mining
Feedback
Logging
Infrastructure
Impr...
Summary
• Customer Profiles
automatically
extracted from
log files
• Prototype
• Portable Architecture
out
«generic»
Log F...
Thank You
Customer Profiles
Upcoming SlideShare
Loading in …5
×

Customer Profiles

132 views

Published on

Extracting model of actual product usage from log files.

Published in: Engineering
  • Be the first to comment

  • Be the first to like this

Customer Profiles

  1. 1. Customer Profiles Extracting Usage Models from Log Files Miroslav Janeski PDEng
  2. 2. Context
  3. 3. Customer Profiles Developer Customer
  4. 4. Maximize the Chance of Success Envisioned Usage Actual
  5. 5. Extracting Actual Usage from Log Files • Model Extraction – Typical Behavior and Atypical Behavior • Visualization – Actual Log File – Extracted Model
  6. 6. Log Data • Huge Amount • Different Purpose • Informal Diagnostic • Unstructured Syntax
  7. 7. Extracting Actual Usage from Log Files Process Mining Process Model Visualization Actual Log Visualization Trace PDEng Final Project • Extract • Enrich • Combine • Transform
  8. 8. Extracting Events
  9. 9. Enrich Events
  10. 10. Requirements • Functional: – Extract – Enrich – Combine – Transform • Non-functional: – Portability • Architectural: – Processes a Stream of Data – Decomposes Tasks – Decouples Tasks – Defers Binding Time Filter Filter Filter Filterpipepipepipe
  11. 11. Architecture Criteria • Number of data sources? • Complete or incomplete event instances? • Complementary information available? • System output – ProM, – Trace?
  12. 12. Prototype Architecture for ASML out «generic» Log File B out out «generic» Log File C out out «generic» Log File A out in out «generic» Log B Event Parser in out in out «generic» Log C Event Parser in out in out «generic» Log A Event Parser in out «parameterized» Regular Expression Library in out «generic» Item Parser in out «parameterized» Lookup Table in out «domain-specific» Log B Event Enricher in out in out «domain-specific» Log C Event Enricher in out in out «domain-specific» EventCombiner in out in out «generic» MxmlSerializer in out in out «generic» Trace Transformer in out in «generic» Trace in in out «filter» ProcessMiner in out«pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe»
  13. 13. Customer Profile – Dotted Graph Absolute Time LOT
  14. 14. Customer Profile – Petri Net Model
  15. 15. Lessons Learned
  16. 16. Building a Bridge between Industry and Academia Process Mining Applied Process Mining Feedback Logging Infrastructure Improvements Customer Profiles Process Mining Improvements
  17. 17. Summary • Customer Profiles automatically extracted from log files • Prototype • Portable Architecture out «generic» Log File B out out «generic» Log File C out out «generic» Log File A out in out «generic» Log B Event Parser in out in out «generic» Log C Event Parser in out in out «generic» Log A Event Parser in out «parameterized» Regular Expression Library in out «generic» Item Parser in out «parameterized» Lookup Table in out «domain-specific» Log B Event Enricher in out in out «domain-specific» Log C Event Enricher in out in out «domain-specific» EventCombiner in out in out «generic» MxmlSerializer in out in out «generic» Trace Transformer in out in «generic» Trace in in out «filter» ProcessMiner in out«pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe» «pipe»
  18. 18. Thank You

×