理学研究科 物理学専攻 修士研究発表会



  有限アイソスピン化学ポテンシャルにおける
           強結合クォーク物質の基底状態




        理学研究科 物理学専攻 鈴木克彦研究室
                      岩田 裕平



2013年2月19日 @ Tokyo University of Science (kagurazaka)
目的                                                                  原子核の5∼15倍の密度




 相対論的重イオン衝突実験                                                                  中性子星
 http://www.rarf.riken.go.jp/rarf/rhic/acc/rhic.html   http://spaceinfo.jaxa.jp/ja/supernova_explosion_neutron_star.html




     ■ 高密度な領域で実現される物質の状態を調べること
用いる力学:量子色力学(Quantum Chromodynamics : QCD)

■ 電磁気学


  e
 電子        光子(電磁場)



■ 量子色力学 (QCD)
                 g
  q
クォーク           グルーオン        ■ 特徴
                            低エネルギースケールで非摂動論的な強結合をする

   u   c   t    +2/3
                       電荷     本研究で扱うのは低エネルギー・強結合の物理
   d   s -1/3
           b
 軽      重
多体に拡張すると ― ‘‘More is different’’ in QCD

■ 電磁気学




           プラズマ      超伝導    ボーズ・アインシュタイン凝縮
■ 量子色力学 (QCD)
                           低エネルギーにおけるQCD相図

 ■クォーク・グルーオンプラズマ(高温)

 □カイラル凝縮(低温・低密度)
     クォーク・反クォークの凝縮
     陽子・中性子の質量の起源


 ■カラー超伝導(高密度)
   クォーク・クォークの凝縮
実験観測 ▷ QCD相図
            陽子数・中性子数に差        荷電中性条件より
        =uクォーク数とdクォーク数に差   uクォーク数とdクォーク数に差

            陽子   中性子
                            電荷:2/3  -1/3

                                u    d
加速器実験                                        高密度天体




u,d非対称性の軸
  が必要
研究の概要                                      YI, H. Abuki and K. Suzuki, [arXiv:1206.2870];
                                                YI, H. Abuki and K. Suzuki, [arXiv:1209.1306].

     ■ u, dクォークの非対称性(有限アイソスピン化学ポテンシャル)が加わった時、
         臨界点近傍の基底状態がどのように変化するか調べる


     ■ モデルに依存しない方法としてGinzburg-Landau理論を用い、定性的に評価する



                              温度 T
                                                           高密度QCDでは第一原理計算不可能
第一原理計算可能                                臨界点                モデルでアプローチされてきた領域
                                            カ          D. Toublan and J. B. Kogut, PLB (2003);
  D. T. Son and M. A.         カイラル凝                    A. Barducci, R. Casalbuoni, G. Pettini and L. Ravagli, PRD (2004).
                                              イ


Stephanov, PRL (2001).                  縮
                                               ラ


                              ¯
                              u u d d
                                                ル相


                                  ¯                       この領域にアイソスピン化学ポテンシャルが
                    子
                                                  転移



                間                                          及ぼす影響を、より一般的に理解したい
         中            ャル         クォー
       イ   ¯
           u d                          ク化学
      パ 縮
    電 凝
                    シ
                   ン d         µq = (   ポテン
  荷               テ µ                µu + µ シャル
                                           d )/2
                ポ
     ¯
    d u     化
              学
                ピ
                 ン       µu
           ソ
            ス       =
      アイ       µI
なぜGinzburg-Landau (GL) 理論?
 ■ Landau理論を使えばモデルに依存しない議論をすることができる
                     Landau理論                                                                                  微視的なモデル

 ◎ 対称性よりポテンシャルを導出                                                                    ◎ Lagrangian密度 (+平均場近似)
                                                                                                   L
                2 (µq , T )           4 (µq , T )             6 (µq , T )
Landau (   )=                     +                       +
                              2                       4                     6
                   2                      4         6
                                              ( :秩序変数)                               ◎ 熱力学ポテンシャル                         (µq , T )

           { 2 [ 6 ], 4 }
 ◎ スケール変換して       平面で基底状態
                                      1

   を決定                                                                               ◎ ポテンシャルを最小化する基底状態を決定
                4 (µq , T )                =0                                                                  モデル依存性がある
                                      無秩序相                                                           150
                                                                                                                             無秩序相
                                       2[ 6         ](µq , T )
                                               1


                                                                                             T MeV
                                                                                                     100
                                                                                        温度                     秩序相(凝縮)
                =0                                               モデルを使えば                              50
      秩序相(凝縮)                                             {    2,   4}          {µq , T }             0
                                                                 の写像を探せる                              200  0    100                  300     400
                                                                                        クォーク化学ポテンシャル q MeV
           モデルに依存しない議論を行える                                                                                            D. Nickel, PRL 103, 072301 (2009).
Ginzburg-Landau理論
                                                             空間に依存
 ■ 秩序変数:カイラル4元ベクトルの平均場                                                                              ¯
                                                                                                    u u                  ¯
                                                                                                                         d u
                 =( ,                 1,          2,        3)                                            ¯
                                                                                                          qq ,             ¯
                                                                                                                           qi   5
                                                                                                                                     q
                        中性 荷電                         c 中性                                カイラル凝縮  π中間子凝縮(3成分)


 ■ ポテンシャルを秩序変数で展開(Ginzburg-Landauポテンシャル)
                    2                     4                        6                                                 D. Nickel, PRL 103, 072301 (2009).
     GL [   , ]=              +               (        ) +             (        )
                          2                           2 2                      2 3
                    2                 4                          6                                                         カイラル対称性
                +
                    4,b
                          (           )2 +
                                                       6,b
                                                             ( ,           )2                                        (4成分を等価に扱う対称性)
秩序変数の微分:            4                                  6
                    6,c                                                               6,d
                                                                                                                         SU (2)L         SU (2)R
空間非一様を促進        +         [   2
                                  (           )   2
                                                           ( ,         ) ]+2
                                                                                            (       )
                                                                                                    2
                    6                                                                 6
                                                                                                                      対称性を‘‘あらわに’’破る
                    2                     4                  4,b                                    4,c
                +         2
                              +                   4
                                                      +            (   2             2
                                                                                       ) c
                                                                                         2
                                                                                                +         (   c)
                                                                                                                 2
                    2     c
                                      4           c
                                                             4                       c
                                                                                                    4                    U (1)I3 ;V        U (1)I3 ;A
                              アイソスピン対称性を破る項を加える                                                                              さらに自発的
                                                                                                                              に破れると
 ■ 対称性より,       1   = ,               2    =           3    =0                                                        荷電πが凝縮               σが凝縮

 ■ GL係数     ,   (温度・化学ポテンシャルの関数)を関係付けていく
GL係数間の関係
                                               YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph].
■ パラメータ   ) を µI の2次まで展開
        (µI
                                          S : u, dクォークのプロパゲータ
   2      cµ2I   O(µ4 )
                     I                   tr[Su Sd ]
           0      dµI2
                          4 (µI = 0)              u                                               u
                                                                                                  >
   4
        =
   4b      0     db µ2I   6 (µI = 0)
                                     .
                                                 >
           0     dc µ2                                                      2                     (0)
                                                                                                          u




                                                                                      >
                                                                                     d




                                                                                                      >
   4c                 I
                                                >   2                      µI                  >  4

■ 展開係数を微視的に(右のようなループ                             d                                                d
 計算を用い)決定
                                         tr[Su Sd Su Sd ]
   c= 1/2, d = db = dc = 1.
        µI                                      u                                          u          d
係数が負=有限  で荷電π凝縮が存在すると
         ポテンシャルを下げる
                                                >                                              >
                                                                                            > (0)
                                                                            2
                                           >




                                                                                      >
                                          d               d                µI        d                    d
                                                        >




                                                                                                      >
                                                  4                                          >>   6
■ スケーリングして、 2 , 4 }
           {     平面でポテ
                                                >
                                                 u                                         d          u
 ンシャルを最小化する基底状態を探す                                                    .
                                                                      .
                                                                      .
µI = 0
アイソスピン対称(   )な基底状態
                                                                                                          点線:二次相転移
                                                                                                          実線:一次相転移

        D. Nickel, PRL 103, 072301 (2009).
■ ゼロアイソスピン化学ポテンシャル                                                              D. Nickel, PRL 80, 074025 (2009).

                                                                                    モデルによる解析
                                 無秩序相
                                                                      150
                                         −                                                              無秩序相
                                    α2 [α6 1 ]   モデルを使えば




                                                              T MeV
                                                                      100                                     空間非一様
                                                 マッピングできる
                                                                                 空間一様                        カイラル凝縮相
                                                                       50       カイラル凝縮相




                                                              温度
     空間一様
                                                                        0
    カイラル凝縮相                                                                 0        100       200        300       400
                                                             クォーク化学ポテンシャル                     q MeV
                          空間非一様
                         カイラル凝縮相

■ カイラル凝縮は高密度相転移近傍でドメイン構造を作る
                                                                                            変分して決定
GLポテンシャルのEuler-Lagrange方程式                           (z) =     k sn(kz; )
                                                                                   z
              =0

A.I. Buzdin, H. Kachkachi PLA 225 341 (1997).    Euler-Lagrange方程式の解の一つ:1次元方向zへの変調を持つ
µI = 0
                                                                                         点線:二次相転移
アイソスピン非対称(   )な基底状態                                                                      実線:一次相転移

  YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph].
■ 有限アイソスピン化学ポテンシャル
                                                               非一様性まで加えたモデルによる先行研究はない
       一様
   荷電π中間子凝縮相                                                                          空間非一様
                                                     モデルを使えば                         カイラル凝縮相




                                                                    温度
                                                     マッピングできる

                                 無秩序相                                         空間一様
   空間一様                                                                        凝縮相

  カイラル凝縮相
                                                  空間非一様
                                                                                 クォーク化学ポテンシャル
    空間非一様                                       荷電π中間子凝縮相                                  空間非一様
   カイラル凝縮相
                                                                                         荷電π中間子凝縮相

■ 凝縮の形は?                                                                 変分して決定
                                             (z) =      k sn(kz; )               (z) =   k sn(kz; )
 Euler-Lagrange方程式を連立


      = 0,            =0
                                                                z
                                                                         or                      z



                                 カイラル凝縮がドメイン構造を持つ解                            荷電π凝縮がドメイン構造を持つ解
 2つの凝縮が混ざる場合は解析的に解くのは困難(数値計算によって別の形が現れる可能性がある)
まとめと結論
■ アイソスピン非対称性によって、臨界点近傍でも荷電π中
 間子凝縮が誘起される                         一様
                                    荷電π中間子凝縮
■ 臨界点近傍より低温度・高密度な領域では、荷電π中間子
                                                    無秩序




                               温度
 凝縮が空間非一様なドメイン構造を作った方がエネルギー
 的に優位である
                                                  非一様
                                         一様       カイラル凝縮
■ 構造が複雑化したことにより、(多重)臨界点が増加する             カイラル凝縮
                                                  非一様荷電π中間子
                                                  凝縮
■ 解析的な手法によって臨界点近傍の基底状態を予言した点
                                              クォーク化学ポテンシャル
 で、QCD物質分野への貢献をした
                                     本結果から予測される有限
                                     アイソスピン密度での相図
Speculation
■ 荷電π中間子凝縮が天体で実現したら、星内部の散乱現象
 に効く可能性がある
Back up
ntum Chromodynamics are presented                               the years, too. Including vaccum polarisation ofterms, similar but
                                                                  Including β1 and higher order three light
  single measurement.
 books and articles, asexclusive[2,3,4,5, only quark flavours and extended and volume effects, as overall
      As can be seen, the values of   e.g. means vary complicated relationsmeans αsunderstand and cor-
                                                                rect for finite2
                                                                              lattice spacing
                                                                                                for to (Q2 ), the a function of α
e between a minimum of 0.11818 and a maximum 0.11876. error ofln 2 as in equation 4, emerge. They can be s
   following, only a brief summary of and of these                          Q results significally decreased over time, while
ativethat in the casethecalculating theirmeans and ac- the value ofµαs (MZ )today quote the smallest overall aver-
  Note
         QCD ”rules” of these exclusive overall errors, age. Lattice results gradually approached the world error
                   and of running coupling                                    0

  cording to the                                             numerically, such that for a given value of αs (µ2 ), cho
       くりこみ群によるQCDの解析
  given.out of the eight cases small error scaling factors on αs (MZ ); it is, however, ensuring to see and note that
  in four
                                                             a suitable reference lattice results is the marginally the Z0 b
                                                                      0

  of g = 1.06...1.08 had to be applied, while in the other the world average without scale like only mass of
                                                             µ = MZ while s (Q2 ) size be total uncertainty on
  cases, overall correlation factors of about 0.1, and in one different, 0 , α the smallcan of the accurately determined a
  case of 0.7, had to be applied to assure χ2 /ndf = 1. Most the world average 2 naturally, largely influenced by the
                                                                                    is,
                                  0   ) changes         0Z )=energy result. Q ≥ 1 GeV2 .
 nce of thesaverage value αs (MZ result fromto αs (MQCD. lattice scale
  notably, α
  0.1186±0.0011 when omitting the                lattice          With                                            S. Bethke (2009).

αs known at a specific energy scale                                    0.5                                  µ2
                                                                                           Λ2 = 1/(β α (µ2July 2009




                                                            有効結合定数
                                                                                                                    ))
                                                                                                                         ,
  5 Summary and Discussion
dence is given by the renormalisation                           α s(Q)                              e      0 s


  In this review, new results and measurements of αs are dimensional parameter Inelasticintroduced such that
                                                             a                                Deep Λ is Scattering
  summarised, and the world average value of αs (MZ ), as             0.4                     e+e– Annihilation
       2
                                                    0

  previously given in [7,28,6], is updated. Based on eight
                                                             tion 4 transforms into           Heavy Quarkonia
  (Q )measurements, which partly use new and improved
 srecent
     2
           = β αs (Q2 ) .                            (1)                                                        1
∂Q NNLO and lattice QCD predictions, the new av-
  N3LO,                                                                                       2
                                                                                       αs (Q ) =                              .
  erage value is                                                                                                  2 /Λ2 )
                                                                      0.3                             β0 ln(Q
      ■ カラー量子数を持つ± 0.0007 ,
 ansion of the β function is calculated
                  αs (MZ ) = 0.1184
                      0

pproximation to         [8]:
      ■ 低エネルギーで非摂動論的な強結合をする
  which corresponds
                                                             Hence, the Λ parameter is technically identical to th
                                                             ergy scale Q where αs (Q2 ) diverges to infinity. To g
β0 α2 (Q2 ) − βMS =(Q2 ) 9 ) MeV .
       s
                      (5) 3
                    Λ 1 αs (213 ±                                     0.2
                                                             numerical example, Λ ≈ 0.1 GeV for αs (MZ0 ≡ 91.2
βThis4result ) − β3 α5 (Q2 ) +one obtained in(2) pre- 0.12 and Nf = 5.
  2 αs (Q2 is consistent with the O(α6 ) , the =
                          s                  s
  viuos review three years ago [28], which was αs (MZ ) =
                                                        0         In complete 4-loop approximation and using t
         本研究で扱ったのは低エネルギーの物理
  0.1189±0.0010. The previous and the actual world average
  have been obtained from a non-overlapping set of single
                                                             parametrisation, the running coupling is given [9] by
                                                                      0.1
            (温度でいうと0∼1兆[K])
  results; their agreement therefore demonstrates a large de-             QCD α s (Μ Z) = 0.1184 ± 0.0007
  gree of compatibility between the old and the new, largely
                                                                   2 1   1         110
  improved set of measurements.                               αs (Q ) =        − 3 2 β1 [GeV] 100
                                                                                        Q ln L
     The individual mesurements, as listed in table 1 and               β0 L β0 L
                                                                                  エネルギースケール
  displayed in figure 5, show a very satisfactory agreement Fig. 6. Summary of measurements of αs as a function of the
  , each other and with the overall average: only one respective energy1 Q. β1 curves are QCD predictions for
  with                                                                     scale
                                                                                   2
                                                                                 The      2                             β2
第一原理計算と符号問題 - OUT IN H EAVY-I ON C OLL
   P HASEDIAGRAM : F REEZE
                   Lattice QCD                                                                        スパコンによる第一原理計算が可能
                   Simulations


                                                                                                                  figure taken from Blaschke




                                                                                                               our interests
                                                       P   D
                                                A   −M
                                          NIC




分配関数 Z = Tre                       SQCD
                                                =              DA [detMq (µq )]e                 Sg
   Ratios




                                          -     +     -        +    -          *0   -   *0   -
                 p /p     Λ /Λ   Ξ /Ξ    µ /π        K /K          K /π- 0 /π- K /h K /h
                                                                          p
Dirac op. Mq (µq ) = i Dµ m + µq
      1
                                         π
                                                                                                    Statistical model describes composi
                                                                                                            det Mq (µq )† =with Mq (freeze
                                                                                                                            det few µq )
         Mq (µq )† = i µ Dµ m + 0 µq =                                                  5
                                                                                          Mq ( µq ) Heavy-Ion Collisions
                                                                                                     5
                                                                                                           det Mq    complex (µq = 0)  ∞
                                                                                                                                  gi
                    T          =1
                                174 MeV                                                             ln Z[T, V, {µ}] = ±V                 dp
期待値
            -1
                  O =   f.o.
                        µf.o.=Z MeV
                               46
                                        DA [det Mq ] e                  Sg
                                                                             complex!                                         i
                                                                                                                                 2π 02
QCD臨界点(2 flavor)                                        H. Fujii, M. Ohtani (2004)

                                     静的臨界性→Landau理論
    ■ chiral limit (m = 0)                          ■m≠0

    SU (2)       SU (2)             O(4)
                             ( ,     1,   2,   3)


                                                           二次


T
        二次


              c hi               chiral-symmetric                            h≠0
      sym
            me ral-                 qq = 0
              tr y -
                    bro
       qq = 0           ke   n      一次
                                                                 一次

                                               µq
点線:二次相転移
 凝縮が空間一様と仮定した基底状態                                                                           実線:一次相転移

                                                         YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph].
 ■ ゼロアイソスピン化学ポテンシャル                                ■ 有限アイソスピン化学ポテンシャル


                                                         一様荷電π中間子凝縮相
                                 無秩序相



                                                                                    無秩序相




               一様カイラル凝縮相                                 一様カイラル凝縮相

6次までのLandau理論と等価(例 : spin1-Ising)

                                                    温度
               150
       T MeV
  温度




               100

               50

                0
                     0   100    200    300   400
    クォーク
                               q MeV                                          クォーク化学ポテンシャル
  化学ポテンシャル
凝縮は一様としていいのか
 ๏ 非一様カイラル凝縮からの示唆@カイラルリミット
   ☞[fm]スケールの変調がある相                         E. Nakano and T. Tatsumi, PRD (2005).
                                            D. Nickel, PRD (2009);
                                            S. Carignano, D. Nickel and M. Buballa, PRD (2010).
   ☞低次元(一次元)変調が好まれる                         H. Abuki, D. Ishibashi and K. Suzuki, PRD (2012);
                                            S. Carignano and M. Buballa, arXiv (2012).
                     温度
                                                                !→0            σ(x)

                                                                              amp
                             臨界点(リフシッツ点)
                                                                                              z
                      二次                                                      -amp
                                       二次
                                  二次
   !=1   σ(x)
         amp                                                 sin(kz) (                     0)
                z
                            一様         非一様                        0<!<1
                                                                               σ(x)
         -amp                                                                 amp
                      クォーク化学ポテンシャル
tanh(kz) (      1)                                                                           z

                          (x) =    k sn(kz; )                                 -amp
Why inhomogeneous?
 123706                                     L ETTERS                                                                                             K. M. SUZUKI e

       ■ 物性理論においても示唆 FFLO state
                     2 1=2
  locity and vF0 ¼ hv ik where hÁ Á Áik                                                 0
                                                                                                 (a)




                                                       free energy difference [10 ]
                                                       -2
 rface ■ フェルミ面の”ズレ”によって生じる
        average. We assume a magnetic
  -axis. The Eilenberger units of R0 for                                              -0.1
magnetic field are used.19,20) The order
  atsubara frequency !n are normalized                                                                                   Abrikosov
                                                                                                                                          L=30
                                                                                                                                          L=27
                                                                                      -0.2                                  L=200         L=25
                                                                                                                            L=100         L=23
                                                                                                                              L=75        L=21
                                                                                                                              L=50        L=20
 conditions, the order parameter is                                                                                           L=41        L=19
                                                                                                                                          L=17
                                                                                                                              L=35
                                                                                      -0.3
                                                                                          0.97               0.98                 0.99          H/Hc21
                                                                                                                                     picture taken from Machida
       X
     カイラル凝縮でも
                              yÃ
 0 N0 T             h f þ f ik          ð2Þ                                                                                                    (b)


                                                       T/Tc=0.1
                                                                                        1
     化学ポテンシャルの増加→フェルミ面の形成
      0<!n !cut


                                                                H/Hc2
          P
   →反クォーク・クォーク間のフェルミ面ミスマッチング
þ 2T      !À1 . We use ! ¼
              0<!n !cut   n           cut                                                                    HLO
                                                                          0.95
 self-consistently determined by
                2T X                                                                                                                           Hcr
r  Mpara ðrÞ À 2       hv Im gik ;
                         ~              ð3Þ                                           0.9
                  0!                                                                                  K. SUZUKI, et. al. JPSJ (2011)
                               n
                                                                                             0         0.1       0.2        0.3          0.4       0.5
 oth the diamagnetic contribution of                                                                                                           T/Tc2

 st term and the contribution of the
20
基底状態のAnsatz

chiral Real Kink Crystal
                                                                   σ(x),π(x)
        (x) =           k sn(kz; ) ,            = 0.                           m
                                                                                           z
                                                                               -m
pionic Real Kink Crystal

         = 0, (x) =                k sn(kz; ) .

deformed chiral spiral          T. Tatsumi, arXiv:1102.0064 [hep-ph].

(z) = mcn(qz; ), (z) = msn(qz; ) .                                             σ(x),π(x)
                                                                         m
          0                                                                            z
      (z) = mcos(qz; ), (z) = msin(qz; )
  E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005).              -m
21
非一様凝縮で計算するダイヤグラム(詳細)
๏ GLポテンシャル
                                       2                  4                          6
            GL [ (x), (x)] =                     +            (        ) +               (        )
                                             2                        2 2                        2 3
                                                                                                           h
                                     2                   4                         6
                                       4,b                             6,b
                                +            (           ) +
                                                         2
                                                                               ( ,           )2
                                      4                                6
                                       6,c                                                              6,d
                                +            [   2
                                                     (        )   2
                                                                           ( ,           ) ]+2
                                                                                                               (       )2
                                      6                                                                 6
                                      2                  4                     4,b                                      4,c
                                +            2
                                                 +                4
                                                                      +              (   2             2
                                                                                                         ) c
                                                                                                           2
                                                                                                                   +          (       c )2
                                     2       c
                                                         4        c
                                                                               4                       c
                                                                                                                        4

๏ 新しく考慮すべきダイアグラム
                               σ                 σ                                                                                    π          π
p                σ                                                       p                          π                     π           
                                                                                                                                       (0)
      α                            α  (0)
                                                                                   β                                   µI2            α


                                                                                                                              
    




                              




                                                                             




                                                                                                                                                 
             




                                             




          4,b                         4                                                  4,c                                             6
σ
                 p                                                    π                             p                              
                                                                                                                                                 π
                              σ              σ                                                                                    π          π
D. Nickel, Phys. Rev. Lett. 103, 072301 (2009).
22
 凝縮が非一様な場合の結果
       ๏ 有限アイソスピン密度                                         ๏ ゼロアイソスピン密度



                                                          µI = 0
                                                                        二次


                                                          (リフシッツ点)                 −1
          二重臨界点                                             三重臨界点             α2 [α6 ]
                    二次                                                              =0
                             4         2
                               µ
                          (3 I /32, -3 I /2)
                          三重臨界点 (リフシッツ点)            µ              =0
                                                                             σ(
                                                                                  x)         二次
                             二重臨界点(リフシッツ点)                                           =
                                                                                         0
非一様カイラル凝縮相                                     二次                                  二次
                                                        非一様荷電パイ
                         臨界点         一次
                             4                      2 中間子凝縮相        非一様カイラル凝縮相
              (0.21µ         I,   -2.22µ            I)
  YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph]
有限質量の場合
                                             カレント質量mに比例(h∝m)                  explicit chiral
๏ GLポテンシャル
                                                                  ☟         symmetry breaking
  GL [ , ] =
               2   2
                       +
                           4
                               (        ) +
                                       2 2         6
                                                       (    )
                                                           2 3
                                                                   h         SU (2)L SU (2)R
               2           4                     6
                                                                                         SU (2)V
               2           4                 4,b
          +        2
                       +           4
                                       +           (   2         2
                                                                   ) c
                                                                     2
                                                                           other explicit breaking
               2   c
                           4       c
                                             4                   c
                                                                             SU (2)V     U (1)I3 ;V
                                                                              ☝
                                                                         アイソスピン密度により
๏ 相図           有限アイソスピン密度・有限カレント質量
                                                                                     自発的に破れて
                   温度                                  実線:1次



                   ?
                                                                                  パイ中間子凝縮が起きる
                                                       点線:2次
                                         臨界終点
                   π

                                   σ
                                                 ?
                                                 σ(x)
                                                  π(x)
                                       クォーク密度                                                  23
凝縮一様・有限アイソスピン密度・有限質量
      ๏ カイラルリミット(h=0)                                       ๏ 有限カレント質量 (h≠0)
                                                                     3/2
                                                                h[ 6 ]
                                                                     1 = 0.5
                                                                µI 6 ]
                                                                  2[




一様荷電パイ中間子凝縮相                                            一様荷電パイ中間子凝縮相

                                       2[ 6         ]
                                                1
                                                                               2[ 6       ]
                                                                                      1
         二重臨界点

 (0, 0)                       カイラル対称相                        三重臨界点

                         三重臨界点

                              (0, −µI )
                                            2
一様カイラル凝縮相                                                                  臨界終点


                                                               4/5             2/5            2
                                                          (2.28h , −2.25h −µI )
 YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph]                                          24
■ Appendix
location of CEP
    2-flavor QCDにおいて、臨界点の位置は未だ不確定

                            温度T     高fugacity領域 μqT に存在する場合、正当化

                                         µq/T=1

                                          臨界点
                                                         対称相
                                      quarkからの寄与  gluonの寄与
                                    カイ
                                       ラル
                                          凝縮相
                縮 相            μI
           凝                ャル
       間 子              ン
                           シ
                                              クォ
     中                ポ
                       テ                          ーク
 電 パイ            化
                    学                               化学
                                                       ポテ
                ン                                         ンシ
荷          ス
            ピ                                                  ャル
        ソ                                                         μ   q
    アイ
quark loop contribution

   the feedback from quark loops

                                                S0 = diag(Su , Sd )
              T Nc       1            n        (x) = (x)1 + i 5 (x)           1
        =                  Tr (S0 (x)) .
               V     n=2
                         n

☞σとπの係数をμIで摂動展開し、比例係数を決定                           2      1   aµ2
                                                                I       O(µ4 )
                                                                            I
                                                                                        (0)
                                                                                        2
                                                   4    = 0      1       bµ2
                                                                           I
                                                                                        (0)
                                                                                        4
                                                                                              ,
 a = 0, b = 1, c =   1/2, d = db = dc =   1.       6      0      0        1             (0)
                                                                                        6
                                                   2      cµ2I       O(µ4 )
                                                                         I
                                                                                  (0)
                                                   4       0          dµI2
                                                        =                         4      .
                                                   4b      0         db µ2I
                                                                                  (0)
                                                                                  6
                                                   4c      0         dc µ2I
if the dy!ðMðyÞÞ ¼is restricted andwhere k and M that, A and Following constants.1 Following the C
                 modulation 0:
     closely follow the discussion in [37]to 1D, Jacobi’s 0ellipticwhere k and Mbeingthe discussionnumbers. dis
                                                               demonstrate are constants.1 B 0 are arbitrary in
                                                                                    with
MðxÞthe modulation is restricted to 1D,[37], we canelliptic [37], we can show that this function obeys a fo
            WS
     if function gives in fact an adequate solution to the problem. this function we see that Msn constitutes a
                                                                 Jacobi’s show that and (11), obeys a fourth-order
                                                                                    Eqs. (10)
  results inus start with thean adequate solution toequation for thedifferentialEL equation (10) when the follo
        Let the following Euler-Lagrange differential equation
     function gives in fact fourth-order ordi- (EL) the problem.                    solution to the equation
         why elliptic function
     Let us start with the Euler-Lagrange (EL) equation for algebraic Mð4Þ00þ ðAk2 1Þk2 ð2 þ 1ÞM00 À k2 ð12 À BÞ
        inhomogeneous chiral condensate,
near differential equation (when 4  0): 0 ¼ Mð4Þ þ ðA þ 1Þk2 ð20þ 1ÞM À þ are À BÞthe ¼ equations                   all satisfied:                In the
                                                                                                    sn sn          ð12
                                                                                                             Mk4 ½Að2 þ 1Þ2 À B2 Š; conde
                                                                     sn                                                             sn        2
     inhomogeneous chiral condensate,   Z2 00                                                       62 ¼ 0
                                                                                                                 2                         M0
            00                   02                                                                                                                soidal
 ðzÞ þ 3M À 10½MðM Þ þ M M dy!ðMðyÞÞ ¼ 0:        Š                                                             0               00
                                                                                0 Þ2 þ M2 M00 Š ½Msn ðMð2 þ 1Þ2 À Bþ ½Ak4 ð2 þ 1Þ2 À B
                                                                                                 Â þ ½Ak4 sn Þ2 þ Msn Msn2Š 2 Š2
                                                                                                                          2
                                Z
                               MðxÞ WS
                                                                   Â ½Msn ðMsn              sn sn À3 ¼ Àð1 þ AÞk ð þ 1Þ;                           forms
2 M À 6M3 þ 6MMðxÞ      5
                            :                dy!ðMðyÞÞ ¼ 0:
                                                         (9)                 2k   4                          2k4          24                        3k4
                                                                                                                                                3 þ Fig. 2
                                       WS                                                                         k2 3k
                                                                   Â Msn À 2 ð1 þ 2 Þð3 Â Msn À M2sn þ  4Þð3 À B þ AÞMsn of 42
                                                                                                 À B þ AÞM3ð1 þ ð4 À BÞMsn ;              5
                                                                                                                                                    M0
                                                                                                                                                        ð4
        The condition results in the following fourth-order ordi-             M0                       10 ¼ 0 2 ð12 0À BÞ;
                                                                                                                       M
 olve this equationresultsdifferential equation (when   0):
     The 非線形微分方程式 athe following fourth-order ordi-
        nary, but nonlinear in suitable 1D
           condition to find                                                                                      M0                                 meter
                                                                              4                                                         (11)        over t
herenary, but nonlinear way to find equation (when 4  0):
       is no systematic differential out the                                                                           4
                                           00                  2           00                with A and À 2k ð1 arbitrary numbers.bei
                                                                                                     À6 B being Comparing
                          ð4Þ nonlinear differential 0 with A 2 and B being arbitrary¼numbers. þ 2 Þð3 À B þ AÞ; C                                 K
  n to a fourth-order ðzÞ þ 3M À 10½MðM Þ þ M M Š
               0¼M                                                                           Eqs. (10) and (11), we  M02 see that M constitutes a
                      ð4Þ              00                 0 2 Eqs. (10)00and (11), we see that M constitutes a sufficient
                                                                    2                                                                    sn
wever it 0 ¼ M so difficult À 310½MðM Þ þ M M Š
             is not ðzÞ þ 3M to see that                5                                    solution to sn EL equation (10) when the follo
                                                                                                            the
                     þ 62 M À 6Msolution :to solution to the EL equation (10) when 4the following five
                                               þ 6M                                      (9)
 ic function is a particular 3                      5                                        algebraic 6 ¼ 3k ð4 À BÞ:
                                                                                                          equations are all satisfied:
                   þ 62 M À 6M þ 6M :                                               (9)are all satisfied: M4 4
 Let snðz; Þ be to solve this equation to algebraic suitable 1D
        We need        Jacobi’s elliptic function find a equations                                           62 ¼ k ½Að2 þ 1Þ2 À B2 Š;
                                                                                                                    0
       CRYSTALLINE CHIRAL CONDENSATES OFF6 ¼ . .4. 2 þ 1Þ2 À B2
                                                        対応                  THE ½Að                                                     PHYSICAL
he elliptic modulus.There is no systematicfind a to find 2out ktheEqs. (12c)À3 ¼ Š; þ we 2see þ 1Þ;=k; BÞ ¼
                             We then set
     We need to solve this equation to way suitable From
        modulation.                                                                  1D                       and (12e), AÞk ð
                                                                                                                      Àð1
                                                                                                                                       (12a)
                                                                                                                                        2 ðM
                                                                                                                                                 0
                                                                                                                                                    E is
  e    where k and M0 are constants.1 Following finddifferential þ AÞk2 ð2 À28Þ, k2 thelim(12b) sn ðz;in al
     modulation.snðkz; Þ; no fourth-order way to
                       There is a systematic nonlinear out the
        general solution to と仮定した時に従う非線形微分方程式                               À3 ¼ Àð1 in
                                                                      the discussion BÞ ¼ ð2; þ 1Þ; but
                                                                                    ðM0 =k;                                       latter M We c
                                                                                                                                            results AÞ=
                                                                                                                                                    q¼2
  e Msn ðzÞ ¼ M0                                       (10)                               2. Then we 10 ¼ theð12 2 !II À0 =k; BÞ ¼
                                                                                                                              À BÞ; ðM0
 d   generalwe can showa that is not so difficult differential ð12 À BÞ; take M0 choice (12c) phase
       [37], solution to fourth-order nonlinear to fourth-order
        equation. However it this function obeys a 10 ¼ that                  seeand    k                               2           2

¼    equation. However function isPhys.difficult to solutionMto case we see Eqs.2k4
       differential equation Kachkachi, soa Lett. A 225, 341see that 0
        Jacobi’s Buzdin and H. is not
                A.I.
                     elliptic it                          particular (1997). this   in 2                                   (12b) and (12d) are d
                                                                                                                                      2 Þð3 À B þ AÞ;
                                                                                                                                                       Fin
 d   Jacobi’s elliptic Let snðz; Þ be Jacobi’s elliptic function 4 we are À6 ¼with 0only   algebraics
        Eq. (9) [37]. function is a particular solution so that
                                                              2                        to 2k                 left À 2 ð1 þ two
                                                                                                          In À B þM we still have ½ to
                                                                                                         2 Þð3the latter limit, A goes 2
                                                                                                                                                        ;
                                                             k
     Eq.¼(9) [37]. Let 1Þk2 ð2 þ 1ÞMsn À then setBÞ ¼ À Mand þ  condensate jMðzÞj vanisheson
               ð4Þ
                   þ ðA þ
       0 Msnbeing the elliptic
        with                                  be Jacobi’s ð12 À À6 (12a) 2
                                   snðz; Þmodulus. We elliptic function 0 ð1 (12b), whereas
                                                     00                                                                 4
                                                                                                                          AÞ;         (12d)         three
                                                                                                                                                    the
                                                                                                                                                          w
o-                                                             2
                                                            M0 set                  parameters, , k, 6 ¼ 3k4 ð4 À BÞ: these two equ
                                                                                                                 and A. From
 d with  being the elliptic modulus. We then                                           3k4solve  soidal. M0 a functionlimits are
                                                                                                                       These two of the c
                                  Msn ðzÞ ¼ M0 snðkz; Þ;
                              0 Þ2 þ M2 M00 Š þ ½Ak4 ð2 þ 1Þ2 À B2 Š 4        6 ¼ (10) À BÞ: and k as
                                                                                    can ð4                                             (12e)
            Â ½Msn ðMsn ðzÞ ¼ Msn
                               Msn        sn     snðkz; Þ;                            M
                                                                                   (10) 0 From A (and and Denoting see ðMin the ¼
                                                                                    parameter Eqs.forms2as (12e), we these0 =k; BÞ
                                                                                                            (12c) ). we assumed functi
                                               0
                           2k   4                             From Eqs.4(12c)and ðM0wewe Fig. at0 =k;the¼ ð1; 2Þ or solution
                                                                       3k             and (12e), BÞ seeð2;2(a) one-parameter of ma
                                                                                             A,
                                                                                                           ¼       À28Þ, but
                                                                                                 =k; arriveðM a BÞ the latter results in c
                                                                                                                                amplitude
                                                                                             and . Then we take the choice ðM0 =k; BÞ ¼
            Â Msn À          2
                                  ð1 þ 2 Þð3 À B þ AÞMsn=k; BÞ ¼ ð2; À28Þ, but the latter . Alsocomplex k2 togethe
                                                                 3
                                                              ðM0 þ
                                                                              4
                                                                                    the EL ;  5
                                                                           ð4 À BÞMsnequation: results in depicted
                                                                                                          of
                                                                                               in this case we 2 Eqs. (12b) and (12d) are d
                                                                                                               see
                            M0                                   and . M0 we take the choice ðM0 =k; BÞ ¼ ð1; 2Þ, and
                                                                         Then
                                                                                        so that we sn ðz; left ave kA A snðkA z;algebraic
                                                                                                 M are AÞ ¼ defined by A Þ: roo
                                                                                                 meter m withdegenerate the




                                                                                                                                                     , |M(z)|
 74002-4                                                                                                              only two
                                                                 in this case we see Eqs. (12b) and (12d) are we still have three
                                                                                        (12a) and (12b),the elliptic
                                                                                                            whereas
4002-4                                                                                 (11) only over algebraic of A,modulation
                                                                 so that we are We stress that for any value equations
                                                                                  left with       two                       as long as 0
ground state ansatz
 chiral Real Kink Crystal                                                    σ(x),π(x)
                                                                                         m
          (x) =             k sn(kz; ) ,               = 0.                                          z
                                                                                         -m

 pionic Real Kink Crystal

           = 0, (x) =                    k sn(kz; ) .

 deformed chiral spiral              T. Tatsumi, arXiv:1102.0064 [hep-ph].


 (z) = mcn(qz; ), (z) = msn(qz; ) .                                                      σ(x),π(x)
                                                                                    m
             0                                                                                       z
        (z) = mcos(qz; ), (z) = msin(qz; )
   E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005).                        -m
Amplitude of condensates
        1
                                               CSNdataTABLE13.dat u 1:(sqrt($2*$3))
                                               PSNdataTABLE13.dat u 1:(sqrt($2*$3))
                                                                 homoCtab13.dat

                         一様カ
       0.9
                                                                  homoPtab13.dat

       0.8
                                     イラル
                                                      凝縮




                                                                            非一様カ
       0.7


       0.6
 σ,π




       0.5


       0.4




                                                                               イラル凝
       0.3


       0.2


       0.1




                                                                                      縮
        0
         -0.6    -0.5    -0.4      -0.3       -0.2         -0.1         0        0.1      0.2
                                                                                                      1
                                                                                                一様カイ
        1
                                               CSNdataTABLE22.dat u 1:(sqrt($2*$3))                                      CSNdataTABLE28.dat u 1:(sqrt($2*$3))

                                    非
                                                                                                                           PSNdataTABLE28.dat u 1:(sqrt($2*$3))
                                                                                                                  ラル凝縮
                                               PSNdataTABLE22.dat u 1:(sqrt($2*$3))
       0.9
                一様カイ                                             homoCtab22.dat                    0.9                                     homoCtab28.dat

                                ラル凝縮 一
                                                                  homoPtab22.dat                                                            homoPtab28.dat

       0.8
                                       様                                                             0.8


       0.7                                                        カ                                  0.7

                                                                        イ                                                非一
                                                                    ラ                                                            様π
 σ,π




       0.6                                                                                           0.6


       0.5
                                                                  非 ル凝                               0.5
                                                                                                                                   中間
                                                                   一                                                                                 子凝
                                                                     様 縮
       0.4                                                                                           0.4


       0.3                                                            π中                             0.3                                                        縮
       0.2                                                               間                           0.2

                                                                                           子
       0.1
                                                                                                凝    0.1

                                                                                                 縮
                                              α2                                                                               α2
        0                                                                                             0
         -0.6     -0.4      -0.2          0          0.2          0.4           0.6       0.8              -0.5    0     0.5                 1                      1.5
(a)                                   ing minM !ðMconst Þ ¼ minM;k h!ðM0
                                                                         1                                          FF (spiral)
                                                                                                                                            worked out numerically and the lo
                                                                                                                 LO (sinoidal)
                                                                                                                                            point was found as
                                                                       0.8                                      SN (solitonic)
                                                                                                                                                            2 ðLO $ SBÞ ffi 0

                                                                                                                                            振幅
                                                                                                               Homogeneous
                                                                       0.6




                                                               mave
                                                                                                                                            which is larger than I $ 0:1389 fo
                                                                                                                                                                    2
                                                                       0.4
                                                                                                                                            reflecting the fact that the LO phase
                                                                                                                                            the SN phase. Crossing the critical
                                                                                                                                            phase to the LO phase, the magnitu
              黒
                                                                       0.2
                                                                                                                                            drops by about 20%. Also the ratio
                                                                         0                                                                  mass to the magnitude of the wave v
                                                                              0   0.05   0.1   0.15   0.2    0.25     0.3      0.35   0.4
                                                                                                                                            just at the critical point has been fo
                                                                                                       2

       (x) =                     k sn(kz; )
                                                                                                                                            These can be summarized as
                                                                                                      (b)
                                                                       1.4                                                                           M0 ðLOÞ                    M0
                                                                                                                                                                 ffi 0:81;
                                                                       1.2                                                                          Mconst ðSBÞ                kð

              赤                                                          1                                                                  We note that all these ratios are th
                                                                                                                                            associated with the first-order phase

                                                                                                                                            波数
                                                                       0.8
                                                                                                                                            SB and LO phases, at the sixth ord


                                                               q
        (x) = msin(kz)
                                                                       0.6                                                                     We also remark that the first Ansa
                                                                                                                FF (spiral)
                                                                       0.4
                                                                                                                                            k as the same order in magnitude
                                                                                                              LO (sinoidal)
                                                                                                                                            transition. At the onset of the cond
                                                                                                             SN (solitonic)
                                                                       0.2                                                                  amplitude M0 vanishes while k rem
                                                                                                            Homogeneous
                                                                                                                                            derivative terms are more important
              青
                                                                         0
                                                                              0   0.05   0.1   0.15   0.2    0.25     0.3      0.35   0.4   geneous terms. In contrast, at the ons
                                                                                                       2                                    formation, the derivative terms play

       (x) = mexp(ikz)
                                                                                                      (c)
                                                                                                                                              B. Most general condensate with
                                                                         0
                                                                                                                                               We here try to see if Jacobi’s ellipt
                                                                                                                                            favorable solution among 1D modula
                                                                                                                                            note that Jacobi’s elliptic function j
H. Abuki, D. Ishibashi and K. Suzuki, PRD 85, 074002 (2012).           -0.1
                                                               [x10]




                                                                                                                                            meter subgroup of solutions to the E

                                                                                                            FF (spiral wave)
                                                                                                                                            エネルギー
                                                                                                                                            be stressed that the original EL equa
                                                                                                                                            fourth-order differential equation, w
                                                                       -0.2                             LO (sinoidal wave)                  cally the sum of three differential eq
                                                                                                       SN (solitonic wave)                  can be obtained from the second-or
                                                                                                      Homogeneous state                     tion which the elliptic function obeys
                                                                       -0.3                                                                 that it really covers all the solution
                                                                              0   0.05   0.1   0.15   0.2    0.25     0.3      0.35   0.4   equation. Keeping this in mind, we
                                                                                                       2
                                                                                                                                            assumption for the spatially modula
37,38] where it is shown that the solution
                                                                    other hand, from the coefficients of quartic terms, we see
 ese two2 situationsÀ 1Þ=4d, we see conden- energy is an
 mensionality, ð2d is the solitonic that the
   0 ¼ Á function of  3ÁMðxÞ À 10½MðrMÞ2 . In 2 ÁMŠ
 creasing MðxÞ þellipticdfunction.2 HereIIweM fact, after
                                 near  ¼ 2 þ                      that the free energies are on the order of the dimensionality
                              the extremal of energy density 0 of modulation. The above formulas for energy density can
ed by Jacobi’s
          þ 62 M À    M0 þ demonstrate that,
 inimizing over [37],3and6M5 ;                               (32) 0 be easily generalized0.15 case with 0.25 condensate in
he discussion in 6M
ecomes restricted to 1D, Jacobi’s elliptic
                                                                         0.05 0.1 to the 0.2 the LO 0.3 0.35                            0.4
 on is
        dimension of condensates
                               2 ¼ @ the @2 þ @2
                                              
                    solution to 2 þ problem. is the 3  three-    an arbitrary dimension, d, defined by  2
n where the operator3 Á dx
    fact an adequate2                     y     
                                                 z    3                               sffiffiffi
                                         þ for 2
                          À (EL) equation O the À
   LO;dD ¼ À Laplacian. This is a fourth-order nonlinear  :
   dimensional 2
   the Euler-Lagrange 16 2d À 1                   2  16                                  2              (b)
  chiral condensate, equation. The solution space for the
   partial differential                                                MLO;dD ðxÞ ¼         M0 ðsinðkx1 Þ þ Á Á Á þ sinðkxd ÞÞ; (35)
                                                          (37)                           d
   partial differential equation is much wider than that for the
          Z
     that the higher dimensional Therefore it less favor-
   ordinary differential equation.LO phases areis not trivial
 ote            dy!ðMðyÞÞ ¼ 0:                                      with x ¼ ðx1 ; x ; . . . ; xd Þ being the d-dimensional vector.
 MðxÞJacobi’s elliptic function stays as the most favorable
   that WS                                                       0 In this case the 2thermodynamic potential looks like
ble than the 1D one, yet they have smaller energies than
 estructure(chiral spiral) state. to 1D modulations is taken
     1D-FF when the restriction                                                                        
 esults in thewe do not search for the formal solution, but
   away. Here      following fourth-order ordi-                                              2       3    2  2d À 1 4
  We remark that the ordering of energies with the dimen-                     LO;dD ¼           À       M0 þ          M0
                     equation (when 4  0):
ear differential specific crystals having the simple square or                                 2      16           4d
onality is some
   only try not universal, but rather specific to the LO type.
o cubic symmetry. In order to the 00 Š
    see 3M00 fact, we firstÞdefine demonstrate how the dimen-
         this À 10½MðM0 2 þ M2 M d-dimensional FF-type                                         5ð4d2 À 16d þ 11Þ 6
zÞsionality of a crystal structure affects the free energy,-0.1
     þ



                                                       [x10]
                                                               we                         þ                 2
                                                                                                                     M0 :        (36)
omplex condensate as
               3 on the LO-type phase which has a simpler
                         5
                                                                                                        48d            1D (FF)
 2 M À 6M þ 6M :
   concentrate
                    sffiffiffi                        (9)
   form than the elliptic function. We set multidimensional         From the dependence of the quartic coefficient on the
                                                                                                                      3D (LO)
                      1                                             dimensionality, ð2d À 1Þ=4d, we see that the energy is an
 lve FF;dD ðxÞ ¼ condensates þaeikx2 þ Á Á Á1Deikxd Þ: (38)
   LO-type equation to ikx1 as suitable þ
   M this real           M0 ðefind
                      d
ere is no systematic way to find out the                             increasing function of d near 2 ¼ II . 2D (LO) after
                                                                                                                    2 In fact,
                    pffiffiffi                                      -0.2 minimizing over M0 , the extremal of energy density
n MLO;1D ðxÞ ¼ 2M0 sinðkzÞ; differential
    to a fourth-order nonlinear                                                                                       1D (LO)
ever it isnotand HH , the values of that
   densities sn        so difficult to see Fourier strengths         becomes
   MLO;2D ðxÞ ¼ M0 ðsinðkxÞ þ sinðkyÞÞ;                      (33)
crepresentativeissffiffiffi particularand D.
      function points A, B, C, solution to
                      a                                                                                           1D SN3  
                                                                                      2         3 2 d                2     3
Let sn  snðz; Þ Hbe 2 sn
                      Jacobi’s elliptic function                       LO;dD ¼ À           À                 þO          À       :
    MLO;3D ðxÞ 1
              M¼                    MH            sn      H                            2        16 2d À 1 Homogeneous 2     16
                        MWe then setsinðkyÞ þ sinðkzÞÞ: M5
                          MðsinðkxÞ þ 3        M5
e elliptic modulus.
       1
                     3     03
                                                              -0.3                                                               (37)
 0.0111 0.0111 6 Â 10À8 6 Â 10À8 Oð10À13 Þ Oð10À13 Þ               0      0.05 0.1         0.15 0.2          0.25     0.3     0.35      0.4
  Msn ðzÞ ¼
 0.5291 ðxÞ M0 snðkz; Þ; the ‘‘egg-carton’’ Ansatz in [34].
                                          (10)                 Note that the higher dimensional LO phases are less favor-
  MLO;2D 0.5291 0.0077 to 0.0077
             is equivalent               0.0001     0.0001
 0.8673 condensate0.0563
  Each 0.8665                  0.0559    0.0039     0.0038
                     is characterized by two real parameters   able than the 1D one, yet they 2   have smaller energies than
 1.0672 0.9781 0.1951 are0.1077 determined via0.0132
  M and q whose values          to be    0.0455      minimi-   the 1D-FF (chiral spiral) state.Ishibashi and K. Suzuki, PRD 85, 074002 (2012).
                                                                                     H. Abuki, D.
    0
  zation of . In Figs. 6(a) and 6(b) we show effective order    We remark that the ordering of energies with the dimen-
        ■ 低次元的な凝縮の方がエネルギー的には優位(空間等方性の破れ?)type.FIG. 6 (colorsionality is not universal, but effective orderLO
                                                                 online). (a) The rather specific to the parameters fo
  parameters and free energies. One can see that the energy is
                                              the 1D-LO To see this fact, we first2D-LO d-dimensionalgreen), 3D-LO
  an increasing function of the dimensionality. Also it is      (dashed, red), define the (dotted, FF-type
0                                             (dot-dot-dashed, magenta), as the solitonic state (solid) as a
  notable that the critical points at which the transitions    complex condensate
                                                                                sffiffiffi
                                                                                     and
  from the Wigner to the crystal phases take place are
  common among all three states. To see this analytically, 2 . MFF;dDcomparison, 1the ikx2 þ Á Á Á þ eikxd Þ:the FF phase i
                                              function of          For
                                                                         ðxÞ ¼
                                                                                 1
                                                                                    M0 ðeikx þ e
                                                                                                   quantity for
                                                                                                                              (38)
he1homoge-                  2n ¼            þ 4Nc Nf T                                             ;
   point (E) on the critical
                        ;               2G                  n;1
                                                              m                 X  Z dp
                                                                     ð2Þ3 ðði!m þ Þ2 À p2 Þn 1
þ Þ phase the homoge-
-order    2 À p2 Þn
us phase and                                      2n ¼          þ 4Nc Nf T               3 ðði! þ Þ2 À p2 Þn
                                                                                                                     ;
 he location                                                 2G                 m    ð2Þ         m(54)
 nt the second-order phase
   ð2 ; 4 Þ ¼(54)                                                                                                (54)
 order one. Thewhere ! ¼ Tð2m þ 1Þ is the fermionic Matsubara fre-
                                location
    The mapping from GL space onto (μq-T) space
                                          m
ally found as ð2 ; 4 Þ ¼ summation over the frequency can be done,
Matsubara fre- quency. The
                                                  where !m ¼ Tð2m þ for  and  :
cy can be done, resulting in the following expressions 1Þ is the fermionic Matsubara fre-
   :            (51)
2 6and 4 : a2                                  quency. The summation over 2the frequency can be done,
                                                                                               4
  ja j3                                           resulting in the following expressions for 2 and 4 :
            ; 0:16 マッピングの時にカットオフや結合定数等、モデルパラメータに依存してしまう
                       6
                          :          (51)               Z dp 1 À fF ðp À
     
 6 a8 2 0 is the                PHYSICAL REVIEW D 85, 074002 (2012)Þ À fF ðp þ Þ ;
                     a8 2 ¼ À 4Nc Nf 1
Àpoint, þ Þ
   fF ðp three                   PHYSICAL REVIEW ð2Þ3 074002 Z
                                    2G                      D 85,         (2012) 2p
                     ;   0 is theZ dp
                   n;1                X
t appears for þ 4Nc Nf T X Z 23 ¼ À 4N2 Nf 2 n ;dp 1 À fF ðp À Þ À fF ðp þ Þ ;
                                                           1      1
        2n ¼ is
e 南部-Jona-Lasinioモデルを用いた場合の 3 H. Abuki, D. (55a)
    locationn;1 6                               dp       2G 1 c                                  Ishibashi and K. Suzuki, PRD 85, 074002 (2012).
 figure.which þ 4Nc Nf T m ð2Þ3 ðði!m þ Þ2 À p2 Þn ; CRYSTALLINE CHIRAL CONDENSATES OFF THE . . .
0:27Þ
                   2G
        2n At this point, three
               ¼
                    (55a)
                                                                              ð2Þ               2p
                   2G                          ð2Þ ðði! þ Þ À p Þ(54)
et at once. The location m          パラメータ m
                                        is
                                              Z dp D À f074002 Þ À fF ðp þ Þ
                                                                                       0.5                        (55a)
 2  ðÀ0:016; 0:27Þ ¼ N N REVIEW 1 85, F ðp À (2012)
   ¼                               which
                               PHYSICAL
                             4 þc 1Þfis the fermionic Matsubara fre-
                                                                             (54)                            60             60              60
þ Þ (52) ¼ Tð2mX Z dp
 6     where !m                                  ð2Þ3                  p3                                   80             80              80
     :                                                         1Z
     quency. The 4Nc Nf T þ 1Þ is the fermionic ðpcanÞ þ;f0 ðp þ ÞÞ À fF ðp þ Þ
            ¼ n;1 ¼ summation over Z frequency 2Àdp2 n1fre- F ðp À0.4
       where !mþ          Tð2m                 the             Matsubara À f
                                                   3 ðði! þ0 Þ À p Þ
                                                                       be done,
    jaresultingThethe followingover the ¼ NforF2 can be4 :done,
                                             ð2Þ dp f
 8      2n 3
        6j
                 2G a2                            
       quency. in 6 summation cexpressionsmc Nf and  3 F
                                    þ N Nf 4 frequency ð2Þ 2
                                      m                                                 :p3      (55b)
6 resulting in the following expressions 3  and  p
  Þ 2 with
ompete        ; 0:27        :        (52)            ð2Þ for 2            :
      a8
       :              a8                                            Z Þ 4 (54)
                    (55b) Z dp 1 À f ðp À Þ À f ðp þdp f0 ðp À Þ þ f0 ðp þ Þ
 mensionless 4N N 1                                                             F      0.3 F
        2 ¼ À c f Z                                F     þ Nc Nf F
                                                                             ;3            2
                                                                                                           :      (55b)
                  1
                 ap-                with
                                       1Þ                   2p F ð2Þ
                                           3 1 À f ðp À Þ À f ðp þ Þ
intwhere !m À 4N We can derivefermionic expressions; for higher p
        T is 2G compete ð2Þ
hiral phase ¼ Tð2m þ dp is the F                   similar Matsubara fre-               order coef-
        2 ¼                  Nf                                                                                                       8=0
                                                                    T/
                            c              3
gher orderThe summation             ð2Þ
 point. Any dimensionless momentum can be done,
g values:2Gcoef- ficients.over the frequency integral in 2 (4 ) has quadratic
                                         The                2p              (55a)
                                                                                                                                       6=0
     quency.
                               T is ap-                                                0.2
                                                  We can 2 and similar expressions Ã. higher
 tant when in the following expressions for derivethat: we need a cutoff for As a order coef-
     resulting point(logarithmic) divergence so 4 (55a)
 4 ) has quadratic                                                                                                                     4=0
y the following consequence, Þ À f functional forms become22 ¼ has quadratic
a cutoff Ã. As avalues: fF ðp Àficients.ðp þ Þ
                        Z dp 1 À                    their The momentum integral in                 (4 )
        4 ¼1 c f Z Ã2         Zf dp 1 ÀT=Ã;À Þand F þ Þ ð=Ã; T=ÃÞ with g 
                                                           F
                                                fF ðp3 gÞ À f ðpdivergence so that we need a cutoff Ã. As a                            2=0:
  become NÀ 4Nc Ndp 3 1 ð=Ã; À(logarithmic) 4 ¼ f;2
     2 ¼
                    N ¼
                      2 ð2Þ 1 À f ðp Þ À fF ðp þ Þ
                                                    p                                  0.1
             ¼ Nc g Z 3ð2Þ F
                              f
        Á with Nf  GÃ2 as03 the dimensionless NJL coupling and ffn g being                                                           g=2.0
 :369 (53) ð2Þ f ðp À Þp3 f0 2p þ Þ their functional forms become 2 ¼
T=ÃÞ 4 Á Á ;  2G
                                 dp F             consequence,
                                                     þ F ðp                                                                            g=2.5
                þ Nc Nf Z                            2 f ð=Ã; T=Ã; Higher  ¼ f ð=Ã; T=ÃÞ with g 
                             some3 dimensionless functions. gÞ and order coefficients,
  and ffn g being ð2Þ f0 ðp À Þp2 f0 ðp þ Þ    Ãþ 1             :        (55b)
                                                                         (55a)      4      2                                           g=3.5
                                 dp F
der coefficients, 2n (n ! 3), no 2longer have the(55b) divergence so that ffn g being
                þ Nc Nf             3
                                                        2F         :         UV
                                                  GÃ as the dimensionless NJL0coupling and
 :308 Á Ácan Z dpð2Þfunctional p ðp þ Þbe summarized as 2n ð; TÞ ¼ coefficients, 0.6
       We                         1
                                     (53)
 ergenceÁ ;soderivetheirÀ fF ðp À Þ À ffor higher order coef-
                                                  some can
                                                     forms
                      that similar expressions F dimensionless functions. Higher order     0           0.2       0.4              0.8       1     1.2
  as ¼ Nc NTÞ ¼ fn ð=TÞ=2ðnÀ2Þ . for ! 24) is nofunction have the UV (two)
     ficients. f
       We ð; derive similar expressions f12 (f 3), order coef- having three divergence so that
        4
           2n can Theð2Þ3momentum integral2n (n higher a quadratic
                                                  
                                                 p3 in  ( ) has longer                                                   /Λ
   period. The arguments, while F  for4 (n !forms a
ving three (two)divergence integralweffunctional quadratic only a single argu- 2n ð; TÞ ¼
 :001 Á Á Á ;All Zmomentum so Þtheir ðp2þ Þ)cutoff 3) As can be summarized as
       (logarithmic) dp f0 ðp À that f0 need a has Ã. has
       ficients.                       F           þ in n (
 they 2 þ Nc Nf ð2Þ3 =T. Thus forms cutoff of vanishing  (color ! 3
       (logarithmic) ment, functional2 ð=TÞ=:2ðnÀ2Þ .(55b)¼ ) is function online). Mapping of the conditions of vanishing
y a consequence, divergence so that nwe need abecomeÃ.2 (fFIG. a102n for n having three (two)
        single argu- their
           do not                                 f the condition f1 a2
                                                  pf ð=Ã; T=ÃÞ with As
e wouldð=Ã; T=Ã; gÞ into a straight line in while fgfor (n if f3) has onlyto single argu-
 g Ã2 f21 say! 3 turns and 4 ¼ 2 forms become TÞ ¼
       consequence, their functional
        2n for nthe dimensionless                 arguments, the ð; 2 plane ! n ðxÞ ¼ 0 hasa the (, T)-phase space. Solid (red) lines
ng the felliptic T=Ã; gÞ and  NJLfcouplingT=ÃÞ ffn g being
                          period. All ¼ ð=Ã; and with ng                      本研究ではα60と仮定しているので、青い領域に相当
                                                                                GL coefficients
       GÃ 1 ð=Ã; a solution for x ! 0.
       Ã ¼In has as
 if WeðxÞ dimensionless functions.ment, =T. Thus the condition of vanishing ¼2n for n ! 3
  e fsome derive similar not
      sense 0
 (T)nitself.that they do expressions
            can
              2
                                              4       2for higher order coef-
                                                    Higher order coefficients,   correspond to   0 for several different values of the NJL
荷電パイ中間子凝縮と散乱現象
                                              D. Blaschke,N.K. Glendenning,A. Sedrakian
                                              ”Physics of Neutron Star Interiors”




■ 中性子ーパイ中間子凝縮相互作用により
 ニュートリノの放出率上昇                                                         パイ中間子凝縮
                                                                       を考えた場合




                       ニュートリノ放出による中性子星冷却率
■ 中性子星の冷却に寄与




■ 空間的に非一様な構造だと?




                                            星の質量/太陽質量

Master's Thesis Presentation 2013/02/19

  • 1.
    理学研究科 物理学専攻 修士研究発表会 有限アイソスピン化学ポテンシャルにおける 強結合クォーク物質の基底状態 理学研究科 物理学専攻 鈴木克彦研究室 岩田 裕平 2013年2月19日 @ Tokyo University of Science (kagurazaka)
  • 2.
    目的 原子核の5∼15倍の密度 相対論的重イオン衝突実験 中性子星 http://www.rarf.riken.go.jp/rarf/rhic/acc/rhic.html http://spaceinfo.jaxa.jp/ja/supernova_explosion_neutron_star.html ■ 高密度な領域で実現される物質の状態を調べること
  • 3.
    用いる力学:量子色力学(Quantum Chromodynamics :QCD) ■ 電磁気学 e 電子 光子(電磁場) ■ 量子色力学 (QCD) g q クォーク グルーオン ■ 特徴 低エネルギースケールで非摂動論的な強結合をする u c t +2/3 電荷 本研究で扱うのは低エネルギー・強結合の物理 d s -1/3 b 軽      重
  • 4.
    多体に拡張すると ― ‘‘Moreis different’’ in QCD ■ 電磁気学 プラズマ 超伝導 ボーズ・アインシュタイン凝縮 ■ 量子色力学 (QCD) 低エネルギーにおけるQCD相図 ■クォーク・グルーオンプラズマ(高温) □カイラル凝縮(低温・低密度) クォーク・反クォークの凝縮 陽子・中性子の質量の起源 ■カラー超伝導(高密度) クォーク・クォークの凝縮
  • 5.
    実験観測 ▷ QCD相図 陽子数・中性子数に差 荷電中性条件より =uクォーク数とdクォーク数に差 uクォーク数とdクォーク数に差 陽子 中性子 電荷:2/3  -1/3 u d 加速器実験 高密度天体 u,d非対称性の軸 が必要
  • 6.
    研究の概要 YI, H. Abuki and K. Suzuki, [arXiv:1206.2870]; YI, H. Abuki and K. Suzuki, [arXiv:1209.1306]. ■ u, dクォークの非対称性(有限アイソスピン化学ポテンシャル)が加わった時、 臨界点近傍の基底状態がどのように変化するか調べる ■ モデルに依存しない方法としてGinzburg-Landau理論を用い、定性的に評価する 温度 T 高密度QCDでは第一原理計算不可能 第一原理計算可能 臨界点 モデルでアプローチされてきた領域 カ D. Toublan and J. B. Kogut, PLB (2003); D. T. Son and M. A. カイラル凝 A. Barducci, R. Casalbuoni, G. Pettini and L. Ravagli, PRD (2004). イ Stephanov, PRL (2001). 縮 ラ ¯ u u d d ル相 ¯ この領域にアイソスピン化学ポテンシャルが 子 転移 間 及ぼす影響を、より一般的に理解したい 中 ャル クォー イ ¯ u d ク化学 パ 縮 電 凝 シ ン d µq = ( ポテン 荷 テ µ µu + µ シャル d )/2 ポ ¯ d u 化 学 ピ ン µu ソ ス = アイ µI
  • 7.
    なぜGinzburg-Landau (GL) 理論? ■ Landau理論を使えばモデルに依存しない議論をすることができる Landau理論 微視的なモデル ◎ 対称性よりポテンシャルを導出 ◎ Lagrangian密度 (+平均場近似) L 2 (µq , T ) 4 (µq , T ) 6 (µq , T ) Landau ( )= + + 2 4 6 2 4 6 ( :秩序変数) ◎ 熱力学ポテンシャル (µq , T ) { 2 [ 6 ], 4 } ◎ スケール変換して       平面で基底状態 1 を決定 ◎ ポテンシャルを最小化する基底状態を決定 4 (µq , T ) =0 モデル依存性がある 無秩序相 150 無秩序相 2[ 6 ](µq , T ) 1 T MeV 100 温度 秩序相(凝縮) =0 モデルを使えば 50 秩序相(凝縮) { 2, 4} {µq , T } 0 の写像を探せる 200 0 100 300 400 クォーク化学ポテンシャル q MeV モデルに依存しない議論を行える D. Nickel, PRL 103, 072301 (2009).
  • 8.
    Ginzburg-Landau理論 空間に依存 ■ 秩序変数:カイラル4元ベクトルの平均場 ¯ u u ¯ d u =( , 1, 2, 3) ¯ qq , ¯ qi 5 q 中性 荷電 c 中性 カイラル凝縮  π中間子凝縮(3成分) ■ ポテンシャルを秩序変数で展開(Ginzburg-Landauポテンシャル) 2 4 6 D. Nickel, PRL 103, 072301 (2009). GL [ , ]= + ( ) + ( ) 2 2 2 2 3 2 4 6 カイラル対称性 + 4,b ( )2 + 6,b ( , )2 (4成分を等価に扱う対称性) 秩序変数の微分: 4 6 6,c 6,d SU (2)L SU (2)R 空間非一様を促進 + [ 2 ( ) 2 ( , ) ]+2 ( ) 2 6 6 対称性を‘‘あらわに’’破る 2 4 4,b 4,c + 2 + 4 + ( 2 2 ) c 2 + ( c) 2 2 c 4 c 4 c 4 U (1)I3 ;V U (1)I3 ;A アイソスピン対称性を破る項を加える さらに自発的 に破れると ■ 対称性より, 1 = , 2 = 3 =0 荷電πが凝縮 σが凝縮 ■ GL係数 , (温度・化学ポテンシャルの関数)を関係付けていく
  • 9.
    GL係数間の関係 YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph]. ■ パラメータ   ) を µI の2次まで展開 (µI S : u, dクォークのプロパゲータ 2 cµ2I O(µ4 ) I tr[Su Sd ] 0 dµI2 4 (µI = 0) u u > 4 = 4b 0 db µ2I 6 (µI = 0) . > 0 dc µ2 2 (0) u > d > 4c I > 2 µI > 4 ■ 展開係数を微視的に(右のようなループ d d 計算を用い)決定 tr[Su Sd Su Sd ] c= 1/2, d = db = dc = 1. µI u u d 係数が負=有限  で荷電π凝縮が存在すると ポテンシャルを下げる > > > (0) 2 > > d d µI d d > > 4 >> 6 ■ スケーリングして、 2 , 4 } {  平面でポテ > u d u ンシャルを最小化する基底状態を探す . . .
  • 10.
    µI = 0 アイソスピン対称(   )な基底状態 点線:二次相転移 実線:一次相転移 D. Nickel, PRL 103, 072301 (2009). ■ ゼロアイソスピン化学ポテンシャル D. Nickel, PRL 80, 074025 (2009). モデルによる解析 無秩序相 150 − 無秩序相 α2 [α6 1 ] モデルを使えば T MeV 100 空間非一様 マッピングできる 空間一様 カイラル凝縮相 50 カイラル凝縮相 温度 空間一様 0 カイラル凝縮相 0 100 200 300 400 クォーク化学ポテンシャル q MeV 空間非一様 カイラル凝縮相 ■ カイラル凝縮は高密度相転移近傍でドメイン構造を作る 変分して決定 GLポテンシャルのEuler-Lagrange方程式 (z) = k sn(kz; ) z =0 A.I. Buzdin, H. Kachkachi PLA 225 341 (1997). Euler-Lagrange方程式の解の一つ:1次元方向zへの変調を持つ
  • 11.
    µI = 0 点線:二次相転移 アイソスピン非対称(   )な基底状態 実線:一次相転移 YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph]. ■ 有限アイソスピン化学ポテンシャル 非一様性まで加えたモデルによる先行研究はない 一様 荷電π中間子凝縮相 空間非一様 モデルを使えば カイラル凝縮相 温度 マッピングできる 無秩序相 空間一様 空間一様 凝縮相 カイラル凝縮相 空間非一様 クォーク化学ポテンシャル 空間非一様 荷電π中間子凝縮相 空間非一様 カイラル凝縮相 荷電π中間子凝縮相 ■ 凝縮の形は? 変分して決定 (z) = k sn(kz; ) (z) = k sn(kz; ) Euler-Lagrange方程式を連立 = 0, =0 z or z カイラル凝縮がドメイン構造を持つ解 荷電π凝縮がドメイン構造を持つ解 2つの凝縮が混ざる場合は解析的に解くのは困難(数値計算によって別の形が現れる可能性がある)
  • 12.
    まとめと結論 ■ アイソスピン非対称性によって、臨界点近傍でも荷電π中 間子凝縮が誘起される 一様 荷電π中間子凝縮 ■ 臨界点近傍より低温度・高密度な領域では、荷電π中間子 無秩序 温度 凝縮が空間非一様なドメイン構造を作った方がエネルギー 的に優位である 非一様 一様 カイラル凝縮 ■ 構造が複雑化したことにより、(多重)臨界点が増加する カイラル凝縮 非一様荷電π中間子 凝縮 ■ 解析的な手法によって臨界点近傍の基底状態を予言した点 クォーク化学ポテンシャル で、QCD物質分野への貢献をした 本結果から予測される有限 アイソスピン密度での相図 Speculation ■ 荷電π中間子凝縮が天体で実現したら、星内部の散乱現象 に効く可能性がある
  • 13.
  • 14.
    ntum Chromodynamics arepresented the years, too. Including vaccum polarisation ofterms, similar but Including β1 and higher order three light single measurement. books and articles, asexclusive[2,3,4,5, only quark flavours and extended and volume effects, as overall As can be seen, the values of e.g. means vary complicated relationsmeans αsunderstand and cor- rect for finite2 lattice spacing for to (Q2 ), the a function of α e between a minimum of 0.11818 and a maximum 0.11876. error ofln 2 as in equation 4, emerge. They can be s following, only a brief summary of and of these Q results significally decreased over time, while ativethat in the casethecalculating theirmeans and ac- the value ofµαs (MZ )today quote the smallest overall aver- Note QCD ”rules” of these exclusive overall errors, age. Lattice results gradually approached the world error and of running coupling 0 cording to the numerically, such that for a given value of αs (µ2 ), cho くりこみ群によるQCDの解析 given.out of the eight cases small error scaling factors on αs (MZ ); it is, however, ensuring to see and note that in four a suitable reference lattice results is the marginally the Z0 b 0 of g = 1.06...1.08 had to be applied, while in the other the world average without scale like only mass of µ = MZ while s (Q2 ) size be total uncertainty on cases, overall correlation factors of about 0.1, and in one different, 0 , α the smallcan of the accurately determined a case of 0.7, had to be applied to assure χ2 /ndf = 1. Most the world average 2 naturally, largely influenced by the is, 0 ) changes 0Z )=energy result. Q ≥ 1 GeV2 . nce of thesaverage value αs (MZ result fromto αs (MQCD. lattice scale notably, α 0.1186±0.0011 when omitting the lattice With S. Bethke (2009). αs known at a specific energy scale 0.5 µ2 Λ2 = 1/(β α (µ2July 2009 有効結合定数 )) , 5 Summary and Discussion dence is given by the renormalisation α s(Q) e 0 s In this review, new results and measurements of αs are dimensional parameter Inelasticintroduced such that a Deep Λ is Scattering summarised, and the world average value of αs (MZ ), as 0.4 e+e– Annihilation 2 0 previously given in [7,28,6], is updated. Based on eight tion 4 transforms into Heavy Quarkonia (Q )measurements, which partly use new and improved srecent 2 = β αs (Q2 ) . (1) 1 ∂Q NNLO and lattice QCD predictions, the new av- N3LO, 2 αs (Q ) = . erage value is 2 /Λ2 ) 0.3 β0 ln(Q ■ カラー量子数を持つ± 0.0007 , ansion of the β function is calculated αs (MZ ) = 0.1184 0 pproximation to [8]: ■ 低エネルギーで非摂動論的な強結合をする which corresponds Hence, the Λ parameter is technically identical to th ergy scale Q where αs (Q2 ) diverges to infinity. To g β0 α2 (Q2 ) − βMS =(Q2 ) 9 ) MeV . s (5) 3 Λ 1 αs (213 ± 0.2 numerical example, Λ ≈ 0.1 GeV for αs (MZ0 ≡ 91.2 βThis4result ) − β3 α5 (Q2 ) +one obtained in(2) pre- 0.12 and Nf = 5. 2 αs (Q2 is consistent with the O(α6 ) , the = s s viuos review three years ago [28], which was αs (MZ ) = 0 In complete 4-loop approximation and using t 本研究で扱ったのは低エネルギーの物理 0.1189±0.0010. The previous and the actual world average have been obtained from a non-overlapping set of single parametrisation, the running coupling is given [9] by 0.1     (温度でいうと0∼1兆[K]) results; their agreement therefore demonstrates a large de- QCD α s (Μ Z) = 0.1184 ± 0.0007 gree of compatibility between the old and the new, largely 2 1 1 110 improved set of measurements. αs (Q ) = − 3 2 β1 [GeV] 100 Q ln L The individual mesurements, as listed in table 1 and β0 L β0 L エネルギースケール displayed in figure 5, show a very satisfactory agreement Fig. 6. Summary of measurements of αs as a function of the , each other and with the overall average: only one respective energy1 Q. β1 curves are QCD predictions for with scale 2 The 2 β2
  • 15.
    第一原理計算と符号問題 - OUTIN H EAVY-I ON C OLL P HASEDIAGRAM : F REEZE Lattice QCD スパコンによる第一原理計算が可能 Simulations figure taken from Blaschke our interests P D A −M NIC 分配関数 Z = Tre SQCD = DA [detMq (µq )]e Sg Ratios - + - + - *0 - *0 - p /p Λ /Λ Ξ /Ξ µ /π K /K K /π- 0 /π- K /h K /h p Dirac op. Mq (µq ) = i Dµ m + µq 1 π Statistical model describes composi det Mq (µq )† =with Mq (freeze det few µq ) Mq (µq )† = i µ Dµ m + 0 µq = 5 Mq ( µq ) Heavy-Ion Collisions 5 det Mq complex (µq = 0) ∞ gi T =1 174 MeV ln Z[T, V, {µ}] = ±V dp 期待値 -1 O = f.o. µf.o.=Z MeV 46 DA [det Mq ] e Sg complex! i 2π 02
  • 16.
    QCD臨界点(2 flavor) H. Fujii, M. Ohtani (2004) 静的臨界性→Landau理論 ■ chiral limit (m = 0) ■m≠0 SU (2) SU (2) O(4) ( , 1, 2, 3) 二次 T 二次 c hi chiral-symmetric h≠0 sym me ral- qq = 0 tr y - bro qq = 0 ke n 一次 一次 µq
  • 17.
    点線:二次相転移 凝縮が空間一様と仮定した基底状態 実線:一次相転移 YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph]. ■ ゼロアイソスピン化学ポテンシャル ■ 有限アイソスピン化学ポテンシャル 一様荷電π中間子凝縮相 無秩序相 無秩序相 一様カイラル凝縮相 一様カイラル凝縮相 6次までのLandau理論と等価(例 : spin1-Ising) 温度 150 T MeV 温度 100 50 0 0 100 200 300 400 クォーク q MeV クォーク化学ポテンシャル 化学ポテンシャル
  • 18.
    凝縮は一様としていいのか ๏ 非一様カイラル凝縮からの示唆@カイラルリミット ☞[fm]スケールの変調がある相 E. Nakano and T. Tatsumi, PRD (2005). D. Nickel, PRD (2009); S. Carignano, D. Nickel and M. Buballa, PRD (2010). ☞低次元(一次元)変調が好まれる H. Abuki, D. Ishibashi and K. Suzuki, PRD (2012); S. Carignano and M. Buballa, arXiv (2012). 温度 !→0 σ(x) amp 臨界点(リフシッツ点) z 二次 -amp 二次 二次 !=1 σ(x) amp sin(kz) ( 0) z 一様 非一様 0<!<1 σ(x) -amp amp クォーク化学ポテンシャル tanh(kz) ( 1) z (x) = k sn(kz; ) -amp
  • 19.
    Why inhomogeneous? 123706 L ETTERS K. M. SUZUKI e ■ 物性理論においても示唆 FFLO state 2 1=2 locity and vF0 ¼ hv ik where hÁ Á Áik 0 (a) free energy difference [10 ] -2 rface ■ フェルミ面の”ズレ”によって生じる average. We assume a magnetic -axis. The Eilenberger units of R0 for -0.1 magnetic field are used.19,20) The order atsubara frequency !n are normalized Abrikosov L=30 L=27 -0.2 L=200 L=25 L=100 L=23 L=75 L=21 L=50 L=20 conditions, the order parameter is L=41 L=19 L=17 L=35 -0.3 0.97 0.98 0.99 H/Hc21 picture taken from Machida X カイラル凝縮でも yà 0 N0 T h f þ f ik ð2Þ (b) T/Tc=0.1 1 化学ポテンシャルの増加→フェルミ面の形成 0<!n !cut H/Hc2 P →反クォーク・クォーク間のフェルミ面ミスマッチング þ 2T !À1 . We use ! ¼ 0<!n !cut n cut HLO 0.95 self-consistently determined by 2T X Hcr r  Mpara ðrÞ À 2 hv Im gik ; ~ ð3Þ 0.9 0! K. SUZUKI, et. al. JPSJ (2011) n 0 0.1 0.2 0.3 0.4 0.5 oth the diamagnetic contribution of T/Tc2 st term and the contribution of the
  • 20.
    20 基底状態のAnsatz chiral Real KinkCrystal σ(x),π(x) (x) = k sn(kz; ) , = 0. m z -m pionic Real Kink Crystal = 0, (x) = k sn(kz; ) . deformed chiral spiral T. Tatsumi, arXiv:1102.0064 [hep-ph]. (z) = mcn(qz; ), (z) = msn(qz; ) . σ(x),π(x) m 0 z (z) = mcos(qz; ), (z) = msin(qz; ) E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005). -m
  • 21.
    21 非一様凝縮で計算するダイヤグラム(詳細) ๏ GLポテンシャル 2 4 6 GL [ (x), (x)] = + ( ) + ( ) 2 2 2 2 3 h 2 4 6 4,b 6,b + ( ) + 2 ( , )2 4 6 6,c 6,d + [ 2 ( ) 2 ( , ) ]+2 ( )2 6 6 2 4 4,b 4,c + 2 + 4 + ( 2 2 ) c 2 + ( c )2 2 c 4 c 4 c 4 ๏ 新しく考慮すべきダイアグラム σ σ π π p σ p π π (0) α α (0) β µI2 α 4,b 4 4,c 6 σ p π p π σ σ π π D. Nickel, Phys. Rev. Lett. 103, 072301 (2009).
  • 22.
    22 凝縮が非一様な場合の結果 ๏ 有限アイソスピン密度 ๏ ゼロアイソスピン密度 µI = 0 二次 (リフシッツ点) −1 二重臨界点 三重臨界点 α2 [α6 ] 二次 =0 4 2 µ (3 I /32, -3 I /2) 三重臨界点 (リフシッツ点) µ =0 σ( x) 二次 二重臨界点(リフシッツ点) = 0 非一様カイラル凝縮相 二次 二次 非一様荷電パイ 臨界点 一次 4 2 中間子凝縮相 非一様カイラル凝縮相 (0.21µ I, -2.22µ I) YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph]
  • 23.
    有限質量の場合 カレント質量mに比例(h∝m) explicit chiral ๏ GLポテンシャル ☟ symmetry breaking GL [ , ] = 2 2 + 4 ( ) + 2 2 6 ( ) 2 3 h SU (2)L SU (2)R 2 4 6 SU (2)V 2 4 4,b + 2 + 4 + ( 2 2 ) c 2 other explicit breaking 2 c 4 c 4 c SU (2)V U (1)I3 ;V      ☝ アイソスピン密度により ๏ 相図 有限アイソスピン密度・有限カレント質量 自発的に破れて 温度 実線:1次 ? パイ中間子凝縮が起きる 点線:2次 臨界終点 π σ ? σ(x) π(x) クォーク密度 23
  • 24.
    凝縮一様・有限アイソスピン密度・有限質量 ๏ カイラルリミット(h=0) ๏ 有限カレント質量 (h≠0) 3/2 h[ 6 ] 1 = 0.5 µI 6 ] 2[ 一様荷電パイ中間子凝縮相 一様荷電パイ中間子凝縮相 2[ 6 ] 1 2[ 6 ] 1 二重臨界点 (0, 0) カイラル対称相 三重臨界点 三重臨界点 (0, −µI ) 2 一様カイラル凝縮相 臨界終点 4/5 2/5 2 (2.28h , −2.25h −µI ) YI, H.Abuki, K.Suzuki, arXiv:1206.2870 [hep-ph] 24
  • 25.
  • 26.
    location of CEP 2-flavor QCDにおいて、臨界点の位置は未だ不確定 温度T 高fugacity領域 μqT に存在する場合、正当化 µq/T=1 臨界点 対称相 quarkからの寄与 gluonの寄与 カイ ラル 凝縮相 縮 相 μI 凝 ャル 間 子 ン シ クォ 中 ポ テ ーク 電 パイ 化 学 化学 ポテ ン ンシ 荷 ス ピ ャル ソ μ q アイ
  • 27.
    quark loop contribution the feedback from quark loops S0 = diag(Su , Sd ) T Nc 1 n (x) = (x)1 + i 5 (x) 1 = Tr (S0 (x)) . V n=2 n ☞σとπの係数をμIで摂動展開し、比例係数を決定 2 1 aµ2 I O(µ4 ) I (0) 2 4 = 0 1 bµ2 I (0) 4 , a = 0, b = 1, c = 1/2, d = db = dc = 1. 6 0 0 1 (0) 6 2 cµ2I O(µ4 ) I (0) 4 0 dµI2 = 4 . 4b 0 db µ2I (0) 6 4c 0 dc µ2I
  • 28.
    if the dy!ðMðyÞÞ¼is restricted andwhere k and M that, A and Following constants.1 Following the C modulation 0: closely follow the discussion in [37]to 1D, Jacobi’s 0ellipticwhere k and Mbeingthe discussionnumbers. dis demonstrate are constants.1 B 0 are arbitrary in with MðxÞthe modulation is restricted to 1D,[37], we canelliptic [37], we can show that this function obeys a fo WS if function gives in fact an adequate solution to the problem. this function we see that Msn constitutes a Jacobi’s show that and (11), obeys a fourth-order Eqs. (10) results inus start with thean adequate solution toequation for thedifferentialEL equation (10) when the follo Let the following Euler-Lagrange differential equation function gives in fact fourth-order ordi- (EL) the problem. solution to the equation why elliptic function Let us start with the Euler-Lagrange (EL) equation for algebraic Mð4Þ00þ ðAk2 1Þk2 ð2 þ 1ÞM00 À k2 ð12 À BÞ inhomogeneous chiral condensate, near differential equation (when 4 0): 0 ¼ Mð4Þ þ ðA þ 1Þk2 ð20þ 1ÞM À þ are À BÞthe ¼ equations all satisfied: In the sn sn ð12 Mk4 ½Að2 þ 1Þ2 À B2 Š; conde sn sn 2 inhomogeneous chiral condensate, Z2 00 62 ¼ 0 2 M0 00 02 soidal ðzÞ þ 3M À 10½MðM Þ þ M M dy!ðMðyÞÞ ¼ 0: Š 0 00 0 Þ2 þ M2 M00 Š ½Msn ðMð2 þ 1Þ2 À Bþ ½Ak4 ð2 þ 1Þ2 À B  þ ½Ak4 sn Þ2 þ Msn Msn2Š 2 Š2 2 Z MðxÞ WS  ½Msn ðMsn sn sn À3 ¼ Àð1 þ AÞk ð þ 1Þ; forms 2 M À 6M3 þ 6MMðxÞ 5 : dy!ðMðyÞÞ ¼ 0: (9) 2k 4 2k4 24 3k4 3 þ Fig. 2 WS k2 3k  Msn À 2 ð1 þ 2 Þð3  Msn À M2sn þ 4Þð3 À B þ AÞMsn of 42 À B þ AÞM3ð1 þ ð4 À BÞMsn ; 5 M0 ð4 The condition results in the following fourth-order ordi- M0 10 ¼ 0 2 ð12 0À BÞ; M olve this equationresultsdifferential equation (when 0): The 非線形微分方程式 athe following fourth-order ordi- nary, but nonlinear in suitable 1D condition to find M0 meter 4 (11) over t herenary, but nonlinear way to find equation (when 4 0): is no systematic differential out the 4 00 2 00 with A and À 2k ð1 arbitrary numbers.bei À6 B being Comparing ð4Þ nonlinear differential 0 with A 2 and B being arbitrary¼numbers. þ 2 Þð3 À B þ AÞ; C K n to a fourth-order ðzÞ þ 3M À 10½MðM Þ þ M M Š 0¼M Eqs. (10) and (11), we M02 see that M constitutes a ð4Þ 00 0 2 Eqs. (10)00and (11), we see that M constitutes a sufficient 2 sn wever it 0 ¼ M so difficult À 310½MðM Þ þ M M Š is not ðzÞ þ 3M to see that 5 solution to sn EL equation (10) when the follo the þ 62 M À 6Msolution :to solution to the EL equation (10) when 4the following five þ 6M (9) ic function is a particular 3 5 algebraic 6 ¼ 3k ð4 À BÞ: equations are all satisfied: þ 62 M À 6M þ 6M : (9)are all satisfied: M4 4 Let snðz; Þ be to solve this equation to algebraic suitable 1D We need Jacobi’s elliptic function find a equations 62 ¼ k ½Að2 þ 1Þ2 À B2 Š; 0 CRYSTALLINE CHIRAL CONDENSATES OFF6 ¼ . .4. 2 þ 1Þ2 À B2 対応 THE ½Að PHYSICAL he elliptic modulus.There is no systematicfind a to find 2out ktheEqs. (12c)À3 ¼ Š; þ we 2see þ 1Þ;=k; BÞ ¼ We then set We need to solve this equation to way suitable From modulation. 1D and (12e), AÞk ð Àð1 (12a) 2 ðM 0 E is e where k and M0 are constants.1 Following finddifferential þ AÞk2 ð2 À28Þ, k2 thelim(12b) sn ðz;in al modulation.snðkz; Þ; no fourth-order way to There is a systematic nonlinear out the general solution to と仮定した時に従う非線形微分方程式 À3 ¼ Àð1 in the discussion BÞ ¼ ð2; þ 1Þ; but ðM0 =k; latter M We c results AÞ= q¼2 e Msn ðzÞ ¼ M0 (10) 2. Then we 10 ¼ theð12 2 !II À0 =k; BÞ ¼ À BÞ; ðM0 d generalwe can showa that is not so difficult differential ð12 À BÞ; take M0 choice (12c) phase [37], solution to fourth-order nonlinear to fourth-order equation. However it this function obeys a 10 ¼ that seeand k 2 2 ¼ equation. However function isPhys.difficult to solutionMto case we see Eqs.2k4 differential equation Kachkachi, soa Lett. A 225, 341see that 0 Jacobi’s Buzdin and H. is not A.I. elliptic it particular (1997). this in 2 (12b) and (12d) are d 2 Þð3 À B þ AÞ; Fin d Jacobi’s elliptic Let snðz; Þ be Jacobi’s elliptic function 4 we are À6 ¼with 0only algebraics Eq. (9) [37]. function is a particular solution so that 2 to 2k left À 2 ð1 þ two In À B þM we still have ½ to 2 Þð3the latter limit, A goes 2 ; k Eq.¼(9) [37]. Let 1Þk2 ð2 þ 1ÞMsn À then setBÞ ¼ À Mand þ condensate jMðzÞj vanisheson ð4Þ þ ðA þ 0 Msnbeing the elliptic with be Jacobi’s ð12 À À6 (12a) 2 snðz; Þmodulus. We elliptic function 0 ð1 (12b), whereas 00 4 AÞ; (12d) three the w o- 2 M0 set parameters, , k, 6 ¼ 3k4 ð4 À BÞ: these two equ and A. From d with being the elliptic modulus. We then 3k4solve soidal. M0 a functionlimits are These two of the c Msn ðzÞ ¼ M0 snðkz; Þ; 0 Þ2 þ M2 M00 Š þ ½Ak4 ð2 þ 1Þ2 À B2 Š 4 6 ¼ (10) À BÞ: and k as can ð4 (12e)  ½Msn ðMsn ðzÞ ¼ Msn Msn sn snðkz; Þ; M (10) 0 From A (and and Denoting see ðMin the ¼ parameter Eqs.forms2as (12e), we these0 =k; BÞ (12c) ). we assumed functi 0 2k 4 From Eqs.4(12c)and ðM0wewe Fig. at0 =k;the¼ ð1; 2Þ or solution 3k and (12e), BÞ seeð2;2(a) one-parameter of ma A, ¼ À28Þ, but =k; arriveðM a BÞ the latter results in c amplitude and . Then we take the choice ðM0 =k; BÞ ¼  Msn À 2 ð1 þ 2 Þð3 À B þ AÞMsn=k; BÞ ¼ ð2; À28Þ, but the latter . Alsocomplex k2 togethe 3 ðM0 þ 4 the EL ; 5 ð4 À BÞMsnequation: results in depicted of in this case we 2 Eqs. (12b) and (12d) are d see M0 and . M0 we take the choice ðM0 =k; BÞ ¼ ð1; 2Þ, and Then so that we sn ðz; left ave kA A snðkA z;algebraic M are AÞ ¼ defined by A Þ: roo meter m withdegenerate the , |M(z)| 74002-4 only two in this case we see Eqs. (12b) and (12d) are we still have three (12a) and (12b),the elliptic whereas 4002-4 (11) only over algebraic of A,modulation so that we are We stress that for any value equations left with two as long as 0
  • 29.
    ground state ansatz chiral Real Kink Crystal σ(x),π(x) m (x) = k sn(kz; ) , = 0. z -m pionic Real Kink Crystal = 0, (x) = k sn(kz; ) . deformed chiral spiral T. Tatsumi, arXiv:1102.0064 [hep-ph]. (z) = mcn(qz; ), (z) = msn(qz; ) . σ(x),π(x) m 0 z (z) = mcos(qz; ), (z) = msin(qz; ) E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005). -m
  • 30.
    Amplitude of condensates 1 CSNdataTABLE13.dat u 1:(sqrt($2*$3)) PSNdataTABLE13.dat u 1:(sqrt($2*$3)) homoCtab13.dat 一様カ 0.9 homoPtab13.dat 0.8 イラル 凝縮 非一様カ 0.7 0.6 σ,π 0.5 0.4 イラル凝 0.3 0.2 0.1 縮 0 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 1 一様カイ 1 CSNdataTABLE22.dat u 1:(sqrt($2*$3)) CSNdataTABLE28.dat u 1:(sqrt($2*$3)) 非 PSNdataTABLE28.dat u 1:(sqrt($2*$3)) ラル凝縮 PSNdataTABLE22.dat u 1:(sqrt($2*$3)) 0.9 一様カイ homoCtab22.dat 0.9 homoCtab28.dat ラル凝縮 一 homoPtab22.dat homoPtab28.dat 0.8 様 0.8 0.7 カ 0.7 イ 非一 ラ 様π σ,π 0.6 0.6 0.5 非 ル凝 0.5 中間 一 子凝 様 縮 0.4 0.4 0.3 π中 0.3 縮 0.2 間 0.2 子 0.1 凝 0.1 縮 α2 α2 0 0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.5 0 0.5 1 1.5
  • 31.
    (a) ing minM !ðMconst Þ ¼ minM;k h!ðM0 1 FF (spiral) worked out numerically and the lo LO (sinoidal) point was found as 0.8 SN (solitonic) 2 ðLO $ SBÞ ffi 0 振幅 Homogeneous 0.6 mave which is larger than I $ 0:1389 fo 2 0.4 reflecting the fact that the LO phase the SN phase. Crossing the critical phase to the LO phase, the magnitu 黒 0.2 drops by about 20%. Also the ratio 0 mass to the magnitude of the wave v 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 just at the critical point has been fo 2 (x) = k sn(kz; ) These can be summarized as (b) 1.4 M0 ðLOÞ M0 ffi 0:81; 1.2 Mconst ðSBÞ kð 赤 1 We note that all these ratios are th associated with the first-order phase 波数 0.8 SB and LO phases, at the sixth ord q (x) = msin(kz) 0.6 We also remark that the first Ansa FF (spiral) 0.4 k as the same order in magnitude LO (sinoidal) transition. At the onset of the cond SN (solitonic) 0.2 amplitude M0 vanishes while k rem Homogeneous derivative terms are more important 青 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 geneous terms. In contrast, at the ons 2 formation, the derivative terms play (x) = mexp(ikz) (c) B. Most general condensate with 0 We here try to see if Jacobi’s ellipt favorable solution among 1D modula note that Jacobi’s elliptic function j H. Abuki, D. Ishibashi and K. Suzuki, PRD 85, 074002 (2012). -0.1 [x10] meter subgroup of solutions to the E FF (spiral wave) エネルギー be stressed that the original EL equa fourth-order differential equation, w -0.2 LO (sinoidal wave) cally the sum of three differential eq SN (solitonic wave) can be obtained from the second-or Homogeneous state tion which the elliptic function obeys -0.3 that it really covers all the solution 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 equation. Keeping this in mind, we 2 assumption for the spatially modula
  • 32.
    37,38] where itis shown that the solution other hand, from the coefficients of quartic terms, we see ese two2 situationsÀ 1Þ=4d, we see conden- energy is an mensionality, ð2d is the solitonic that the 0 ¼ Á function of 3ÁMðxÞ À 10½MðrMÞ2 . In 2 ÁMŠ creasing MðxÞ þellipticdfunction.2 HereIIweM fact, after near ¼ 2 þ that the free energies are on the order of the dimensionality the extremal of energy density 0 of modulation. The above formulas for energy density can ed by Jacobi’s þ 62 M À M0 þ demonstrate that, inimizing over [37],3and6M5 ; (32) 0 be easily generalized0.15 case with 0.25 condensate in he discussion in 6M ecomes restricted to 1D, Jacobi’s elliptic 0.05 0.1 to the 0.2 the LO 0.3 0.35 0.4 on is dimension of condensates 2 ¼ @ the @2 þ @2 solution to 2 þ problem. is the 3 three- an arbitrary dimension, d, defined by 2 n where the operator3 Á dx fact an adequate2 y z 3 sffiffiffi þ for 2 À (EL) equation O the À LO;dD ¼ À Laplacian. This is a fourth-order nonlinear : dimensional 2 the Euler-Lagrange 16 2d À 1 2 16 2 (b) chiral condensate, equation. The solution space for the partial differential MLO;dD ðxÞ ¼ M0 ðsinðkx1 Þ þ Á Á Á þ sinðkxd ÞÞ; (35) (37) d partial differential equation is much wider than that for the Z that the higher dimensional Therefore it less favor- ordinary differential equation.LO phases areis not trivial ote dy!ðMðyÞÞ ¼ 0: with x ¼ ðx1 ; x ; . . . ; xd Þ being the d-dimensional vector. MðxÞJacobi’s elliptic function stays as the most favorable that WS 0 In this case the 2thermodynamic potential looks like ble than the 1D one, yet they have smaller energies than estructure(chiral spiral) state. to 1D modulations is taken 1D-FF when the restriction esults in thewe do not search for the formal solution, but away. Here following fourth-order ordi- 2 3 2 2d À 1 4 We remark that the ordering of energies with the dimen- LO;dD ¼ À M0 þ M0 equation (when 4 0): ear differential specific crystals having the simple square or 2 16 4d onality is some only try not universal, but rather specific to the LO type. o cubic symmetry. In order to the 00 Š see 3M00 fact, we firstÞdefine demonstrate how the dimen- this À 10½MðM0 2 þ M2 M d-dimensional FF-type 5ð4d2 À 16d þ 11Þ 6 zÞsionality of a crystal structure affects the free energy,-0.1 þ [x10] we þ 2 M0 : (36) omplex condensate as 3 on the LO-type phase which has a simpler 5 48d 1D (FF) 2 M À 6M þ 6M : concentrate sffiffiffi (9) form than the elliptic function. We set multidimensional From the dependence of the quartic coefficient on the 3D (LO) 1 dimensionality, ð2d À 1Þ=4d, we see that the energy is an lve FF;dD ðxÞ ¼ condensates þaeikx2 þ Á Á Á1Deikxd Þ: (38) LO-type equation to ikx1 as suitable þ M this real M0 ðefind d ere is no systematic way to find out the increasing function of d near 2 ¼ II . 2D (LO) after 2 In fact, pffiffiffi -0.2 minimizing over M0 , the extremal of energy density n MLO;1D ðxÞ ¼ 2M0 sinðkzÞ; differential to a fourth-order nonlinear 1D (LO) ever it isnotand HH , the values of that densities sn so difficult to see Fourier strengths becomes MLO;2D ðxÞ ¼ M0 ðsinðkxÞ þ sinðkyÞÞ; (33) crepresentativeissffiffiffi particularand D. function points A, B, C, solution to a 1D SN3 2 3 2 d 2 3 Let sn snðz; Þ Hbe 2 sn Jacobi’s elliptic function LO;dD ¼ À À þO À : MLO;3D ðxÞ 1 M¼ MH sn H 2 16 2d À 1 Homogeneous 2 16 MWe then setsinðkyÞ þ sinðkzÞÞ: M5 MðsinðkxÞ þ 3 M5 e elliptic modulus. 1 3 03 -0.3 (37) 0.0111 0.0111 6 Â 10À8 6 Â 10À8 Oð10À13 Þ Oð10À13 Þ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Msn ðzÞ ¼ 0.5291 ðxÞ M0 snðkz; Þ; the ‘‘egg-carton’’ Ansatz in [34]. (10) Note that the higher dimensional LO phases are less favor- MLO;2D 0.5291 0.0077 to 0.0077 is equivalent 0.0001 0.0001 0.8673 condensate0.0563 Each 0.8665 0.0559 0.0039 0.0038 is characterized by two real parameters able than the 1D one, yet they 2 have smaller energies than 1.0672 0.9781 0.1951 are0.1077 determined via0.0132 M and q whose values to be 0.0455 minimi- the 1D-FF (chiral spiral) state.Ishibashi and K. Suzuki, PRD 85, 074002 (2012). H. Abuki, D. 0 zation of . In Figs. 6(a) and 6(b) we show effective order We remark that the ordering of energies with the dimen- ■ 低次元的な凝縮の方がエネルギー的には優位(空間等方性の破れ?)type.FIG. 6 (colorsionality is not universal, but effective orderLO online). (a) The rather specific to the parameters fo parameters and free energies. One can see that the energy is the 1D-LO To see this fact, we first2D-LO d-dimensionalgreen), 3D-LO an increasing function of the dimensionality. Also it is (dashed, red), define the (dotted, FF-type 0 (dot-dot-dashed, magenta), as the solitonic state (solid) as a notable that the critical points at which the transitions complex condensate sffiffiffi and from the Wigner to the crystal phases take place are common among all three states. To see this analytically, 2 . MFF;dDcomparison, 1the ikx2 þ Á Á Á þ eikxd Þ:the FF phase i function of For ðxÞ ¼ 1 M0 ðeikx þ e quantity for (38)
  • 33.
    he1homoge- 2n ¼ þ 4Nc Nf T ; point (E) on the critical ; 2G n;1 m X Z dp ð2Þ3 ðði!m þ Þ2 À p2 Þn 1 þ Þ phase the homoge- -order 2 À p2 Þn us phase and 2n ¼ þ 4Nc Nf T 3 ðði! þ Þ2 À p2 Þn ; he location 2G m ð2Þ m(54) nt the second-order phase ð2 ; 4 Þ ¼(54) (54) order one. Thewhere ! ¼ Tð2m þ 1Þ is the fermionic Matsubara fre- location The mapping from GL space onto (μq-T) space m ally found as ð2 ; 4 Þ ¼ summation over the frequency can be done, Matsubara fre- quency. The where !m ¼ Tð2m þ for and : cy can be done, resulting in the following expressions 1Þ is the fermionic Matsubara fre- : (51) 2 6and 4 : a2 quency. The summation over 2the frequency can be done, 4 ja j3 resulting in the following expressions for 2 and 4 : ; 0:16 マッピングの時にカットオフや結合定数等、モデルパラメータに依存してしまう 6 : (51) Z dp 1 À fF ðp À 6 a8 2 0 is the PHYSICAL REVIEW D 85, 074002 (2012)Þ À fF ðp þ Þ ; a8 2 ¼ À 4Nc Nf 1 Àpoint, þ Þ fF ðp three PHYSICAL REVIEW ð2Þ3 074002 Z 2G D 85, (2012) 2p ; 0 is theZ dp n;1 X t appears for þ 4Nc Nf T X Z 23 ¼ À 4N2 Nf 2 n ;dp 1 À fF ðp À Þ À fF ðp þ Þ ; 1 1 2n ¼ is e 南部-Jona-Lasinioモデルを用いた場合の 3 H. Abuki, D. (55a) locationn;1 6 dp 2G 1 c Ishibashi and K. Suzuki, PRD 85, 074002 (2012). figure.which þ 4Nc Nf T m ð2Þ3 ðði!m þ Þ2 À p2 Þn ; CRYSTALLINE CHIRAL CONDENSATES OFF THE . . . 0:27Þ 2G 2n At this point, three ¼ (55a) ð2Þ 2p 2G ð2Þ ðði! þ Þ À p Þ(54) et at once. The location m パラメータ m is Z dp D À f074002 Þ À fF ðp þ Þ 0.5 (55a) 2 ðÀ0:016; 0:27Þ ¼ N N REVIEW 1 85, F ðp À (2012) ¼ which PHYSICAL 4 þc 1Þfis the fermionic Matsubara fre- (54) 60 60 60 þ Þ (52) ¼ Tð2mX Z dp 6 where !m ð2Þ3 p3 80 80 80 : 1Z quency. The 4Nc Nf T þ 1Þ is the fermionic ðpcanÞ þ;f0 ðp þ ÞÞ À fF ðp þ Þ ¼ n;1 ¼ summation over Z frequency 2Àdp2 n1fre- F ðp À0.4 where !mþ Tð2m the Matsubara À f 3 ðði! þ0 Þ À p Þ be done, jaresultingThethe followingover the ¼ NforF2 can be4 :done, ð2Þ dp f 8 2n 3 6j 2G a2 quency. in 6 summation cexpressionsmc Nf and 3 F þ N Nf 4 frequency ð2Þ 2 m :p3 (55b) 6 resulting in the following expressions 3 and p Þ 2 with ompete ; 0:27 : (52) ð2Þ for 2 : a8 : a8 Z Þ 4 (54) (55b) Z dp 1 À f ðp À Þ À f ðp þdp f0 ðp À Þ þ f0 ðp þ Þ mensionless 4N N 1 F 0.3 F 2 ¼ À c f Z F þ Nc Nf F ;3 2 : (55b) 1 ap- with 1Þ 2p F ð2Þ 3 1 À f ðp À Þ À f ðp þ Þ intwhere !m À 4N We can derivefermionic expressions; for higher p T is 2G compete ð2Þ hiral phase ¼ Tð2m þ dp is the F similar Matsubara fre- order coef- 2 ¼ Nf 8=0 T/ c 3 gher orderThe summation ð2Þ point. Any dimensionless momentum can be done, g values:2Gcoef- ficients.over the frequency integral in 2 (4 ) has quadratic The 2p (55a) 6=0 quency. T is ap- 0.2 We can 2 and similar expressions Ã. higher tant when in the following expressions for derivethat: we need a cutoff for As a order coef- resulting point(logarithmic) divergence so 4 (55a) 4 ) has quadratic 4=0 y the following consequence, Þ À f functional forms become22 ¼ has quadratic a cutoff Ã. As avalues: fF ðp Àficients.ðp þ Þ Z dp 1 À their The momentum integral in (4 ) 4 ¼1 c f Z Ã2 Zf dp 1 ÀT=Ã;À Þand F þ Þ ð=Ã; T=ÃÞ with g F fF ðp3 gÞ À f ðpdivergence so that we need a cutoff Ã. As a 2=0: become NÀ 4Nc Ndp 3 1 ð=Ã; À(logarithmic) 4 ¼ f;2 2 ¼ N ¼ 2 ð2Þ 1 À f ðp Þ À fF ðp þ Þ p 0.1 ¼ Nc g Z 3ð2Þ F f Á with Nf GÃ2 as03 the dimensionless NJL coupling and ffn g being g=2.0 :369 (53) ð2Þ f ðp À Þp3 f0 2p þ Þ their functional forms become 2 ¼ T=ÃÞ 4 Á Á ; 2G dp F consequence, þ F ðp g=2.5 þ Nc Nf Z 2 f ð=Ã; T=Ã; Higher ¼ f ð=Ã; T=ÃÞ with g some3 dimensionless functions. gÞ and order coefficients, and ffn g being ð2Þ f0 ðp À Þp2 f0 ðp þ Þ Ãþ 1 : (55b) (55a) 4 2 g=3.5 dp F der coefficients, 2n (n ! 3), no 2longer have the(55b) divergence so that ffn g being þ Nc Nf 3 2F : UV Gà as the dimensionless NJL0coupling and :308 Á Ácan Z dpð2Þfunctional p ðp þ Þbe summarized as 2n ð; TÞ ¼ coefficients, 0.6 We 1 (53) ergenceÁ ;soderivetheirÀ fF ðp À Þ À ffor higher order coef- some can forms that similar expressions F dimensionless functions. Higher order 0 0.2 0.4 0.8 1 1.2 as ¼ Nc NTÞ ¼ fn ð=TÞ=2ðnÀ2Þ . for ! 24) is nofunction have the UV (two) ficients. f We ð; derive similar expressions f12 (f 3), order coef- having three divergence so that 4 2n can Theð2Þ3momentum integral2n (n higher a quadratic p3 in ( ) has longer /Λ period. The arguments, while F for4 (n !forms a ving three (two)divergence integralweffunctional quadratic only a single argu- 2n ð; TÞ ¼ :001 Á Á Á ;All Zmomentum so Þtheir ðp2þ Þ)cutoff 3) As can be summarized as (logarithmic) dp f0 ðp À that f0 need a has Ã. has ficients. F þ in n ( they 2 þ Nc Nf ð2Þ3 =T. Thus forms cutoff of vanishing (color ! 3 (logarithmic) ment, functional2 ð=TÞ=:2ðnÀ2Þ .(55b)¼ ) is function online). Mapping of the conditions of vanishing y a consequence, divergence so that nwe need abecomeÃ.2 (fFIG. a102n for n having three (two) single argu- their do not f the condition f1 a2 pf ð=Ã; T=ÃÞ with As e wouldð=Ã; T=Ã; gÞ into a straight line in while fgfor (n if f3) has onlyto single argu- g Ã2 f21 say! 3 turns and 4 ¼ 2 forms become TÞ ¼ consequence, their functional 2n for nthe dimensionless arguments, the ð; 2 plane ! n ðxÞ ¼ 0 hasa the (, T)-phase space. Solid (red) lines ng the felliptic T=Ã; gÞ and NJLfcouplingT=ÃÞ ffn g being period. All ¼ ð=Ã; and with ng 本研究ではα60と仮定しているので、青い領域に相当 GL coefficients Gà 1 ð=Ã; a solution for x ! 0. à ¼In has as if WeðxÞ dimensionless functions.ment, =T. Thus the condition of vanishing ¼2n for n ! 3 e fsome derive similar not sense 0 (T)nitself.that they do expressions can 2 4 2for higher order coef- Higher order coefficients, correspond to 0 for several different values of the NJL
  • 34.
    荷電パイ中間子凝縮と散乱現象 D. Blaschke,N.K. Glendenning,A. Sedrakian ”Physics of Neutron Star Interiors” ■ 中性子ーパイ中間子凝縮相互作用により ニュートリノの放出率上昇 パイ中間子凝縮 を考えた場合 ニュートリノ放出による中性子星冷却率 ■ 中性子星の冷却に寄与 ■ 空間的に非一様な構造だと? 星の質量/太陽質量