SlideShare a Scribd company logo
1 of 15
Download to read offline
Exp Astron
DOI 10.1007/s10686-006-9066-x
ORIGINAL ARTICLE



The improved ARTEMIS IV multichannel solar radio
spectrograph of the University of Athens

A. Kontogeorgos · P. Tsitsipis · C. Caroubalos ·
X. Moussas · P. Preka-Papadema · A. Hilaris ·
V. Petoussis · C. Bouratzis · J.-L. Bougeret ·
C. E. Alissandrakis · G. Dumas



Received: 27 January 2006 / Accepted: 20 July 2006
C Springer Science + Business Media B.V. 2006




Abstract We present the improved solar radio spectrograph of the University of Athens
operating at the Thermopylae Satellite Telecommunication Station. Observations now cover
the frequency range from 20 to 650 MHz. The spectrograph has a 7-meter moving parabola fed
by a log-periodic antenna for 100–650 MHz and a stationary inverted V fat dipole antenna for
the 20–100 MHz range. Two receivers are operating in parallel, one swept frequency for the
whole range (10 spectrums/sec, 630 channels/spectrum) and one acousto-optical receiver for
the range 270 to 450 MHz (100 spectrums/sec, 128 channels/spectrum). The data acquisition
system consists of two PCs (equipped with 12 bit, 225 ksamples/sec ADC, one for each
receiver). Sensitivity is about 3 SFU and 30 SFU in the 20–100 MHz and 100–650 MHz range
respectively. The daily operation is fully automated: receiving universal time from a GPS,
pointing the antenna to the sun, system calibration, starting and stopping the observations at
preset times, data acquisition, and archiving on DVD. We can also control the whole system
through modem or Internet. The instrument can be used either by itself or in conjunction
with other instruments to study the onset and evolution of solar radio bursts and associated
interplanetary phenomena.

Keywords Instrumentation . Solar radio astronomy . Solar radio bursts . Radio
spectrograph



A. Kontogeorgos ( ) · P. Tsitsipis · V. Petoussis · C. Bouratzis
Department of Physics and Informatics, University of Athens, GR-15783 Athens, Greece; Department
of Electronics, Technological Education Institute of Lamia, GR-35100 Lamia, Greece
e-mail: akontog@teilam.gr

C. Caroubalos · X. Moussas · P. Preka-Papadema · A. Hilaris
Department of Physics and Informatics, University of Athens, GR-15783 Athens, Greece

J.-L. Bougeret · G. Dumas
Observatoire de Paris, Lesia, CNRS UA 264, F-92195 Meudon Cedex, France

C. E. Alissandrakis
Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
                                                                                             Springer
Exp Astron

1. Introduction

Radio Spectrography of the solar corona, at decimeter, meter and decameter wavelengths,
provides basic information on the origin and early evolution of many phenomena that later
may reach the Earth. The Artemis IV solar radio spectrograph at Thermopylae Satellite
Telecommunication Station (38.824166◦ N, 22.686666◦ E) of OTE (The Greek Telecommu-
nication Organization) is a complete system [4, 9] that received and recorded the dynamic
spectrum of solar radio bursts on a daily basis [3], from 100 to 650 MHz. These phenomena
take place in lower corona. To follow them or to observe new phenomena in higher corona
an extension to lower frequencies is needed, till the local ionosphere cut off that is about
10 MHz [http://iono.noa.gr]. Frequencies from 10–20 MHz have a lot of interference from
strong short wave radio broadcastings and practically they are useless for the above purpose.
At frequencies below 100 MHz, solar radio bursts are very strong [10] and can be observed
easily, so a new simple but an efficient antenna was constructed for the 20–100 MHz band.
Another reason to expand the low limit of the receiving frequencies is the collaboration
with the STEREO/WAVES experiment [http://stp.gsfc.nasa.gov/missions/stereo/stereo.htm]
because, (i) its frequency range is from 10 kHz to 16 MHz, and (ii) the FFR1 fixed frequency
receiver works at 50 MHz.
   Over the years, from the first installation of ARTEMIS IV (1996), some non-repaired
hardware faults occurred which were removed by installing, modern digital systems, PCs
and upgraded software. Finally, there are two antennas, two receivers and two PCs with A/D
converters (Figure 1).


2. The two antennas

The solar radio spectrograph has a parabolic and a dipole antenna (Figure 2).
   The parabolic antenna has a diameter of 7 m and is fed by a log periodic antenna for the
100–650 MHz band (High Band, HB). This antenna has a length of 2.25 m; its apex angle is
45◦ and consists of 13 dipoles. Input impedance is 50 , almost independent of the frequency.
Total gain G f (in dBi) depends on frequency f (in MHz) and a second order polynomial curve
fitting gives (Figure 3),

             G f = −4.10−5 f 2 + 0, 043 f + 13, 18        f = 100, 101, . . . , 650          (1)

    The antenna has a typical equatorial mounting and tracks the Sun on its daily and seasonal
path. After reception the signal goes through band pass filters (110–650 MHz), preamplifier
(G = 10 db, F = 4 db) and multistage compensation amplifier (G = 30 db) for the long
transmission line.
    Every morning, the system starts automatically the antenna movement and performs self-
calibration. The antenna is disconnected from the system and a white noise generator (constant
T = 104 K) is connected. Afterwards the noise level is increased from 101.5 to 108 K, linearly
with time, in 64 steps of 1 db. The duration of the calibration is about 1 min and the signal
is recorded. This signal is used to understand the whole system behavior and to calibrate it.
After the end of the calibration the antenna is connected again to the system.
    The dipole antenna for the range 20–100 MHz (Low Band, LB) is a stationary very fat
inverted V dipole, on the east-west vertical plane. Each leg has a length of 3.5 m and a width of
1 m. It is constructed by copper tube [5], [http://www.lofar.org]. The two legs form a 90◦ angle
and its apex is 3.6 m above ground. This antenna over a real ground (σ = 10 mS, εr = 14)
  Springer
Exp Astron




Fig. 1 ARTEMIS IV solar radio spectrograph block diagram


was simulated by 4NEC2 software [http://www.si-list.org/swindex2.htm]. Standing wave
ratio (SWR) for a 300 transmission line is below 4 in the range 20–100 MHz (Figure 4).
Total gain depends on frequency and horizontal coordinates (θ , φ). The antenna gain towards
a typical direction (θ, ϕ) = (40◦ , 40◦ ) is about 0 dBi (Figure 5). Figure 6 shows the antenna
gain for all directions (θ, ϕ) for the frequency of 40 MHz. On the same diagram the daily sun
path is indicated for three declination angles (winter δ = −23.45◦ , spring and autumn δ = 0◦ ,
summer δ = 23.45◦ ), also the galactic center path is indicated. In Figure 7 we see that the
antenna receives vertically polarized signals from low angles over the horizon from east to
west and horizontally polarized signals from high angles over the horizon from south to north.
So the antenna is almost omni directional and can receive the sun signals during all the day,
but also a lot of interfering signals. After reception, the signal goes through a balanced band
                                                                                       Springer
Exp Astron




Fig. 2 The two antennas at Thermopylae


Fig. 3 The gain of the HB
antenna, square points are from
measurements and dotted line
after second order polynomial
curve fitting




pass filter to reject strong interference from local FM broadcastings and strong short wave
transmissions. The filter consists of a 11th order Chebychev low pass filter ( f L = 90 MHz,
pass band ripple 0.1 db) in series with a high pass ( f H = 20 MHz) with optimized input and
output sections to improve impedance matching between the antenna and the amplifier that
follows. In Greece there are no TV broadcasts in the range 40–68 MHz, so this frequency range
is free from strong interference. An active balun–broadband amplifier follows, composed of
two CA 2832 [12] hybrid wideband linear amplifiers operated in parallel; their outputs are
combined with an RF transformer to drive the 50 coaxial transmission line. With this design,
we achieve 30 db signal amplification and impedance matching between the balanced high
   Springer
Exp Astron




Fig. 4 The voltage standing wave ratio of the LB antenna for a 300      transmission line




Fig. 5 The total gain of the LB antenna towards an indicative direction (θ, ϕ) = (40◦ , 40◦ )


input impedance of the dipole antenna and the unbalanced 50 transmission line. This entire
configuration forms an active antenna for the 20–90 MHz band with input impedance of 50 .
   A combiner (Figure 1) combines the signals from the two antennas and drives them to the
control room through a buried 70 m long, 50 coaxial low loss transmission line.


3. The two receivers and data acquisition

The signal enters into the control room through the transmission line. A splitter splits the signal
into two paths (Figure 1). The first path includes a modified commercial sweep frequency
analyzer (Analyseur de Spectre Global or ASG) that covers the whole range from 20 to
650 MHz at 10 sweeps/sec with instantaneous bandwidth 1 MHz and dynamic range of 70 db.
    The analogue output from the ASG (0–5 V dc) drives a 12-bit ADC card (Keithley KPCI
3100 ADC), [7] on a PC (ASG PC). A pulse from a timer on the ADC card triggers every sweep
at the ASG from low to high frequencies. The ADC takes 6300 samples/sweep (Figure 8).
Every sample is an integer number between 0 and 4095. The samples are grouped in tens and
the mean value is extracted for every group, so the whole spectrum (20–650 MHz) is divided
into 630 channels with a resolution bandwidth of 1 MHz.
    We also take care to avoid, in real time, strong interference from FM radio and TV
broadcasting by rejecting the high data values at these a-priori constant noted frequencies.
If in a channel (10 samples) some samples correspond to the constant frequencies of strong
                                                                                                Springer
Exp Astron




Fig. 6 Total gain of the LB antenna for all horizontal directions (θ , ϕ) at 40 MHz. The sun and the galactic
center path on the sky are also indicated for the Thermopylae site




Fig. 7 The structure of the LB antenna and its 3D far field polar diagram for the horizontal, vertical and total
gain at 40 MHz. The antenna is almost omni directional


FM radio or TV broadcasting the averaging is done over the number of useful ‘un-infected’
measurements. If in one or more channels all the measurements are ‘infected’ their intensity
is replaced by the linear interpolation of the two adjacent ‘un-infected’ channels. These
arrangements lead to a high “signal from solar radio bursts to noise ratio”.
   The data from 5 successive sweeps (spectrums) form a block that is transferred to the hard
disk with a universal time stamp. Simultaneously we have the dynamic spectrum on the PC
screen. At the end of the day, or later, we can retrieve the daily activity and store it on a DVD.
The daily data are about 0.5 Gbyte. Every day, before starting measurements, the ASG PC
controls the calibration and the antenna movement through RS232 port; also this PC receives
the Universal Time from a GPS and corrects its clock. This PC is equipped with a telephone
line modem for telemetry purposes. Also there is an Ethernet connection for the other PC.
   Springer
Exp Astron




Fig. 8 From the ASG analogue output to the finally recorded values



   The software on the PC to take measurements, for the GPS time and for controlling the
entire operation is in Delfi programming language, under Windows 2000 operating system.
For each day there is a log text file with details for the various program operations.
   The Second path (Figure 1) includes a pass band filter (270–450 MHz), 30 db RF amplifier,
and finally an acousto-optic frequency analyzer (Spectrograph Acousto-Optic, SAO) [1, 13]
for 270–450 MHz with 25 db dynamic linear range, frequency resolution of 400 kHz and
very fast frame rate of 100 Hz (one frame or spectrum in 10 msec). There is also a PC
equipped with 12-bit ADC card (Keithley KPCI 3100). Every 10 msec the ADC takes 1024
samples from the SAO analogue output with a resolution of 12 bit in 0–5V dc range. Eight
samples together form a group and the mean value is extracted for every group, so the range
270–450 MHz is divided into 128 channels with a resolution bandwidth of 1.4 MHz. This
arrangement leads to a high “signal from solar radio bursts to noise ratio”. The data from
50 successive sweeps (spectrums) form a block that is transferred to the hard disk with a
universal time stamp. Simultaneously we have the dynamic spectrum on the PC screen. At
the end of the day or later we can retrieve the daily activity and store it on a DVD. The
daily data are about 1 Gbyte. The Universal Time is received every morning from the other
PC through the Ethernet connection. The above frequency band of SAO has been selected
                                                                                   Springer
Exp Astron




Fig. 9 Dynamic spectrum from the ASG. The calibration signal is shown at the left. The circle marks a type
III solar radio burst. Black or grey horizontal lines are strong interference from FM radio and TV broadcastings
at constant frequencies


because a lot of radio bursts with fine time structure are observed in this band and it is almost
free from strong TV or FM broadcasting interference.
    Figure 9 shows an example of ASG dynamic spectrum in grey scale (black for strong
signals and white for weak). On the left we see the calibration signal from the noise generator,
in the middle (inside the circle) a type III solar radio burst and on the right the greyscale in
arbitrary units. Horizontal black or grey lines indicate strong FM radio and TV interference
at constant frequencies.


4. Calibration

Calibration is performed to derive the relationship between the flux density (Wm−2 Hz−1 , or
Solar Flux Unit, 1 SFU = 10−22 Wm−2 Hz−1 ) that arrives from the solar radio burst at the
antenna site, and all possible data values (0–4095) for 630 channels, from 20 to 650 MHz
with 1 MHz bandwidth. It consists of two steps, step one for the HB and step two for the LB.
   Step one: (a) The antenna temperature is derived from the recorded values of the calibration
signal and the known noise temperature of the noise generator. (b) The relation between the
antenna temperature and the flux density is derived from the antenna temperature and the
antenna far field pattern.

(a) Before starting and after terminating the daily measurements, a calibration procedure
    takes place automatically. The parabolic antenna is disconnected from the preamplifier
    and a calibrated white noise generator is connected. The noise temperature of the cal-
    ibration signal increases automatically linearly with time from 101.5 to 108 K in 64 db
    steps. Every step lasts for 0.8sec. Let T f,s be the noise temperature for every channel
    (frequency) f (f = 100, 101, 102, . . .,650) and for every temperature step s (s = 1, 2,. . .,
    64).

                                                                   6.5
                                          Log(T f,s ) = 1.5 + s                                             (2)
                                                                   64

    At the same time the output mi,s from the analyser is recorded by the ASG PC in integer
    values, (mi,s from 0 to 4095) for every channel f and for every temperature step s. In every
    step there are eight values mi,s which are averaged, to minimize noise, and give the mean
    value Mi,s .
   Springer
Exp Astron

    So for every value of Mis there is a corresponding antenna temperature Ti,s . After inter-
    polation we derive the relation

       T f, j = τHB ( f, j)    for f = 100, 101, 102, . . . , 650 and j = 0, 1, 2, . . . , 4095 (3)

(b) From the antenna temperature T f, j we can calculate the flux density S f, j using the relation
    [8]:

                                                         2kT f, j
                                              S f, j =                                              (4)
                                                          Af

    where: k the Boltzmann constant and A f the effective aperture of the antenna at frequency
    f. The effective aperture A f of the antenna is [8]:

                                                         G f λ2f
                                               Af =                                                 (5)
                                                          4π

    where: G f the gain of the main beam of the HB antenna and λ f the wavelength at the
    frequency f (λ f = 3 × 108 / f ).
   The antenna gain is known from (1) and is independent from the Sun position because
the antenna every time points to the Sun. So from relations (1), (5), (3) and (4) we derive the
relation:

     S f, j = σHB ( f, j)     for f = 100, 101, 102, . . . , 650 and j = 0, 1, 2, . . . , 4095      (6)

   Figure 10 shows this relation for three indicative frequencies f. Nonlinear segments at the
beginning and at the end of the curves are owing to the nonlinear effects of the amplifiers.
   Step two: (a) The antenna temperature is derived from the recorded values of the calibration
signal and the known noise temperature of the noise generator. (b) The relation between the
antenna temperature and the flux density is derived from the antenna temperature and the
antenna gain towards the direction of the Sun.
(a) The previous procedure (disconnection of the antenna from the filter-amplifier, connection
    of the calibrated white noise generation) has been applied at once when the dipole antenna
    was installed and we derive the relation:

             T f, j = τLB ( f, j)   for f = 20, 21, . . . , 100 and j = 0, 1, 2, . . . , 4095       (7)

(b) The direction (θ, ϕ) of the Sun is calculated from the Universal Time at which a radio
    event has been recorded [6]. For this direction, the antenna gain G f is calculated by
    simulation for every frequency f ( f = 20, 21, . . . , 100), as in Figure 5. The flux density
    S f, j is derived using this value of G f and relations (5) and (4). Finally we have the relation

             S f, j = σLB ( f, j)   for f = 20, 21, . . . , 100 and j = 0, 1, 2, . . . , 4095       (8)

    The results show that the sensitivity is about 3SFU in LB and about 30SFU in HB with
    dynamic range of 45db. We can thus detect only solar radio bursts and no radio signal
    from the quiet Sun that produces lower flux density at these frequencies.
                                                                                                Springer
Exp Astron




Fig. 10 Calibration curves for three indicative frequencies for the HB antenna



   Detecting the noise, for a whole day, from the Galactic Center in LB, and finding values
that are referred to in the bibliography [2], the method of calibration and the results from the
simulation of the LB antenna have been verified.


5. Data analysis

Data file for a solar radio event is a M × N array where M is the number of channels (M = 630
for ASG and M = 128 for SAO) and N the number of spectra that occupy the event (for
ASG we have one spectrum for every tenth of the sec. and for SAO we have one spectrum
for every hundredth of the sec.). The elements of the array are integer numbers (0–4095) that
represent the intensity of the event.
   Data processing involves: (a) filtering the signal to remove interference, (b) finding the
flux density of the dynamic spectrum and (c) calculating the power density (Wm−2 ) for the
whole range from 20 to 650 MHz.
   Man made radio interference is increasing every year as social activities are increasing
and there is no respect shown to frequencies allocated to radio astronomy; all these bring on
difficulties for observing the solar radio bursts, clearly. There are various types of man made
and physical interference, such including:

1. Narrowband ‘instant’ interference, its bandwidth being narrower than the channel band-
   width (1 MHz) due to narrow band FM or AM mobile communications at various frequen-
   cies; it occupies only one channel with maximum duration of some minutes. They appear
   as small narrow horizontal lines.
   Springer
Exp Astron

2. Narrowband ‘lasting’ interference, its bandwidth being narrower than the channel band-
   width (1 MHz) due to FM or AM radio broadcasting at fixed frequencies; it occupies only
   one channel, but is present all the time or for some hours. They appear as very long narrow
   horizontal lines.
3. Wideband ‘lasting’ interference, its bandwidth being larger than the channel bandwidth
   (1 MHz) due to TV radio broadcasting at fixed frequencies; it occupies some channels
   (4–10) and is present all the time or for some hours. Also, this kind of interference appears
   when there is narrowband lasting interference at adjacent channels as in the FM radio
   broadcasting band (88–108 MHz) or TV broadcasting bands. They appear as very long
   wide horizontal lines.
4. Ultra wideband instant interference that occupies all channels from 20 MHz to some
   hundred MHz due to lightning with maximum duration of about one second. They appear
   as narrow vertical lines.
5. Galactic background broadband radiation dominates the system noise at the 20–100 MHz
   band. It is stronger at the lower part of the band and dominates when the galactic centre
   is on the sky during daytime from November to February [10].

   Contrary to all these, solar radio events of various types (I, II, III, IV and V) are broadband
with a duration of some seconds to hours [11]. Solar radio events can be recovered from the
data, keeping in mind the above factors and by using standard image processing with 2D
median, low pass or high pass filtering. A more efficient filtering is achieved by using, for
every spectrum, moving median filters with variable bandwidth. Figure 11 shows an example.




Fig. 11 The influence of the moving median filtering on dynamic spectrum. (a) Initial dynamic spectrum. (b)
Moving median filtering with constant bandwidth 5. (c) Moving median filtering with constant bandwidth 15.
(d) Moving median filtering with constant bandwidth 25. (e) Moving median filtering with variable bandwidth.
Large bandwidth rejects all the interference and a lot of details in the solar radio burst. Small bandwidth allows
details in the solar radio burst but cannot reject interference. Using variable bandwidth the spectrum is divided
into regions and we apply moving median filtering with variable bandwidth as follows: region 20–80 MHz,
80–400 MHz and 400–650 MHz with bandwidth 2, 17 and 25 respectively
                                                                                                        Springer
Exp Astron




Fig. 12 Dynamic spectrum of type III and V solar radio burst from 08:05:00 UT on 26 April 2003. The graphs
show the Total Power Density and its logarithm for the range 20–650 MHz
   Springer
Exp Astron




Fig. 13 Dynamic spectrum of a large solar event recorded by ASG from 10:02:00 to 10:12:00 on 28 Oct.
2003. Grey scale on the right is in arbitrary units




Fig. 14 Detail of the Figure 13, shows the time differential dynamic spectrum from 10:02:00 to 10:04:00,
derived after special 2D filtering. Ascending and descending lines are produced by ascending and descending
electron beams in the solar corona




Fig. 15 Dynamic spectrum of the same large solar event recorded by SAO from 10:02:00 to 10:10:00 on 28
Oct. 2003. Grey scale on the right is in arbitrary units




Fig. 16 Detail of the Figure 15, shows the time differential dynamic spectrum from 10:02:00 to 10:04:00,
derived after special 2D filtering


                                                                                                 Springer
Exp Astron

   After filtering, we use the calibration relations (6) and (8) to derive the dynamic spectrum
flux density in SFU. Integrating these values for every spectrum we calculate the total power
density in Wm−2 for the whole range 20–650MHz. An example is shown in Figure 12.
   This instrument has a very high time and frequency resolution from decimeter to decameter
wavelengths with a very good signal to noise ratio that permits fine structure detection [14].
   Figure 13 shows the dynamic spectra of 10 min long solar radio event on 28/10/2004
recorded by ARTEMIS IV ASG solar radio spectrograph. Grey scale on the right shows the
signal intensity in arbitrary units. Figure 14 is a 2 min part of the above event. It shows the
differential dynamic spectrum derived after special 2D filtering where we can distinguish fine
structure, which indicates ascending and descending electron beams in the solar corona. We
observe a type II solar radio burst with harmonic bands and herringbone structure. Figures 15
and 16 show the same event as recorded by SAO in the 270–450 MHz band where more
details are seen in the frequency domain.


6. Conclusions and perspectives

We have designed and constructed a system, with two antennas and a frequency sweep radio
spectrograph, that observes solar radio bursts in the range 20–650 MHz with a time resolution
100 msec, frequency resolution of 1 MHz, sensitivity of 3 SFU and 30 SFU in the 20–100 MHz
and 100–650 MHz range, respectively. Using an acousto-optic radio spectrograph in the range
270–450 MHz, time resolution of 10 msec. and frequency resolution of 1.4 MHz has been
achieved.
   Future perspectives are the use of the instrument for routine observations of solar radio
bursts, the construction of new dipole antennas perpendicular to the present so that we can
make polarimetric measurements, as well as the extension of the SAO frequency range.

Acknowledgements This work was supported in part by the program PLATON N◦ 05341PJ for the French-
Greek collaboration and the program EPEAEK of the Greek Ministry of Education and Religious Affairs
and the European Union in the framework of the research project Archimedes II: “Receiving and Processing
the Signal from Solar Radio Bursts”. We also thank the Greek Telecommunication Organization (OTE) for
hosting the equipment of ARTEMIS IV in the area of the earth satellite station “Thermopylae”.


References

 1. Berg, N., Pellegrino, J.: Acousto-Optic Signal Processing. Marcel Dekker Inc., New York, pp. 101 (1996)
 2. Cane, H.: Spectra of the non-thermal radio radiation from the galactic polar regions. MNRAS 189, 465
    (1979)
 3. Caroubalos, C., Hillaris, A., Bouratzis, C., Alissandrakis, C.E., Preka-Papadema, P., Polygiannakis, J.,
    Tsitsipis, P., Kontogeorgos, A., Moussas, X., Bougeret, J.-L., Doumas, G., Perche, C.: Solar type II and type
    IV radio bursts observed during 1998–2000 with the ARTEMIS IV radiospectrograph. Astron. Astrophys.
    413, 1125–1133 (2004)
 4. Caroubalos, C., Maroulis, D., Patavalis, N., Bougeret, J.-L., Doumas, G., Perche, C., Alissandrakis, C.,
    Hillaris, A., Moussas, X., Preka-Papadema, P., Kontogeorgos, A., Tsitsipis, P., Kanelakis, G.: The new
    multichannel radiospectrograph ARTEMIS-IV/HECATE of the University of Athens. Exp. Astron. 11,
    23–32 (2001)
 5. Erickson, W.: Professor at Utas University of Australia, private communication ( 2004)
 6. Kivelson, M.G., Rusell, C.T (eds): Introduction to Space Physics. Cambridge University Press (1995)
 7. Keithley KPCL 3100 ADC manual ( 2002)
 8. Kraus, J.: Antennas. McGraw-Hill, pp. 47 and 778 (1988)
 9. Maroulis, D., Doumas, G., Caroubalos, C., Bougeret, J.-L., Moussas, X., Alissandrakis, C., Patavalis, N.:
    ARTEMIS MARK IV, the new Greek-French digital radio spectrograph at thermopyles, Greece. Solar
    Phys. 172, 353–360 (1997)
   Springer
Exp Astron

10. McLean, D., Labrum, N.: Solar Radiophysics. Cambridge University Press, pp. 126 and 127 (1985a)
11. McLean, D., Labrum, N.: Solar Radiophysics. Cambridge University Press, pp. 39 and 40 (1985b)
12. Motorola: RF Device Data, Vol. II, pp. 5-40, 7-198–7-207 ( 1991)
13. Rohlfs, K., Wilson, T.: Tools of Radio Astronomy. Springer, pp. 105 (1996)
14. Tsitsipis, P., Kontogeorgos, A., Caroubalos, C., Moussas, X., Alissandrakis, C., Hillaris, A., Preka-
    Papadema, P., Polygiannakis, J., Bougeret, J.-L., Doumas, G., Perche, C.: ARTEMIS IV radio observations
    of the 14 July 2000 Large Solar Event. Solar Phys. 204, 165–179 (2001)
15. Tsitsipis, P., Kontogeorgos, A., Hillaris, A., Moussas, X., Caroubalos, C., Preka-Papadema, P.: Fast esti-
    mation of slopes of linear and quasi-linear structures in noisy background using Fourier methods. In press,
    Pattern Recognition 2006 (DOI: 10.1016/j.patcog.2006.04.014)




                                                                                                      Springer

More Related Content

What's hot

1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part iiSolo Hermelin
 
AESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course SamplerAESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course SamplerJim Jenkins
 
Multi-Funtion Phased Array Radar
Multi-Funtion Phased Array RadarMulti-Funtion Phased Array Radar
Multi-Funtion Phased Array RadarMistral Solutions
 
Antennas wave and propagation
 Antennas wave and propagation Antennas wave and propagation
Antennas wave and propagationIsha Negi
 
Carrier frequency effects on path loss
Carrier frequency effects on path lossCarrier frequency effects on path loss
Carrier frequency effects on path lossNguyen Minh Thu
 
Small Ku Band Phased Array Anteena System
Small  Ku Band Phased Array Anteena SystemSmall  Ku Band Phased Array Anteena System
Small Ku Band Phased Array Anteena SystemRitul Sonania
 
Path-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti State
Path-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti StatePath-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti State
Path-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti StateIOSR Journals
 
Antennas propagation
Antennas propagationAntennas propagation
Antennas propagationhrishi_tiwary
 
Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)Reetika Sehgal
 
Components of a Pulse Radar System
Components of a Pulse Radar SystemComponents of a Pulse Radar System
Components of a Pulse Radar SystemÜlger Ahmet
 
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentumBlundering boffins exposed
 
Airbone Radar Applications by Wg Cdr Anupam Tiwari
Airbone Radar Applications by Wg Cdr Anupam TiwariAirbone Radar Applications by Wg Cdr Anupam Tiwari
Airbone Radar Applications by Wg Cdr Anupam Tiwarianupamtiwari1972
 
Various types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receivingVarious types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receivingJay Baria
 
An Introduction about Radar
An Introduction about RadarAn Introduction about Radar
An Introduction about RadarTom Chen
 
Book 3: “Antennae Techniques”
Book 3: “Antennae Techniques”Book 3: “Antennae Techniques”
Book 3: “Antennae Techniques”Timour Chaikhraziev
 
Radar transmitter 4 (1)
Radar transmitter 4 (1)Radar transmitter 4 (1)
Radar transmitter 4 (1)Ritesh Goel
 

What's hot (19)

1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part ii
 
Introduction to RADAR by NI
Introduction to RADAR by NIIntroduction to RADAR by NI
Introduction to RADAR by NI
 
AESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course SamplerAESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course Sampler
 
Multi-Funtion Phased Array Radar
Multi-Funtion Phased Array RadarMulti-Funtion Phased Array Radar
Multi-Funtion Phased Array Radar
 
Presentation on satellite antenna
Presentation on satellite antennaPresentation on satellite antenna
Presentation on satellite antenna
 
Antennas wave and propagation
 Antennas wave and propagation Antennas wave and propagation
Antennas wave and propagation
 
Components of a satellite communication system transponder
Components of a satellite communication system transponderComponents of a satellite communication system transponder
Components of a satellite communication system transponder
 
Carrier frequency effects on path loss
Carrier frequency effects on path lossCarrier frequency effects on path loss
Carrier frequency effects on path loss
 
Small Ku Band Phased Array Anteena System
Small  Ku Band Phased Array Anteena SystemSmall  Ku Band Phased Array Anteena System
Small Ku Band Phased Array Anteena System
 
Path-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti State
Path-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti StatePath-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti State
Path-Loss Determination of 91.5 MHZ FM Radio Channel of Ekiti State
 
Antennas propagation
Antennas propagationAntennas propagation
Antennas propagation
 
Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)Objectives(antennas and wave propagation)
Objectives(antennas and wave propagation)
 
Components of a Pulse Radar System
Components of a Pulse Radar SystemComponents of a Pulse Radar System
Components of a Pulse Radar System
 
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
 
Airbone Radar Applications by Wg Cdr Anupam Tiwari
Airbone Radar Applications by Wg Cdr Anupam TiwariAirbone Radar Applications by Wg Cdr Anupam Tiwari
Airbone Radar Applications by Wg Cdr Anupam Tiwari
 
Various types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receivingVarious types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receiving
 
An Introduction about Radar
An Introduction about RadarAn Introduction about Radar
An Introduction about Radar
 
Book 3: “Antennae Techniques”
Book 3: “Antennae Techniques”Book 3: “Antennae Techniques”
Book 3: “Antennae Techniques”
 
Radar transmitter 4 (1)
Radar transmitter 4 (1)Radar transmitter 4 (1)
Radar transmitter 4 (1)
 

Viewers also liked

2006 Bouratzis&Al
2006 Bouratzis&Al2006 Bouratzis&Al
2006 Bouratzis&Alpetousis
 
2006a Tsitsipis&Al
2006a Tsitsipis&Al2006a Tsitsipis&Al
2006a Tsitsipis&Alpetousis
 
2006b Tsitsipis&Al
2006b Tsitsipis&Al2006b Tsitsipis&Al
2006b Tsitsipis&Alpetousis
 
People and Objects
People and ObjectsPeople and Objects
People and ObjectsAlex Rich
 
Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009petousis
 
2006 Hillaris&Al
2006 Hillaris&Al2006 Hillaris&Al
2006 Hillaris&Alpetousis
 

Viewers also liked (8)

2006 Bouratzis&Al
2006 Bouratzis&Al2006 Bouratzis&Al
2006 Bouratzis&Al
 
Language
LanguageLanguage
Language
 
2006a Tsitsipis&Al
2006a Tsitsipis&Al2006a Tsitsipis&Al
2006a Tsitsipis&Al
 
Problems
ProblemsProblems
Problems
 
2006b Tsitsipis&Al
2006b Tsitsipis&Al2006b Tsitsipis&Al
2006b Tsitsipis&Al
 
People and Objects
People and ObjectsPeople and Objects
People and Objects
 
Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009
 
2006 Hillaris&Al
2006 Hillaris&Al2006 Hillaris&Al
2006 Hillaris&Al
 

Similar to 2006 B Kontogeorgos&Al

2008 Kontogeorgos&Al
2008 Kontogeorgos&Al2008 Kontogeorgos&Al
2008 Kontogeorgos&Alpetousis
 
Antenna fundamentals
Antenna fundamentalsAntenna fundamentals
Antenna fundamentalsZunAib Ali
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumAn absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumSérgio Sacani
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagationYahya Alzidi
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagationYahya Alzidi
 
microwave-communication-wave-guides
microwave-communication-wave-guidesmicrowave-communication-wave-guides
microwave-communication-wave-guidesATTO RATHORE
 
Iloa ngizani2020
Iloa ngizani2020Iloa ngizani2020
Iloa ngizani2020ILOAHawaii
 
antennaswaveandpropagation-140726081438-phpapp01-1.pdf
antennaswaveandpropagation-140726081438-phpapp01-1.pdfantennaswaveandpropagation-140726081438-phpapp01-1.pdf
antennaswaveandpropagation-140726081438-phpapp01-1.pdfAkashDwivedi69
 
MIRAS: The SMOS Instrument
MIRAS: The SMOS InstrumentMIRAS: The SMOS Instrument
MIRAS: The SMOS Instrumentadrianocamps
 
Radio Astronomy and radio telescopes
Radio Astronomy and radio telescopesRadio Astronomy and radio telescopes
Radio Astronomy and radio telescopesFlavio Falcinelli
 
Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)
Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)
Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)IOSR Journals
 
Microstrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency ReportMicrostrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency Reportcharan -
 
N 4-antennas propagation
N 4-antennas propagationN 4-antennas propagation
N 4-antennas propagation15010192
 

Similar to 2006 B Kontogeorgos&Al (20)

2008 Kontogeorgos&Al
2008 Kontogeorgos&Al2008 Kontogeorgos&Al
2008 Kontogeorgos&Al
 
Antenna fundamentals
Antenna fundamentalsAntenna fundamentals
Antenna fundamentals
 
Chapter#5
Chapter#5Chapter#5
Chapter#5
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumAn absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
 
antenna book.pdf
antenna book.pdfantenna book.pdf
antenna book.pdf
 
1107.2348 first pagliacciata_report
1107.2348 first pagliacciata_report1107.2348 first pagliacciata_report
1107.2348 first pagliacciata_report
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
 
H010145157
H010145157H010145157
H010145157
 
microwave-communication-wave-guides
microwave-communication-wave-guidesmicrowave-communication-wave-guides
microwave-communication-wave-guides
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
Presentation
PresentationPresentation
Presentation
 
Iloa ngizani2020
Iloa ngizani2020Iloa ngizani2020
Iloa ngizani2020
 
antennaswaveandpropagation-140726081438-phpapp01-1.pdf
antennaswaveandpropagation-140726081438-phpapp01-1.pdfantennaswaveandpropagation-140726081438-phpapp01-1.pdf
antennaswaveandpropagation-140726081438-phpapp01-1.pdf
 
MIRAS: The SMOS Instrument
MIRAS: The SMOS InstrumentMIRAS: The SMOS Instrument
MIRAS: The SMOS Instrument
 
Radio Astronomy and radio telescopes
Radio Astronomy and radio telescopesRadio Astronomy and radio telescopes
Radio Astronomy and radio telescopes
 
Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)
Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)
Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)
 
Microstrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency ReportMicrostrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency Report
 
N 4-antennas propagation
N 4-antennas propagationN 4-antennas propagation
N 4-antennas propagation
 

More from petousis

Galvanomagnetic Effects Kavala 12th Gfu
Galvanomagnetic Effects Kavala 12th GfuGalvanomagnetic Effects Kavala 12th Gfu
Galvanomagnetic Effects Kavala 12th Gfupetousis
 
Hall 2nd Presentation
Hall 2nd PresentationHall 2nd Presentation
Hall 2nd Presentationpetousis
 
Hall 1st Presentation
Hall 1st PresentationHall 1st Presentation
Hall 1st Presentationpetousis
 
Galvanomagnetic Effects Sensors Based On Hall Effect
Galvanomagnetic Effects Sensors Based On Hall EffectGalvanomagnetic Effects Sensors Based On Hall Effect
Galvanomagnetic Effects Sensors Based On Hall Effectpetousis
 
A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method
A Novel Hall Effect Sensor Using Elaborate Offset Cancellation MethodA Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method
A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Methodpetousis
 
2006 Caroubalos&Al
2006 Caroubalos&Al2006 Caroubalos&Al
2006 Caroubalos&Alpetousis
 
2006 Petoussis&Al
2006 Petoussis&Al2006 Petoussis&Al
2006 Petoussis&Alpetousis
 

More from petousis (7)

Galvanomagnetic Effects Kavala 12th Gfu
Galvanomagnetic Effects Kavala 12th GfuGalvanomagnetic Effects Kavala 12th Gfu
Galvanomagnetic Effects Kavala 12th Gfu
 
Hall 2nd Presentation
Hall 2nd PresentationHall 2nd Presentation
Hall 2nd Presentation
 
Hall 1st Presentation
Hall 1st PresentationHall 1st Presentation
Hall 1st Presentation
 
Galvanomagnetic Effects Sensors Based On Hall Effect
Galvanomagnetic Effects Sensors Based On Hall EffectGalvanomagnetic Effects Sensors Based On Hall Effect
Galvanomagnetic Effects Sensors Based On Hall Effect
 
A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method
A Novel Hall Effect Sensor Using Elaborate Offset Cancellation MethodA Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method
A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method
 
2006 Caroubalos&Al
2006 Caroubalos&Al2006 Caroubalos&Al
2006 Caroubalos&Al
 
2006 Petoussis&Al
2006 Petoussis&Al2006 Petoussis&Al
2006 Petoussis&Al
 

Recently uploaded

Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 

Recently uploaded (20)

Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 

2006 B Kontogeorgos&Al

  • 1. Exp Astron DOI 10.1007/s10686-006-9066-x ORIGINAL ARTICLE The improved ARTEMIS IV multichannel solar radio spectrograph of the University of Athens A. Kontogeorgos · P. Tsitsipis · C. Caroubalos · X. Moussas · P. Preka-Papadema · A. Hilaris · V. Petoussis · C. Bouratzis · J.-L. Bougeret · C. E. Alissandrakis · G. Dumas Received: 27 January 2006 / Accepted: 20 July 2006 C Springer Science + Business Media B.V. 2006 Abstract We present the improved solar radio spectrograph of the University of Athens operating at the Thermopylae Satellite Telecommunication Station. Observations now cover the frequency range from 20 to 650 MHz. The spectrograph has a 7-meter moving parabola fed by a log-periodic antenna for 100–650 MHz and a stationary inverted V fat dipole antenna for the 20–100 MHz range. Two receivers are operating in parallel, one swept frequency for the whole range (10 spectrums/sec, 630 channels/spectrum) and one acousto-optical receiver for the range 270 to 450 MHz (100 spectrums/sec, 128 channels/spectrum). The data acquisition system consists of two PCs (equipped with 12 bit, 225 ksamples/sec ADC, one for each receiver). Sensitivity is about 3 SFU and 30 SFU in the 20–100 MHz and 100–650 MHz range respectively. The daily operation is fully automated: receiving universal time from a GPS, pointing the antenna to the sun, system calibration, starting and stopping the observations at preset times, data acquisition, and archiving on DVD. We can also control the whole system through modem or Internet. The instrument can be used either by itself or in conjunction with other instruments to study the onset and evolution of solar radio bursts and associated interplanetary phenomena. Keywords Instrumentation . Solar radio astronomy . Solar radio bursts . Radio spectrograph A. Kontogeorgos ( ) · P. Tsitsipis · V. Petoussis · C. Bouratzis Department of Physics and Informatics, University of Athens, GR-15783 Athens, Greece; Department of Electronics, Technological Education Institute of Lamia, GR-35100 Lamia, Greece e-mail: akontog@teilam.gr C. Caroubalos · X. Moussas · P. Preka-Papadema · A. Hilaris Department of Physics and Informatics, University of Athens, GR-15783 Athens, Greece J.-L. Bougeret · G. Dumas Observatoire de Paris, Lesia, CNRS UA 264, F-92195 Meudon Cedex, France C. E. Alissandrakis Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece Springer
  • 2. Exp Astron 1. Introduction Radio Spectrography of the solar corona, at decimeter, meter and decameter wavelengths, provides basic information on the origin and early evolution of many phenomena that later may reach the Earth. The Artemis IV solar radio spectrograph at Thermopylae Satellite Telecommunication Station (38.824166◦ N, 22.686666◦ E) of OTE (The Greek Telecommu- nication Organization) is a complete system [4, 9] that received and recorded the dynamic spectrum of solar radio bursts on a daily basis [3], from 100 to 650 MHz. These phenomena take place in lower corona. To follow them or to observe new phenomena in higher corona an extension to lower frequencies is needed, till the local ionosphere cut off that is about 10 MHz [http://iono.noa.gr]. Frequencies from 10–20 MHz have a lot of interference from strong short wave radio broadcastings and practically they are useless for the above purpose. At frequencies below 100 MHz, solar radio bursts are very strong [10] and can be observed easily, so a new simple but an efficient antenna was constructed for the 20–100 MHz band. Another reason to expand the low limit of the receiving frequencies is the collaboration with the STEREO/WAVES experiment [http://stp.gsfc.nasa.gov/missions/stereo/stereo.htm] because, (i) its frequency range is from 10 kHz to 16 MHz, and (ii) the FFR1 fixed frequency receiver works at 50 MHz. Over the years, from the first installation of ARTEMIS IV (1996), some non-repaired hardware faults occurred which were removed by installing, modern digital systems, PCs and upgraded software. Finally, there are two antennas, two receivers and two PCs with A/D converters (Figure 1). 2. The two antennas The solar radio spectrograph has a parabolic and a dipole antenna (Figure 2). The parabolic antenna has a diameter of 7 m and is fed by a log periodic antenna for the 100–650 MHz band (High Band, HB). This antenna has a length of 2.25 m; its apex angle is 45◦ and consists of 13 dipoles. Input impedance is 50 , almost independent of the frequency. Total gain G f (in dBi) depends on frequency f (in MHz) and a second order polynomial curve fitting gives (Figure 3), G f = −4.10−5 f 2 + 0, 043 f + 13, 18 f = 100, 101, . . . , 650 (1) The antenna has a typical equatorial mounting and tracks the Sun on its daily and seasonal path. After reception the signal goes through band pass filters (110–650 MHz), preamplifier (G = 10 db, F = 4 db) and multistage compensation amplifier (G = 30 db) for the long transmission line. Every morning, the system starts automatically the antenna movement and performs self- calibration. The antenna is disconnected from the system and a white noise generator (constant T = 104 K) is connected. Afterwards the noise level is increased from 101.5 to 108 K, linearly with time, in 64 steps of 1 db. The duration of the calibration is about 1 min and the signal is recorded. This signal is used to understand the whole system behavior and to calibrate it. After the end of the calibration the antenna is connected again to the system. The dipole antenna for the range 20–100 MHz (Low Band, LB) is a stationary very fat inverted V dipole, on the east-west vertical plane. Each leg has a length of 3.5 m and a width of 1 m. It is constructed by copper tube [5], [http://www.lofar.org]. The two legs form a 90◦ angle and its apex is 3.6 m above ground. This antenna over a real ground (σ = 10 mS, εr = 14) Springer
  • 3. Exp Astron Fig. 1 ARTEMIS IV solar radio spectrograph block diagram was simulated by 4NEC2 software [http://www.si-list.org/swindex2.htm]. Standing wave ratio (SWR) for a 300 transmission line is below 4 in the range 20–100 MHz (Figure 4). Total gain depends on frequency and horizontal coordinates (θ , φ). The antenna gain towards a typical direction (θ, ϕ) = (40◦ , 40◦ ) is about 0 dBi (Figure 5). Figure 6 shows the antenna gain for all directions (θ, ϕ) for the frequency of 40 MHz. On the same diagram the daily sun path is indicated for three declination angles (winter δ = −23.45◦ , spring and autumn δ = 0◦ , summer δ = 23.45◦ ), also the galactic center path is indicated. In Figure 7 we see that the antenna receives vertically polarized signals from low angles over the horizon from east to west and horizontally polarized signals from high angles over the horizon from south to north. So the antenna is almost omni directional and can receive the sun signals during all the day, but also a lot of interfering signals. After reception, the signal goes through a balanced band Springer
  • 4. Exp Astron Fig. 2 The two antennas at Thermopylae Fig. 3 The gain of the HB antenna, square points are from measurements and dotted line after second order polynomial curve fitting pass filter to reject strong interference from local FM broadcastings and strong short wave transmissions. The filter consists of a 11th order Chebychev low pass filter ( f L = 90 MHz, pass band ripple 0.1 db) in series with a high pass ( f H = 20 MHz) with optimized input and output sections to improve impedance matching between the antenna and the amplifier that follows. In Greece there are no TV broadcasts in the range 40–68 MHz, so this frequency range is free from strong interference. An active balun–broadband amplifier follows, composed of two CA 2832 [12] hybrid wideband linear amplifiers operated in parallel; their outputs are combined with an RF transformer to drive the 50 coaxial transmission line. With this design, we achieve 30 db signal amplification and impedance matching between the balanced high Springer
  • 5. Exp Astron Fig. 4 The voltage standing wave ratio of the LB antenna for a 300 transmission line Fig. 5 The total gain of the LB antenna towards an indicative direction (θ, ϕ) = (40◦ , 40◦ ) input impedance of the dipole antenna and the unbalanced 50 transmission line. This entire configuration forms an active antenna for the 20–90 MHz band with input impedance of 50 . A combiner (Figure 1) combines the signals from the two antennas and drives them to the control room through a buried 70 m long, 50 coaxial low loss transmission line. 3. The two receivers and data acquisition The signal enters into the control room through the transmission line. A splitter splits the signal into two paths (Figure 1). The first path includes a modified commercial sweep frequency analyzer (Analyseur de Spectre Global or ASG) that covers the whole range from 20 to 650 MHz at 10 sweeps/sec with instantaneous bandwidth 1 MHz and dynamic range of 70 db. The analogue output from the ASG (0–5 V dc) drives a 12-bit ADC card (Keithley KPCI 3100 ADC), [7] on a PC (ASG PC). A pulse from a timer on the ADC card triggers every sweep at the ASG from low to high frequencies. The ADC takes 6300 samples/sweep (Figure 8). Every sample is an integer number between 0 and 4095. The samples are grouped in tens and the mean value is extracted for every group, so the whole spectrum (20–650 MHz) is divided into 630 channels with a resolution bandwidth of 1 MHz. We also take care to avoid, in real time, strong interference from FM radio and TV broadcasting by rejecting the high data values at these a-priori constant noted frequencies. If in a channel (10 samples) some samples correspond to the constant frequencies of strong Springer
  • 6. Exp Astron Fig. 6 Total gain of the LB antenna for all horizontal directions (θ , ϕ) at 40 MHz. The sun and the galactic center path on the sky are also indicated for the Thermopylae site Fig. 7 The structure of the LB antenna and its 3D far field polar diagram for the horizontal, vertical and total gain at 40 MHz. The antenna is almost omni directional FM radio or TV broadcasting the averaging is done over the number of useful ‘un-infected’ measurements. If in one or more channels all the measurements are ‘infected’ their intensity is replaced by the linear interpolation of the two adjacent ‘un-infected’ channels. These arrangements lead to a high “signal from solar radio bursts to noise ratio”. The data from 5 successive sweeps (spectrums) form a block that is transferred to the hard disk with a universal time stamp. Simultaneously we have the dynamic spectrum on the PC screen. At the end of the day, or later, we can retrieve the daily activity and store it on a DVD. The daily data are about 0.5 Gbyte. Every day, before starting measurements, the ASG PC controls the calibration and the antenna movement through RS232 port; also this PC receives the Universal Time from a GPS and corrects its clock. This PC is equipped with a telephone line modem for telemetry purposes. Also there is an Ethernet connection for the other PC. Springer
  • 7. Exp Astron Fig. 8 From the ASG analogue output to the finally recorded values The software on the PC to take measurements, for the GPS time and for controlling the entire operation is in Delfi programming language, under Windows 2000 operating system. For each day there is a log text file with details for the various program operations. The Second path (Figure 1) includes a pass band filter (270–450 MHz), 30 db RF amplifier, and finally an acousto-optic frequency analyzer (Spectrograph Acousto-Optic, SAO) [1, 13] for 270–450 MHz with 25 db dynamic linear range, frequency resolution of 400 kHz and very fast frame rate of 100 Hz (one frame or spectrum in 10 msec). There is also a PC equipped with 12-bit ADC card (Keithley KPCI 3100). Every 10 msec the ADC takes 1024 samples from the SAO analogue output with a resolution of 12 bit in 0–5V dc range. Eight samples together form a group and the mean value is extracted for every group, so the range 270–450 MHz is divided into 128 channels with a resolution bandwidth of 1.4 MHz. This arrangement leads to a high “signal from solar radio bursts to noise ratio”. The data from 50 successive sweeps (spectrums) form a block that is transferred to the hard disk with a universal time stamp. Simultaneously we have the dynamic spectrum on the PC screen. At the end of the day or later we can retrieve the daily activity and store it on a DVD. The daily data are about 1 Gbyte. The Universal Time is received every morning from the other PC through the Ethernet connection. The above frequency band of SAO has been selected Springer
  • 8. Exp Astron Fig. 9 Dynamic spectrum from the ASG. The calibration signal is shown at the left. The circle marks a type III solar radio burst. Black or grey horizontal lines are strong interference from FM radio and TV broadcastings at constant frequencies because a lot of radio bursts with fine time structure are observed in this band and it is almost free from strong TV or FM broadcasting interference. Figure 9 shows an example of ASG dynamic spectrum in grey scale (black for strong signals and white for weak). On the left we see the calibration signal from the noise generator, in the middle (inside the circle) a type III solar radio burst and on the right the greyscale in arbitrary units. Horizontal black or grey lines indicate strong FM radio and TV interference at constant frequencies. 4. Calibration Calibration is performed to derive the relationship between the flux density (Wm−2 Hz−1 , or Solar Flux Unit, 1 SFU = 10−22 Wm−2 Hz−1 ) that arrives from the solar radio burst at the antenna site, and all possible data values (0–4095) for 630 channels, from 20 to 650 MHz with 1 MHz bandwidth. It consists of two steps, step one for the HB and step two for the LB. Step one: (a) The antenna temperature is derived from the recorded values of the calibration signal and the known noise temperature of the noise generator. (b) The relation between the antenna temperature and the flux density is derived from the antenna temperature and the antenna far field pattern. (a) Before starting and after terminating the daily measurements, a calibration procedure takes place automatically. The parabolic antenna is disconnected from the preamplifier and a calibrated white noise generator is connected. The noise temperature of the cal- ibration signal increases automatically linearly with time from 101.5 to 108 K in 64 db steps. Every step lasts for 0.8sec. Let T f,s be the noise temperature for every channel (frequency) f (f = 100, 101, 102, . . .,650) and for every temperature step s (s = 1, 2,. . ., 64). 6.5 Log(T f,s ) = 1.5 + s (2) 64 At the same time the output mi,s from the analyser is recorded by the ASG PC in integer values, (mi,s from 0 to 4095) for every channel f and for every temperature step s. In every step there are eight values mi,s which are averaged, to minimize noise, and give the mean value Mi,s . Springer
  • 9. Exp Astron So for every value of Mis there is a corresponding antenna temperature Ti,s . After inter- polation we derive the relation T f, j = τHB ( f, j) for f = 100, 101, 102, . . . , 650 and j = 0, 1, 2, . . . , 4095 (3) (b) From the antenna temperature T f, j we can calculate the flux density S f, j using the relation [8]: 2kT f, j S f, j = (4) Af where: k the Boltzmann constant and A f the effective aperture of the antenna at frequency f. The effective aperture A f of the antenna is [8]: G f λ2f Af = (5) 4π where: G f the gain of the main beam of the HB antenna and λ f the wavelength at the frequency f (λ f = 3 × 108 / f ). The antenna gain is known from (1) and is independent from the Sun position because the antenna every time points to the Sun. So from relations (1), (5), (3) and (4) we derive the relation: S f, j = σHB ( f, j) for f = 100, 101, 102, . . . , 650 and j = 0, 1, 2, . . . , 4095 (6) Figure 10 shows this relation for three indicative frequencies f. Nonlinear segments at the beginning and at the end of the curves are owing to the nonlinear effects of the amplifiers. Step two: (a) The antenna temperature is derived from the recorded values of the calibration signal and the known noise temperature of the noise generator. (b) The relation between the antenna temperature and the flux density is derived from the antenna temperature and the antenna gain towards the direction of the Sun. (a) The previous procedure (disconnection of the antenna from the filter-amplifier, connection of the calibrated white noise generation) has been applied at once when the dipole antenna was installed and we derive the relation: T f, j = τLB ( f, j) for f = 20, 21, . . . , 100 and j = 0, 1, 2, . . . , 4095 (7) (b) The direction (θ, ϕ) of the Sun is calculated from the Universal Time at which a radio event has been recorded [6]. For this direction, the antenna gain G f is calculated by simulation for every frequency f ( f = 20, 21, . . . , 100), as in Figure 5. The flux density S f, j is derived using this value of G f and relations (5) and (4). Finally we have the relation S f, j = σLB ( f, j) for f = 20, 21, . . . , 100 and j = 0, 1, 2, . . . , 4095 (8) The results show that the sensitivity is about 3SFU in LB and about 30SFU in HB with dynamic range of 45db. We can thus detect only solar radio bursts and no radio signal from the quiet Sun that produces lower flux density at these frequencies. Springer
  • 10. Exp Astron Fig. 10 Calibration curves for three indicative frequencies for the HB antenna Detecting the noise, for a whole day, from the Galactic Center in LB, and finding values that are referred to in the bibliography [2], the method of calibration and the results from the simulation of the LB antenna have been verified. 5. Data analysis Data file for a solar radio event is a M × N array where M is the number of channels (M = 630 for ASG and M = 128 for SAO) and N the number of spectra that occupy the event (for ASG we have one spectrum for every tenth of the sec. and for SAO we have one spectrum for every hundredth of the sec.). The elements of the array are integer numbers (0–4095) that represent the intensity of the event. Data processing involves: (a) filtering the signal to remove interference, (b) finding the flux density of the dynamic spectrum and (c) calculating the power density (Wm−2 ) for the whole range from 20 to 650 MHz. Man made radio interference is increasing every year as social activities are increasing and there is no respect shown to frequencies allocated to radio astronomy; all these bring on difficulties for observing the solar radio bursts, clearly. There are various types of man made and physical interference, such including: 1. Narrowband ‘instant’ interference, its bandwidth being narrower than the channel band- width (1 MHz) due to narrow band FM or AM mobile communications at various frequen- cies; it occupies only one channel with maximum duration of some minutes. They appear as small narrow horizontal lines. Springer
  • 11. Exp Astron 2. Narrowband ‘lasting’ interference, its bandwidth being narrower than the channel band- width (1 MHz) due to FM or AM radio broadcasting at fixed frequencies; it occupies only one channel, but is present all the time or for some hours. They appear as very long narrow horizontal lines. 3. Wideband ‘lasting’ interference, its bandwidth being larger than the channel bandwidth (1 MHz) due to TV radio broadcasting at fixed frequencies; it occupies some channels (4–10) and is present all the time or for some hours. Also, this kind of interference appears when there is narrowband lasting interference at adjacent channels as in the FM radio broadcasting band (88–108 MHz) or TV broadcasting bands. They appear as very long wide horizontal lines. 4. Ultra wideband instant interference that occupies all channels from 20 MHz to some hundred MHz due to lightning with maximum duration of about one second. They appear as narrow vertical lines. 5. Galactic background broadband radiation dominates the system noise at the 20–100 MHz band. It is stronger at the lower part of the band and dominates when the galactic centre is on the sky during daytime from November to February [10]. Contrary to all these, solar radio events of various types (I, II, III, IV and V) are broadband with a duration of some seconds to hours [11]. Solar radio events can be recovered from the data, keeping in mind the above factors and by using standard image processing with 2D median, low pass or high pass filtering. A more efficient filtering is achieved by using, for every spectrum, moving median filters with variable bandwidth. Figure 11 shows an example. Fig. 11 The influence of the moving median filtering on dynamic spectrum. (a) Initial dynamic spectrum. (b) Moving median filtering with constant bandwidth 5. (c) Moving median filtering with constant bandwidth 15. (d) Moving median filtering with constant bandwidth 25. (e) Moving median filtering with variable bandwidth. Large bandwidth rejects all the interference and a lot of details in the solar radio burst. Small bandwidth allows details in the solar radio burst but cannot reject interference. Using variable bandwidth the spectrum is divided into regions and we apply moving median filtering with variable bandwidth as follows: region 20–80 MHz, 80–400 MHz and 400–650 MHz with bandwidth 2, 17 and 25 respectively Springer
  • 12. Exp Astron Fig. 12 Dynamic spectrum of type III and V solar radio burst from 08:05:00 UT on 26 April 2003. The graphs show the Total Power Density and its logarithm for the range 20–650 MHz Springer
  • 13. Exp Astron Fig. 13 Dynamic spectrum of a large solar event recorded by ASG from 10:02:00 to 10:12:00 on 28 Oct. 2003. Grey scale on the right is in arbitrary units Fig. 14 Detail of the Figure 13, shows the time differential dynamic spectrum from 10:02:00 to 10:04:00, derived after special 2D filtering. Ascending and descending lines are produced by ascending and descending electron beams in the solar corona Fig. 15 Dynamic spectrum of the same large solar event recorded by SAO from 10:02:00 to 10:10:00 on 28 Oct. 2003. Grey scale on the right is in arbitrary units Fig. 16 Detail of the Figure 15, shows the time differential dynamic spectrum from 10:02:00 to 10:04:00, derived after special 2D filtering Springer
  • 14. Exp Astron After filtering, we use the calibration relations (6) and (8) to derive the dynamic spectrum flux density in SFU. Integrating these values for every spectrum we calculate the total power density in Wm−2 for the whole range 20–650MHz. An example is shown in Figure 12. This instrument has a very high time and frequency resolution from decimeter to decameter wavelengths with a very good signal to noise ratio that permits fine structure detection [14]. Figure 13 shows the dynamic spectra of 10 min long solar radio event on 28/10/2004 recorded by ARTEMIS IV ASG solar radio spectrograph. Grey scale on the right shows the signal intensity in arbitrary units. Figure 14 is a 2 min part of the above event. It shows the differential dynamic spectrum derived after special 2D filtering where we can distinguish fine structure, which indicates ascending and descending electron beams in the solar corona. We observe a type II solar radio burst with harmonic bands and herringbone structure. Figures 15 and 16 show the same event as recorded by SAO in the 270–450 MHz band where more details are seen in the frequency domain. 6. Conclusions and perspectives We have designed and constructed a system, with two antennas and a frequency sweep radio spectrograph, that observes solar radio bursts in the range 20–650 MHz with a time resolution 100 msec, frequency resolution of 1 MHz, sensitivity of 3 SFU and 30 SFU in the 20–100 MHz and 100–650 MHz range, respectively. Using an acousto-optic radio spectrograph in the range 270–450 MHz, time resolution of 10 msec. and frequency resolution of 1.4 MHz has been achieved. Future perspectives are the use of the instrument for routine observations of solar radio bursts, the construction of new dipole antennas perpendicular to the present so that we can make polarimetric measurements, as well as the extension of the SAO frequency range. Acknowledgements This work was supported in part by the program PLATON N◦ 05341PJ for the French- Greek collaboration and the program EPEAEK of the Greek Ministry of Education and Religious Affairs and the European Union in the framework of the research project Archimedes II: “Receiving and Processing the Signal from Solar Radio Bursts”. We also thank the Greek Telecommunication Organization (OTE) for hosting the equipment of ARTEMIS IV in the area of the earth satellite station “Thermopylae”. References 1. Berg, N., Pellegrino, J.: Acousto-Optic Signal Processing. Marcel Dekker Inc., New York, pp. 101 (1996) 2. Cane, H.: Spectra of the non-thermal radio radiation from the galactic polar regions. MNRAS 189, 465 (1979) 3. Caroubalos, C., Hillaris, A., Bouratzis, C., Alissandrakis, C.E., Preka-Papadema, P., Polygiannakis, J., Tsitsipis, P., Kontogeorgos, A., Moussas, X., Bougeret, J.-L., Doumas, G., Perche, C.: Solar type II and type IV radio bursts observed during 1998–2000 with the ARTEMIS IV radiospectrograph. Astron. Astrophys. 413, 1125–1133 (2004) 4. Caroubalos, C., Maroulis, D., Patavalis, N., Bougeret, J.-L., Doumas, G., Perche, C., Alissandrakis, C., Hillaris, A., Moussas, X., Preka-Papadema, P., Kontogeorgos, A., Tsitsipis, P., Kanelakis, G.: The new multichannel radiospectrograph ARTEMIS-IV/HECATE of the University of Athens. Exp. Astron. 11, 23–32 (2001) 5. Erickson, W.: Professor at Utas University of Australia, private communication ( 2004) 6. Kivelson, M.G., Rusell, C.T (eds): Introduction to Space Physics. Cambridge University Press (1995) 7. Keithley KPCL 3100 ADC manual ( 2002) 8. Kraus, J.: Antennas. McGraw-Hill, pp. 47 and 778 (1988) 9. Maroulis, D., Doumas, G., Caroubalos, C., Bougeret, J.-L., Moussas, X., Alissandrakis, C., Patavalis, N.: ARTEMIS MARK IV, the new Greek-French digital radio spectrograph at thermopyles, Greece. Solar Phys. 172, 353–360 (1997) Springer
  • 15. Exp Astron 10. McLean, D., Labrum, N.: Solar Radiophysics. Cambridge University Press, pp. 126 and 127 (1985a) 11. McLean, D., Labrum, N.: Solar Radiophysics. Cambridge University Press, pp. 39 and 40 (1985b) 12. Motorola: RF Device Data, Vol. II, pp. 5-40, 7-198–7-207 ( 1991) 13. Rohlfs, K., Wilson, T.: Tools of Radio Astronomy. Springer, pp. 105 (1996) 14. Tsitsipis, P., Kontogeorgos, A., Caroubalos, C., Moussas, X., Alissandrakis, C., Hillaris, A., Preka- Papadema, P., Polygiannakis, J., Bougeret, J.-L., Doumas, G., Perche, C.: ARTEMIS IV radio observations of the 14 July 2000 Large Solar Event. Solar Phys. 204, 165–179 (2001) 15. Tsitsipis, P., Kontogeorgos, A., Hillaris, A., Moussas, X., Caroubalos, C., Preka-Papadema, P.: Fast esti- mation of slopes of linear and quasi-linear structures in noisy background using Fourier methods. In press, Pattern Recognition 2006 (DOI: 10.1016/j.patcog.2006.04.014) Springer