SlideShare a Scribd company logo
1 of 11
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core–Shell
Nanowires
Kazi M. Alam, Charles E. Jensen, Pawan Kumar, Riley W. Hooper, Guy M. Bernard, Aakash Patidar, Ajay P. Manuel , Naaman
Amer, Anders Palmgren, David N. Purschke, Narendra Chaulagain, John Garcia, Phillip S. Kirwin, Lian C.T. Shoute, Kai Cui, Sergey
Gusarov, Alexander E. Kobryn, Vladimir K. Michaelis, Frank A. Hegmann, and Karthik Shankar*
ACS Appl. Mater. Interfaces 2021, 13, 40, 47418–47439
https://doi.org/10.1021/acsami.1c08550
Figure 1. FESEM images of (a) pristine CdS nanowires (NWs), (b) CdS-MHP core–shell NWs formed by electrostatic wrapping of C3N5 around CdS NWs, and
(c) CdS-MHPINS NWs formed by in situ growth of CdS/C3N5 heterostructures. The photographs of the materials are shown in the corresponding insets.
HRTEM images showing (d, e) CdS crystal planes and a thin layer of surrounding C3N5 nanosheets in CdS-MHP and (f, g) CdS crystal planes and a thin layer
of C3N5 nanosheets in CdS-MHPINS samples. EELS spectra of (h) CdS, (i) CdS-MHP, and (j) CdS-MHPINS showing energy loss peaks associated with
constituent elements.
Figure 2. (a, c) X-ray diffractograms and DRS absorption spectra of pristine C3N5 bulk, pristine C3N5 nanosheet, pristine CdS nanowire, and
heterojunctions of CdS with C3N5 nanosheets, respectively. (b, d) Raman spectra and steady-state photoluminescence spectra of pristine
CdS nanowire and heterojunctions of CdS with C3N5 nanosheets, respectively.
Figure 3. FDTD electromagnetic simulation results for bare and C3N5 wrapped (2 nm thick) CdS nanowire of 200 nm length and 100 nm
diameter. (a) Optical spectra (absorption, scattering, and extinction). (b–d) Electric field intensity profiles over xy, xz, and yz planes,
respectively, for the bare CdS nanowire. (e–g) Electric field intensity profiles over xy, xz, and yz planes, respectively, for the C3N5 wrapped
CdS nanowire. The electric field polarization direction is along the z axis in each and is indicated by yellow arrows. The nanowire is oriented
vertically on an FTO substrate. The horizontal rectangle visible in the plots (c, d, f, and g) is the substrate.
Figure 4. (a) XPS elemental survey scan of CdS (black), C3N5 bulk (wine), C3N5 NS (cyan), CdS-MHP (red), and CdS-MHPINS (blue). HR-
XPS spectra of (b) CdS, CdS-MHP, and CdS-MHPINS in the Cd 3d region; (c) CdS, CdS-MHP, and CdS-MHPINS in the S 2p region; (d)
C3N5 bulk, C3N5 NS, CdS-MHP, and CdS-MHPINS in the C 1s region, (e) C3N5 bulk, C3N5 NS, CdS-MHP, and CdS-MHPINS in the N 1s
region; and (f) CdS, CdS-MHP, and CdS-MHPINS in the O 1s region.
Figure 5. (a) 113Cd magic-angle spinning (MAS) Bloch decay NMR spectra of pristine CdS (top), CdS-MHP (middle), and CdS-MHPINS
(bottom). (b) 113Cd cross-polarization magic-angle spinning (CPMAS) NMR spectra of pristine CdS (top), CdS-MHP (middle), and CdS-
MHPINS (bottom). (c) 13C CPMAS NMR spectra of pristine C3N5 (top), CdS-MHP (middle), and CdS-MHPINS (bottom).
Figure 6. (a) −ΔE/Eref for CdS (black), CdS-MHP (red), and CdS-MHPINS (blue). The dark gray curves indicate biexponential fits to the data. Dashed vertical lines indicate times at
which photoconductivity spectra were measured. The green line corresponds to tpp = 14 ps, while the magenta line indicates tpp = 154 ps after the onset of −ΔE/Eref. The fluence is 400
μJ/cm2 for all measurements, with a center wavelength of 410 nm and 100 fs duration. (b) Real (square) and imaginary (circle) photoconductivity spectra for the bare CdS nanowire
sample taken at tpp = 14 ps (filled) and tpp = 154 ps (hollow). Real (solid line) and imaginary (dashed line) parts of the Drude–Smith model are shown as lines. (c) Same as (b), but for
CdS-MHP. (d) Same as (b), but for CdS-MHPINS.
Figure 7. Photocatalytic test by RhB degradation experiment for pristine CdS, CdS-MHP, and CdS-MHPINS samples. (a) RhB degradation
efficiency in the absence of any scavenger. (b) Comparative efficiencies for three photocatalysts in the absence of any scavenger and in the
presence of electron and hole scavengers. Proposed photocatalytic mechanisms for (c) pristine CdS and (d) CdS-C3N5 composites.
Figure 8. Photocatalytic degradation experiments under AM1.5 G 1 sun simulated sunlight using 4-nitrophenol. (a) UV–vis absorption
spectrum of bare 4-nitrophenol. Gradual evolution of UV–vis absorption spectra in the dark and under illumination for (b) pristine CdS, (c)
CdS-MHP, and (d) CdS-MHPINS samples.
Figure 9. Side view of DFT optimized structures showing spatial distributions of molecular orbitals (HOMO–LUMO plots) for heterojunctions
composed of two different CdS planes and single-layer C3N5. (a) Configuration I for CdS (100) plane and single-layer C3N5, (b) configuration
II for CdS (100) plane and single-layer C3N5, (c) configuration I for CdS (110) plane and single-layer C3N5, and (d) configuration II for CdS
(110) plane and single-layer C3N5. Cyan and magenta colors are for HOMO and LUMO surfaces, respectively. Cd, S, C, and N atoms are in
red, yellow, gray, and blue colors, respectively.
Figure 10. Projected density of states (PDOS) of selected atoms for two different pristine CdS planes and their heterojunctions with
single-layer C3N5. (a) Pristine CdS (100) plane, (b) configuration I for CdS (100) plane and single-layer C3N5, (c) configuration II for CdS
(100) plane and single-layer C3N5, (d) pristine CdS (110) plane, (e) configuration I for CdS (110) plane and single-layer C3N5, and (f)
configuration II for CdS (110) plane and single-layer C3N5. Cd, S, C, and N atoms are in wine, yellow, gray, and blue colors, respectively.

More Related Content

What's hot

Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...
Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...
Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...Pawan Kumar
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...Pawan Kumar
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...Pawan Kumar
 
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...Journal Papers
 
2021 influence of basic carbon additives on the electrochemical performance ...
2021   influence of basic carbon additives on the electrochemical performance ...2021   influence of basic carbon additives on the electrochemical performance ...
2021 influence of basic carbon additives on the electrochemical performance ...Ary Assuncao
 
Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...
Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...
Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...Pawan Kumar
 
Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...
Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...
Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...Pawan Kumar
 
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...Journal Papers
 
One pot synthesis of chain-like palladium nanocubes and their enhanced electr...
One pot synthesis of chain-like palladium nanocubes and their enhanced electr...One pot synthesis of chain-like palladium nanocubes and their enhanced electr...
One pot synthesis of chain-like palladium nanocubes and their enhanced electr...madlovescience
 
Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Pawan Kumar
 
Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Pawan Kumar
 
TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...
TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...
TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...Pawan Kumar
 
Nanostructured composite materials for CO2 activation
Nanostructured composite materials for CO2 activationNanostructured composite materials for CO2 activation
Nanostructured composite materials for CO2 activationPawan Kumar
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Pawan Kumar
 
Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...
Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...
Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...Pawan Kumar
 

What's hot (19)

Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...
Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...
Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2...
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Fra...
 
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
 
Opv radiation
Opv radiationOpv radiation
Opv radiation
 
2021 influence of basic carbon additives on the electrochemical performance ...
2021   influence of basic carbon additives on the electrochemical performance ...2021   influence of basic carbon additives on the electrochemical performance ...
2021 influence of basic carbon additives on the electrochemical performance ...
 
Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...
Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...
Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waa...
 
Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...
Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...
Photo-assisted oxidation of thiols to disulfides using cobalt ‘‘Nanorust’’ un...
 
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
 
UndergradThesis
UndergradThesisUndergradThesis
UndergradThesis
 
One pot synthesis of chain-like palladium nanocubes and their enhanced electr...
One pot synthesis of chain-like palladium nanocubes and their enhanced electr...One pot synthesis of chain-like palladium nanocubes and their enhanced electr...
One pot synthesis of chain-like palladium nanocubes and their enhanced electr...
 
ncomms13869
ncomms13869ncomms13869
ncomms13869
 
Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...
 
Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...
 
TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...
TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...
TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Dr...
 
Nanostructured composite materials for CO2 activation
Nanostructured composite materials for CO2 activationNanostructured composite materials for CO2 activation
Nanostructured composite materials for CO2 activation
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
 
Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...
Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...
Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@Si...
 
nl504051x
nl504051xnl504051x
nl504051x
 

Similar to Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core–Shell Nanowires

Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...Pawan Kumar
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...Pawan Kumar
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Pawan Kumar
 
Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...
Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...
Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...Pawan Kumar
 
Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method
Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method
Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method iosrjce
 
Origami conductivity and structural stability
Origami conductivity and structural stabilityOrigami conductivity and structural stability
Origami conductivity and structural stabilitydodo5575
 
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...Pawan Kumar
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeSérgio Sacani
 
Spherical array of annular ring microstrip antennas
Spherical array of annular ring microstrip antennasSpherical array of annular ring microstrip antennas
Spherical array of annular ring microstrip antennaswailGodaymi1
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Pawan Kumar
 
Wereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsWereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsSciCompIIT
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
ACS Boston 2015 poster final
ACS Boston 2015 poster finalACS Boston 2015 poster final
ACS Boston 2015 poster finalSwayandipta Dey
 
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...Pawan Kumar
 
Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Pawan Kumar
 
michele_romeo_phd_final_exam_presentation
michele_romeo_phd_final_exam_presentationmichele_romeo_phd_final_exam_presentation
michele_romeo_phd_final_exam_presentationMichele Romeo
 
Determining a structure with electron crystallography - Overview of the paper...
Determining a structure with electron crystallography - Overview of the paper...Determining a structure with electron crystallography - Overview of the paper...
Determining a structure with electron crystallography - Overview of the paper...Joke Hadermann
 
Raman imaging -Anjali Devi J S
Raman imaging -Anjali Devi J SRaman imaging -Anjali Devi J S
Raman imaging -Anjali Devi J SAnjali Devi J S
 

Similar to Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core–Shell Nanowires (20)

Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
 
Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...
Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...
Metal-Free Sulfonate-Sulfate-Functionalized Carbon Nitride for Direct Convers...
 
Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method
Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method
Synthesis and Characterization of CuS/PVA Nanocomposite via Chemical method
 
Origami conductivity and structural stability
Origami conductivity and structural stabilityOrigami conductivity and structural stability
Origami conductivity and structural stability
 
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
Unusual Electronic Properties of Cellulose Nanocrystals Conjugated to Cobalt ...
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black hole
 
Spherical array of annular ring microstrip antennas
Spherical array of annular ring microstrip antennasSpherical array of annular ring microstrip antennas
Spherical array of annular ring microstrip antennas
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
 
Wereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsWereszczynski Molecular Dynamics
Wereszczynski Molecular Dynamics
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
ACS Boston 2015 poster final
ACS Boston 2015 poster finalACS Boston 2015 poster final
ACS Boston 2015 poster final
 
jkps.66.323
jkps.66.323jkps.66.323
jkps.66.323
 
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
 
Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...Nanophotonic enhancement and improved electron extraction in perovskite solar...
Nanophotonic enhancement and improved electron extraction in perovskite solar...
 
389418
389418389418
389418
 
michele_romeo_phd_final_exam_presentation
michele_romeo_phd_final_exam_presentationmichele_romeo_phd_final_exam_presentation
michele_romeo_phd_final_exam_presentation
 
Determining a structure with electron crystallography - Overview of the paper...
Determining a structure with electron crystallography - Overview of the paper...Determining a structure with electron crystallography - Overview of the paper...
Determining a structure with electron crystallography - Overview of the paper...
 
Raman imaging -Anjali Devi J S
Raman imaging -Anjali Devi J SRaman imaging -Anjali Devi J S
Raman imaging -Anjali Devi J S
 

More from Pawan Kumar

Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Pawan Kumar
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Pawan Kumar
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Pawan Kumar
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Pawan Kumar
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Pawan Kumar
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Pawan Kumar
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Pawan Kumar
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Pawan Kumar
 
Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Pawan Kumar
 
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pawan Kumar
 
Multifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisMultifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisPawan Kumar
 
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Pawan Kumar
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Pawan Kumar
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Pawan Kumar
 
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Pawan Kumar
 
Bioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationBioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationPawan Kumar
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Pawan Kumar
 

More from Pawan Kumar (20)

Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...
 
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
 
Multifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisMultifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysis
 
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
 
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
 
Bioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationBioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidation
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
 

Recently uploaded

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 

Recently uploaded (20)

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 

Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core–Shell Nanowires

  • 1. Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core–Shell Nanowires Kazi M. Alam, Charles E. Jensen, Pawan Kumar, Riley W. Hooper, Guy M. Bernard, Aakash Patidar, Ajay P. Manuel , Naaman Amer, Anders Palmgren, David N. Purschke, Narendra Chaulagain, John Garcia, Phillip S. Kirwin, Lian C.T. Shoute, Kai Cui, Sergey Gusarov, Alexander E. Kobryn, Vladimir K. Michaelis, Frank A. Hegmann, and Karthik Shankar* ACS Appl. Mater. Interfaces 2021, 13, 40, 47418–47439 https://doi.org/10.1021/acsami.1c08550
  • 2. Figure 1. FESEM images of (a) pristine CdS nanowires (NWs), (b) CdS-MHP core–shell NWs formed by electrostatic wrapping of C3N5 around CdS NWs, and (c) CdS-MHPINS NWs formed by in situ growth of CdS/C3N5 heterostructures. The photographs of the materials are shown in the corresponding insets. HRTEM images showing (d, e) CdS crystal planes and a thin layer of surrounding C3N5 nanosheets in CdS-MHP and (f, g) CdS crystal planes and a thin layer of C3N5 nanosheets in CdS-MHPINS samples. EELS spectra of (h) CdS, (i) CdS-MHP, and (j) CdS-MHPINS showing energy loss peaks associated with constituent elements.
  • 3. Figure 2. (a, c) X-ray diffractograms and DRS absorption spectra of pristine C3N5 bulk, pristine C3N5 nanosheet, pristine CdS nanowire, and heterojunctions of CdS with C3N5 nanosheets, respectively. (b, d) Raman spectra and steady-state photoluminescence spectra of pristine CdS nanowire and heterojunctions of CdS with C3N5 nanosheets, respectively.
  • 4. Figure 3. FDTD electromagnetic simulation results for bare and C3N5 wrapped (2 nm thick) CdS nanowire of 200 nm length and 100 nm diameter. (a) Optical spectra (absorption, scattering, and extinction). (b–d) Electric field intensity profiles over xy, xz, and yz planes, respectively, for the bare CdS nanowire. (e–g) Electric field intensity profiles over xy, xz, and yz planes, respectively, for the C3N5 wrapped CdS nanowire. The electric field polarization direction is along the z axis in each and is indicated by yellow arrows. The nanowire is oriented vertically on an FTO substrate. The horizontal rectangle visible in the plots (c, d, f, and g) is the substrate.
  • 5. Figure 4. (a) XPS elemental survey scan of CdS (black), C3N5 bulk (wine), C3N5 NS (cyan), CdS-MHP (red), and CdS-MHPINS (blue). HR- XPS spectra of (b) CdS, CdS-MHP, and CdS-MHPINS in the Cd 3d region; (c) CdS, CdS-MHP, and CdS-MHPINS in the S 2p region; (d) C3N5 bulk, C3N5 NS, CdS-MHP, and CdS-MHPINS in the C 1s region, (e) C3N5 bulk, C3N5 NS, CdS-MHP, and CdS-MHPINS in the N 1s region; and (f) CdS, CdS-MHP, and CdS-MHPINS in the O 1s region.
  • 6. Figure 5. (a) 113Cd magic-angle spinning (MAS) Bloch decay NMR spectra of pristine CdS (top), CdS-MHP (middle), and CdS-MHPINS (bottom). (b) 113Cd cross-polarization magic-angle spinning (CPMAS) NMR spectra of pristine CdS (top), CdS-MHP (middle), and CdS- MHPINS (bottom). (c) 13C CPMAS NMR spectra of pristine C3N5 (top), CdS-MHP (middle), and CdS-MHPINS (bottom).
  • 7. Figure 6. (a) −ΔE/Eref for CdS (black), CdS-MHP (red), and CdS-MHPINS (blue). The dark gray curves indicate biexponential fits to the data. Dashed vertical lines indicate times at which photoconductivity spectra were measured. The green line corresponds to tpp = 14 ps, while the magenta line indicates tpp = 154 ps after the onset of −ΔE/Eref. The fluence is 400 μJ/cm2 for all measurements, with a center wavelength of 410 nm and 100 fs duration. (b) Real (square) and imaginary (circle) photoconductivity spectra for the bare CdS nanowire sample taken at tpp = 14 ps (filled) and tpp = 154 ps (hollow). Real (solid line) and imaginary (dashed line) parts of the Drude–Smith model are shown as lines. (c) Same as (b), but for CdS-MHP. (d) Same as (b), but for CdS-MHPINS.
  • 8. Figure 7. Photocatalytic test by RhB degradation experiment for pristine CdS, CdS-MHP, and CdS-MHPINS samples. (a) RhB degradation efficiency in the absence of any scavenger. (b) Comparative efficiencies for three photocatalysts in the absence of any scavenger and in the presence of electron and hole scavengers. Proposed photocatalytic mechanisms for (c) pristine CdS and (d) CdS-C3N5 composites.
  • 9. Figure 8. Photocatalytic degradation experiments under AM1.5 G 1 sun simulated sunlight using 4-nitrophenol. (a) UV–vis absorption spectrum of bare 4-nitrophenol. Gradual evolution of UV–vis absorption spectra in the dark and under illumination for (b) pristine CdS, (c) CdS-MHP, and (d) CdS-MHPINS samples.
  • 10. Figure 9. Side view of DFT optimized structures showing spatial distributions of molecular orbitals (HOMO–LUMO plots) for heterojunctions composed of two different CdS planes and single-layer C3N5. (a) Configuration I for CdS (100) plane and single-layer C3N5, (b) configuration II for CdS (100) plane and single-layer C3N5, (c) configuration I for CdS (110) plane and single-layer C3N5, and (d) configuration II for CdS (110) plane and single-layer C3N5. Cyan and magenta colors are for HOMO and LUMO surfaces, respectively. Cd, S, C, and N atoms are in red, yellow, gray, and blue colors, respectively.
  • 11. Figure 10. Projected density of states (PDOS) of selected atoms for two different pristine CdS planes and their heterojunctions with single-layer C3N5. (a) Pristine CdS (100) plane, (b) configuration I for CdS (100) plane and single-layer C3N5, (c) configuration II for CdS (100) plane and single-layer C3N5, (d) pristine CdS (110) plane, (e) configuration I for CdS (110) plane and single-layer C3N5, and (f) configuration II for CdS (110) plane and single-layer C3N5. Cd, S, C, and N atoms are in wine, yellow, gray, and blue colors, respectively.