SlideShare a Scribd company logo
1 of 62
Download to read offline
Conics & Parameters
                 y
1) Circle
                  a



            -a         a   x
                      x2  y2  a2

                 -a
Conics & Parameters
                 y
1) Circle
                  a
                      P  x, y 


            -a            a        x
                         x2  y2  a2

                 -a
Conics & Parameters
                  y
 1) Circle         a
                               P  x, y 
                       a
                       
             -a            x       a        x
                                 x2  y2  a2

                  -a
x
   cos
a
Conics & Parameters
                  y
 1) Circle         a
                               P  x, y 
                       a
                       
             -a            x       a        x
                                 x2  y2  a2

                  -a
x
   cos
a
x  a cos
Conics & Parameters        y
 1) Circle
                            a
                                        P  x, y 
                                a       y
                                
               -a                   x        a       x
                                            x2  y2  a2

                           -a
x            y
   cos        sin 
a            a
x  a cos   y  a sin 
Conics & Parameters        y
 1) Circle
                            a
                                         P  x, y 
                                a        y
                                
               -a                   x         a       x
                                             x2  y2  a2

                           -a
x            y                          Proof:
   cos        sin 
a            a                          x 2  y 2  a 2 cos 2   a 2 sin 2 
x  a cos   y  a sin                            a 2 cos 2   sin 2  
                                                   a2
2) Ellipse        y

                  b
                       P  x, y 
             -a            a        x
                  -b
2) Ellipse        y

                  b
                        P  x, y 
             -a             a        x
                  -b
                       x2  y2  a2
2) Ellipse        y

                  b
                                P  x, y 
                       
             -a            x        a        x
                  -b
                               x2  y2  a2
2) Ellipse          y

                    b
                                  P  x, y 
                         
               -a            x        a        x
                    -b
                                 x2  y2  a2


  x
     cos
  a
  x  a cos
2) Ellipse          y

                    b
                               P  x, y 
                         y
               -a         x        a        x
                    -b
                              x2  y2  a2


  x
     cos
  a
  x  a cos
2) Ellipse                   y

                             b
                                        P  x, y 
                                  y
               -a                  x        a        x
                             -b
                                       x2  y2  a2


  x            y
     cos        sin 
  a            b
  x  a cos   y  b sin 
2) Ellipse                      y

                                b
                                           P  x, y 
               x2  y 2  b2
                                     y
                  -a                  x        a        x
                                -b
                                          x2  y2  a2

                                          Proof:
  x              y
     cos          sin 
  a              b                        x 2 y 2 a 2 cos 2  b 2 sin 2 
                                            2
                                               2        2
                                                               
  x  a cos      y  b sin              a b          a              b2
                                                   cos 2   sin 2 
                                                  1
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
              -a                      a     x
                       -b
 x2 y2
  2
     2 1
 a b
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
                -a                    a     x
                       -b
 x2 y2
   2
      2 1
 a b
 2 x 2 y dy             df df dy 
      2  0           dx  dy  dx 
                                     
   2
 a    b dx
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
                -a                    a     x
                       -b
 x2 y2
   2
      2 1
 a b
 2 x 2 y dy             df df dy 
      2  0           dx  dy  dx 
                                     
   2
 a    b dx
      2 y dy    2x
        2
            2
      b dx      a
           dy   b2 x
               2
           dx   a y
Equation of Tangent and Normal
                        y
                       b
                                 P x1 , y1 
                -a                    a     x
                       -b
 x2 y2
   2
      2 1
 a b
 2 x 2 y dy             df df dy 
      2  0           dx  dy  dx 
                                     
   2
 a    b dx
      2 y dy    2x
        2
            2                            at P x1 , y1 
      b dx      a
           dy   b2 x                              dy   b 2 x1
               2                                    2
           dx   a y                               dx   a y1
y
                           b
                               P x1 , y1 
                   -a               a     x
                          -b
tangent:
          b 2 x1
y  y1   2  x  x1 
          a y1
y
                                           b
                                               P x1 , y1 
                           -a                       a     x
                                          -b
tangent:
             b 2 x1
y  y1   2  x  x1 
             a y1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
y
                                           b
                                               P x1 , y1 
                           -a                       a     x
                                          -b
tangent:
             b 2 x1
y  y1   2  x  x1 
             a y1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
      x1 x y1 y x12 y12
        2
           2  2 2
      a    b    a b
y
                                           b
                                               P x1 , y1 
                           -a                       a     x
                                          -b
tangent:
             b 2 x1
y  y1   2  x  x1 
             a y1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
      x1 x     y1 y x12 y12
        2
                2
                     2 2
      a        b     a b
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                  P x1 , y1 
                           -a                          a     x
                                          -b
tangent:                                       normal:
             b 2 x1                                    a 2 y1
y  y1   2  x  x1                         y  y1  2  x  x1 
             a y1                                      b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
      x1 x     y1 y x12 y12
        2
                2
                     2 2
      a        b     a b
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                     P x1 , y1 
                           -a                             a      x
                                          -b
tangent:                                        normal:
             b 2 x1                                           a 2 y1
y  y1   2  x  x1                            y  y1  2  x  x1 
             a y1                                             b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12       b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12        a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1
      x1 x     y1 y x12 y12
        2
                2
                     2 2
      a        b     a b
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                     P x1 , y1 
                           -a                             a      x
                                          -b
tangent:                                        normal:
             b 2 x1                                           a 2 y1
y  y1   2  x  x1                            y  y1  2  x  x1 
             a y1                                             b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12       b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12        a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1
      x1 x     y1 y x12 y12                         a2 x b2 y
        2
                2
                     2 2                                    a2  b2
      a        b     a b                             x1   y1
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                     P x1 , y1 
                           -a                             a      x
                                          -b
tangent:                                        normal:
             b 2 x1                                           a 2 y1
y  y1   2  x  x1                            y  y1  2  x  x1 
             a y1                                             b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12       b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12        a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1
      x1 x     y1 y x12 y12                         a2 x b2 y
        2
                2
                     2 2                                    a2  b2
      a        b     a b                             x1   y1
      x1 x     y1 y
                   1                                a 2 x b2 y
      a 2
               b 2
                                                                 a 2e2
                                                       x1    y1
Using Parametric Coordinates;
at Pa cos , b sin  
Using Parametric Coordinates;
at Pa cos , b sin   dy    ab 2 cos
                            2
                        dx    a b sin 
                              b cos
                           
                              a sin 
Using Parametric Coordinates;
  at Pa cos , b sin   dy    ab 2 cos
                              2
                          dx    a b sin 
                                b cos
                             
                                a sin 
tangent:
                b cos
y  b sin             x  a cos 
                a sin 
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:
                    b cos
   y  b sin              x  a cos 
                    a sin 
ay sin   ab sin 2   bx cos  ab cos 2 
bx cos  ay sin   ab sin 2   ab cos 2 
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:
                    b cos
   y  b sin              x  a cos 
                    a sin 
ay sin   ab sin 2   bx cos  ab cos 2 
bx cos  ay sin   ab sin 2   ab cos 2 
   x cos y sin 
                  sin 2   cos 2 
      a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:
                    b cos
   y  b sin              x  a cos 
                    a sin 
ay sin   ab sin 2   bx cos  ab cos 2 
bx cos  ay sin   ab sin 2   ab cos 2 
   x cos y sin 
                  sin 2   cos 2 
      a       b
        x cos y sin 
                      1
           a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:                                  normal:
                    b cos                                    a sin 
   y  b sin              x  a cos       y  b sin            x  a cos 
                    a sin                                    b cos
ay sin   ab sin 2   bx cos  ab cos 2 
bx cos  ay sin   ab sin 2   ab cos 2 
   x cos y sin 
                  sin 2   cos 2 
      a       b
        x cos y sin 
                      1
           a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:                                  normal:
                    b cos                                   a sin 
   y  b sin              x  a cos      y  b sin            x  a cos 
                    a sin                                   b cos
ay sin   ab sin 2   bx cos  ab cos 2  by cos  b 2 sin  cos
bx cos  ay sin   ab sin 2   ab cos 2              ax sin   a 2 sin  cos
   x cos y sin                               ax sin   by cos
                  sin 2   cos 2 
      a       b                                         a 2  b 2 sin  cos
        x cos y sin 
                      1
           a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:                                  normal:
                    b cos                                   a sin 
   y  b sin              x  a cos      y  b sin            x  a cos 
                    a sin                                   b cos
ay sin   ab sin 2   bx cos  ab cos 2  by cos  b 2 sin  cos
bx cos  ay sin   ab sin 2   ab cos 2              ax sin   a 2 sin  cos
   x cos y sin                               ax sin   by cos
                  sin 2   cos 2 
      a       b                                         a 2  b 2 sin  cos
        x cos y sin 
           a
              
                  b
                       1                       ax
                                                    
                                                      by
                                               cos  sin 
                                                            a 2  b2      a e 2 2
x2 y2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1 

           x1 x y1 y
             2
                2 1
           a    b
x2 y2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1       normal at  x1 , y1 

                            a2 x b2 y
                                       a 2  b2   a 2e2 
           x1 x y1 y
             2
                2 1           
           a    b            x1   y1
x2 y2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1            normal at  x1 , y1 

                                 a2 x b2 y
                                            a 2  b2   a 2e2 
           x1 x y1 y
             2
                2 1                
           a    b                 x1   y1


tangent at a cos , b sin  

       x cos y sin 
                     1
          a      b
x2 y2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1            normal at  x1 , y1 

                                 a2 x b2 y
                                            a 2  b2   a 2e2 
           x1 x y1 y
             2
                2 1                
           a    b                 x1   y1


tangent at a cos , b sin      normal at a cos , b sin  

       x cos y sin 
                                              a 2  b2   a 2e2 
                                  ax    by
                     1              
          a      b               cos  sin 
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0
  8      dx
         dy  x
             
         dx 16 y
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0                        3  dy          2
                               at  2,   , 
  8      dx                           2  dx         3
                                                  16      
         dy  x                                       2 
             
         dx 16 y                            dy      1
                                               
                                            dx 4 3
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0                        3  dy          2
                               at  2,   , 
  8      dx                           2  dx         3
                                                  16      
         dy  x                                       2 
             
         dx 16 y                            dy      1
                                               
                                            dx 4 3
                         3   1
                     y        x  2
                        2 4 3
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0                        3  dy          2
                               at  2,   , 
  8      dx                           2  dx         3
                                                  16      
         dy  x                                       2 
             
         dx 16 y                            dy      1
                                               
                                            dx 4 3
                         3   1
                     y        x  2
                        2 4 3
                     4 3y  6  x  2
                  x  4 3y  8  0
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                       6
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x 
      dy
          f  x  cos f  x 
      dx
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x              y  cos f  x 
      dy                          dy
          f  x  cos f  x         f  x  sin f  x 
      dx                          dx
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x              y  cos f  x 
      dy                          dy
          f  x  cos f  x         f  x  sin f  x 
      dx                          dx
      x  2 cos
    dx
         2 sin 
    d
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin 
    dx                 dy
        2 sin           cos
    d                 d
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
                3
          dy 2
   at   , 
         6 dx  1
                3
             
                2
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
                3
          dy 2                             1 2
                                          y    x  3 
   at   , 
         6 dx  1                           2  3
                3
             
                2
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
                3
          dy 2                             1 2
                                          y      x  3 
   at   , 
         6 dx  1                           2    3
                3                        2 3y  3  4 x  4 3
             
                2                   4 x  2 3y  3 3  0
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                  dy
  If y  mx  k is a tangent then    m
                                  dx
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
                                am sin   b cos
                        am sin   b cos  0  (1)
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
                                am sin   b cos
                        am sin   b cos  0  (1)
If tangent meets ellipse at a cos , b sin   then;
                                b sin   am cos  k
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
                                am sin   b cos
                        am sin   b cos  0  (1)
If tangent meets ellipse at a cos , b sin   then;
                                b sin   am cos  k
                    am cos  b sin    k  (2)
12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0     (+)

22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0            (+)

22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
      a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2
12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0            (+)

22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
      a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2
                          a 2m2  b2  k 2




              Exercise 6C; 1, 3, 11, 15, 18a

More Related Content

Viewers also liked

X2 t03 04 parameters, hyperbola (2012)
X2 t03 04 parameters, hyperbola (2012)X2 t03 04 parameters, hyperbola (2012)
X2 t03 04 parameters, hyperbola (2012)Nigel Simmons
 
X2 t07 01 features calculus (2012)
X2 t07 01 features calculus (2012)X2 t07 01 features calculus (2012)
X2 t07 01 features calculus (2012)Nigel Simmons
 
X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)Nigel Simmons
 
X2 t03 04 parameters, hyperbola (2013)
X2 t03 04 parameters, hyperbola (2013)X2 t03 04 parameters, hyperbola (2013)
X2 t03 04 parameters, hyperbola (2013)Nigel Simmons
 
X2 t05 01 discs & washers (2012)
X2 t05 01 discs & washers (2012)X2 t05 01 discs & washers (2012)
X2 t05 01 discs & washers (2012)Nigel Simmons
 
X2 t05 03 parallel crosssections (2012)
X2 t05 03 parallel crosssections (2012)X2 t05 03 parallel crosssections (2012)
X2 t05 03 parallel crosssections (2012)Nigel Simmons
 
X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)Nigel Simmons
 
X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)Nigel Simmons
 
X2 t07 04 reciprocal functions (2013)
X2 t07 04 reciprocal functions (2013)X2 t07 04 reciprocal functions (2013)
X2 t07 04 reciprocal functions (2013)Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2013)
X2 t07 03 addition, subtraction,  multiplication & division (2013)X2 t07 03 addition, subtraction,  multiplication & division (2013)
X2 t07 03 addition, subtraction, multiplication & division (2013)Nigel Simmons
 
X2 t03 01 ellipse (2013)
X2 t03 01 ellipse (2013)X2 t03 01 ellipse (2013)
X2 t03 01 ellipse (2013)Nigel Simmons
 
X2 t03 05 rectangular hyperbola (2013)
X2 t03 05 rectangular hyperbola (2013)X2 t03 05 rectangular hyperbola (2013)
X2 t03 05 rectangular hyperbola (2013)Nigel Simmons
 
X2 t07 07 other graphs (2013)
X2 t07 07 other graphs (2013)X2 t07 07 other graphs (2013)
X2 t07 07 other graphs (2013)Nigel Simmons
 
X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)Nigel Simmons
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)Nigel Simmons
 

Viewers also liked (17)

X2 t03 04 parameters, hyperbola (2012)
X2 t03 04 parameters, hyperbola (2012)X2 t03 04 parameters, hyperbola (2012)
X2 t03 04 parameters, hyperbola (2012)
 
X2 t07 01 features calculus (2012)
X2 t07 01 features calculus (2012)X2 t07 01 features calculus (2012)
X2 t07 01 features calculus (2012)
 
X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)
 
X2 t03 04 parameters, hyperbola (2013)
X2 t03 04 parameters, hyperbola (2013)X2 t03 04 parameters, hyperbola (2013)
X2 t03 04 parameters, hyperbola (2013)
 
X2 t05 01 discs & washers (2012)
X2 t05 01 discs & washers (2012)X2 t05 01 discs & washers (2012)
X2 t05 01 discs & washers (2012)
 
X2 t05 03 parallel crosssections (2012)
X2 t05 03 parallel crosssections (2012)X2 t05 03 parallel crosssections (2012)
X2 t05 03 parallel crosssections (2012)
 
X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)
 
X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)X2 t07 06 roots of functions (2013)
X2 t07 06 roots of functions (2013)
 
X2 t07 04 reciprocal functions (2013)
X2 t07 04 reciprocal functions (2013)X2 t07 04 reciprocal functions (2013)
X2 t07 04 reciprocal functions (2013)
 
X2 t07 03 addition, subtraction, multiplication & division (2013)
X2 t07 03 addition, subtraction,  multiplication & division (2013)X2 t07 03 addition, subtraction,  multiplication & division (2013)
X2 t07 03 addition, subtraction, multiplication & division (2013)
 
X2 t03 01 ellipse (2013)
X2 t03 01 ellipse (2013)X2 t03 01 ellipse (2013)
X2 t03 01 ellipse (2013)
 
X2 t03 05 rectangular hyperbola (2013)
X2 t03 05 rectangular hyperbola (2013)X2 t03 05 rectangular hyperbola (2013)
X2 t03 05 rectangular hyperbola (2013)
 
X2 t07 07 other graphs (2013)
X2 t07 07 other graphs (2013)X2 t07 07 other graphs (2013)
X2 t07 07 other graphs (2013)
 
X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)X2 t03 02 hyperbola (2013)
X2 t03 02 hyperbola (2013)
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)X2 t07 05 powers of functions (2013)
X2 t07 05 powers of functions (2013)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

X2 t03 03 parameters, ellipse (2013)

  • 1. Conics & Parameters y 1) Circle a -a a x x2  y2  a2 -a
  • 2. Conics & Parameters y 1) Circle a P  x, y  -a a x x2  y2  a2 -a
  • 3. Conics & Parameters y 1) Circle a P  x, y  a  -a x a x x2  y2  a2 -a x  cos a
  • 4. Conics & Parameters y 1) Circle a P  x, y  a  -a x a x x2  y2  a2 -a x  cos a x  a cos
  • 5. Conics & Parameters y 1) Circle a P  x, y  a y  -a x a x x2  y2  a2 -a x y  cos  sin  a a x  a cos y  a sin 
  • 6. Conics & Parameters y 1) Circle a P  x, y  a y  -a x a x x2  y2  a2 -a x y Proof:  cos  sin  a a x 2  y 2  a 2 cos 2   a 2 sin 2  x  a cos y  a sin   a 2 cos 2   sin 2    a2
  • 7. 2) Ellipse y b P  x, y  -a a x -b
  • 8. 2) Ellipse y b P  x, y  -a a x -b x2  y2  a2
  • 9. 2) Ellipse y b P  x, y   -a x a x -b x2  y2  a2
  • 10. 2) Ellipse y b P  x, y   -a x a x -b x2  y2  a2 x  cos a x  a cos
  • 11. 2) Ellipse y b P  x, y  y -a x a x -b x2  y2  a2 x  cos a x  a cos
  • 12. 2) Ellipse y b P  x, y  y -a x a x -b x2  y2  a2 x y  cos  sin  a b x  a cos y  b sin 
  • 13. 2) Ellipse y b P  x, y  x2  y 2  b2 y -a x a x -b x2  y2  a2 Proof: x y  cos  sin  a b x 2 y 2 a 2 cos 2  b 2 sin 2  2  2  2  x  a cos y  b sin  a b a b2  cos 2   sin 2  1
  • 14. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b
  • 15. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b 2 x 2 y dy  df df dy   2  0  dx  dy  dx    2 a b dx
  • 16. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b 2 x 2 y dy  df df dy   2  0  dx  dy  dx    2 a b dx 2 y dy 2x 2   2 b dx a dy b2 x  2 dx a y
  • 17. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b 2 x 2 y dy  df df dy   2  0  dx  dy  dx    2 a b dx 2 y dy 2x 2   2 at P x1 , y1  b dx a dy b2 x dy b 2 x1  2  2 dx a y dx a y1
  • 18. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1
  • 19. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
  • 20. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 x1 x y1 y x12 y12 2  2  2 2 a b a b
  • 21. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 x1 x y1 y x12 y12 2  2  2 2 a b a b x1 x y1 y 2  2 1 a b
  • 22. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 x1 x y1 y x12 y12 2  2  2 2 a b a b x1 x y1 y 2  2 1 a b
  • 23. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1 x1 x y1 y x12 y12 2  2  2 2 a b a b x1 x y1 y 2  2 1 a b
  • 24. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1 x1 x y1 y x12 y12 a2 x b2 y 2  2  2 2   a2  b2 a b a b x1 y1 x1 x y1 y 2  2 1 a b
  • 25. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1 x1 x y1 y x12 y12 a2 x b2 y 2  2  2 2   a2  b2 a b a b x1 y1 x1 x y1 y  1 a 2 x b2 y a 2 b 2   a 2e2 x1 y1
  • 26. Using Parametric Coordinates; at Pa cos , b sin  
  • 27. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin 
  • 28. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin 
  • 29. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin  ay sin   ab sin 2   bx cos  ab cos 2  bx cos  ay sin   ab sin 2   ab cos 2 
  • 30. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin  ay sin   ab sin 2   bx cos  ab cos 2  bx cos  ay sin   ab sin 2   ab cos 2  x cos y sin    sin 2   cos 2  a b
  • 31. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin  ay sin   ab sin 2   bx cos  ab cos 2  bx cos  ay sin   ab sin 2   ab cos 2  x cos y sin    sin 2   cos 2  a b x cos y sin   1 a b
  • 32. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: normal: b cos a sin  y  b sin     x  a cos  y  b sin    x  a cos  a sin  b cos ay sin   ab sin 2   bx cos  ab cos 2  bx cos  ay sin   ab sin 2   ab cos 2  x cos y sin    sin 2   cos 2  a b x cos y sin   1 a b
  • 33. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: normal: b cos a sin  y  b sin     x  a cos  y  b sin    x  a cos  a sin  b cos ay sin   ab sin 2   bx cos  ab cos 2  by cos  b 2 sin  cos bx cos  ay sin   ab sin 2   ab cos 2   ax sin   a 2 sin  cos x cos y sin  ax sin   by cos   sin 2   cos 2  a b  a 2  b 2 sin  cos x cos y sin   1 a b
  • 34. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: normal: b cos a sin  y  b sin     x  a cos  y  b sin    x  a cos  a sin  b cos ay sin   ab sin 2   bx cos  ab cos 2  by cos  b 2 sin  cos bx cos  ay sin   ab sin 2   ab cos 2   ax sin   a 2 sin  cos x cos y sin  ax sin   by cos   sin 2   cos 2  a b  a 2  b 2 sin  cos x cos y sin  a  b 1 ax  by cos  sin   a 2  b2  a e 2 2
  • 35. x2 y2 For ellipse 2  2 1 a b tangent at  x1 , y1  x1 x y1 y 2  2 1 a b
  • 36. x2 y2 For ellipse 2  2 1 a b tangent at  x1 , y1  normal at  x1 , y1  a2 x b2 y  a 2  b2   a 2e2  x1 x y1 y 2  2 1  a b x1 y1
  • 37. x2 y2 For ellipse 2  2 1 a b tangent at  x1 , y1  normal at  x1 , y1  a2 x b2 y  a 2  b2   a 2e2  x1 x y1 y 2  2 1  a b x1 y1 tangent at a cos , b sin   x cos y sin   1 a b
  • 38. x2 y2 For ellipse 2  2 1 a b tangent at  x1 , y1  normal at  x1 , y1  a2 x b2 y  a 2  b2   a 2e2  x1 x y1 y 2  2 1  a b x1 y1 tangent at a cos , b sin   normal at a cos , b sin   x cos y sin   a 2  b2   a 2e2  ax by  1  a b cos  sin 
  • 39. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2 
  • 40. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0 8 dx dy  x  dx 16 y
  • 41. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0   3  dy 2 at  2, ,  8 dx  2  dx  3 16  dy  x  2   dx 16 y dy 1  dx 4 3
  • 42. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0   3  dy 2 at  2, ,  8 dx  2  dx  3 16  dy  x  2   dx 16 y dy 1  dx 4 3 3 1 y   x  2 2 4 3
  • 43. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0   3  dy 2 at  2, ,  8 dx  2  dx  3 16  dy  x  2   dx 16 y dy 1  dx 4 3 3 1 y   x  2 2 4 3 4 3y  6  x  2 x  4 3y  8  0
  • 44. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6
  • 45. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  dy  f  x  cos f  x  dx
  • 46. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx
  • 47. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos dx  2 sin  d
  • 48. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dx dy  2 sin   cos d d
  • 49. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin 
  • 50. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin  3  dy 2 at   ,  6 dx  1  3  2
  • 51. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin  3  dy 2 1 2 y  x  3  at   ,  6 dx  1 2 3  3  2
  • 52. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin  3  dy 2 1 2 y  x  3  at   ,  6 dx  1 2 3  3 2 3y  3  4 x  4 3  2 4 x  2 3y  3 3  0
  • 53. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b
  • 54. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d
  • 55. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx
  • 56. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin 
  • 57. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin  am sin   b cos am sin   b cos  0  (1)
  • 58. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin  am sin   b cos am sin   b cos  0  (1) If tangent meets ellipse at a cos , b sin   then; b sin   am cos  k
  • 59. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin  am sin   b cos am sin   b cos  0  (1) If tangent meets ellipse at a cos , b sin   then; b sin   am cos  k am cos  b sin    k  (2)
  • 60. 12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0 (+) 22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
  • 61. 12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0 (+) 22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2 a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2
  • 62. 12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0 (+) 22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2 a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2 a 2m2  b2  k 2 Exercise 6C; 1, 3, 11, 15, 18a