SlideShare a Scribd company logo
1 of 66
Download to read offline
Integration Using
   Substitution
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
                    STANDARD INTEGRALS
                            1 n 1
          x dx                x , n  1; x  0, if n  0
            n
                          n 1
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
                    STANDARD INTEGRALS
                            1 n 1
          x dx                x , n  1; x  0, if n  0
            n
                          n 1
          1
         xdx            ln x, x  0
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
                    STANDARD INTEGRALS
                            1 n 1
          x dx                x , n  1; x  0, if n  0
            n
                          n 1
          1
         xdx            ln x, x  0
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
                    STANDARD INTEGRALS
                            1 n 1
          x dx                x , n  1; x  0, if n  0
             n
                          n 1
          1
         xdx            ln x, x  0
                          1
         e ax dx        e ax , a  0
                          a
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
                    STANDARD INTEGRALS
                            1 n 1
          x dx                x , n  1; x  0, if n  0
             n
                          n 1
          1
         xdx            ln x, x  0
                          1
         e ax dx        e ax , a  0
                          a
                           1
         cos ax dx      sin ax, a  0
                           a
Integration Using
          Substitution
Try to convert the integral into a “standard integral”
                    STANDARD INTEGRALS
                            1 n 1
          x dx                x , n  1; x  0, if n  0
             n
                          n 1
           1
         xdx            ln x, x  0
                          1
         e ax dx        e ax , a  0
                          a
                           1
         cos ax dx      sin ax, a  0
                           a
                             1
         sin ax dx       cos ax, a  0
                             a
1
 sec                tan ax, a  0
        2
            ax dx
                     a
1
 sec                 tan ax, a  0
        2
            ax dx
                      a
                      1
 sec ax tan ax dx    sec ax, a  0
                      a
1
 sec                 tan ax, a  0
        2
            ax dx
                      a
                      1
 sec ax tan ax dx    sec ax, a  0
                      a
      1               1    1 x
 a 2  x 2 dx        tan
                      a       a
                                , a0
1
 sec                 tan ax, a  0
        2
            ax dx
                       a
                       1
 sec ax tan ax dx    sec ax, a  0
                       a
      1                1     1 x
 a 2  x 2 dx        tan
                       a        a
                                  , a0
       1                     x
 a 2  x 2 dx        sin 1 , a  0,  a  x  a
                             a
1
 sec                 tan ax, a  0
        2
            ax dx
                       a
                       1
 sec ax tan ax dx    sec ax, a  0
                       a
      1                1     1 x
 a 2  x 2 dx        tan
                       a        a
                                  , a0
       1                     x
 a 2  x 2 dx        sin 1 , a  0,  a  x  a
                             a
       1
 x 2  a 2 dx                        
                      ln x  x 2  a 2 , x  a  0
1
 sec                 tan ax, a  0
        2
            ax dx
                       a
                       1
 sec ax tan ax dx    sec ax, a  0
                       a
      1                1     1 x
 a 2  x 2 dx        tan
                       a        a
                                  , a0
       1                     x
 a 2  x 2 dx        sin 1 , a  0,  a  x  a
                             a
       1
 x 2  a 2 dx                           
                      ln x  x 2  a 2 , x  a  0



      1
    x a
     2   2
           dx            
                      ln x  x 2  a 2   
e.g. (i)  x x 2  4dx
e.g. (i)  x x 2  4dx   u  x2  4
e.g. (i)  x x 2  4dx   u  x2  4

             u
e.g. (i)  x x 2  4dx   u  x2  4
                         du  2 xdx
             u
e.g. (i)  x x 2  4dx   u  x2  4
    1                    du  2 xdx
      du     u
    2
e.g. (i)  x x 2  4dx  1 2 x x 2  4dx
                         2                u  x2  4
    1                    1 2
                             1             du  2 xdx
    2
       du    u           u du
                         2
e.g. (i)  x x 2  4dx  1 2 x x 2  4dx
                         2                u  x2  4
    1                    1 2
                             1             du  2 xdx
    2
       du    u           u du
                         2
                               3
                         1 2 2
                         u c
                         2 3
e.g. (i)  x x 2  4dx  1 2 x x 2  4dx
                         2                u  x2  4
    1                    1 2
                              1            du  2 xdx
    2
       du    u           u du
                         2
                                3
                         1 2 2
                         u c
                         2 3
                            3
                         1 2
                        u c
                         3
e.g. (i)  x x 2  4dx  1 2 x x 2  4dx
                         2                u  x2  4
    1                    1 2
                              1            du  2 xdx
    2
       du    u           u du
                         2
                                3
                         1 2 2
                         u c
                         2 3
                            3
                         1 2
                        u c
                         3
                        x  4 2  c
                                  3
                         1 2
                         3
e.g. (i)  x x 2  4dx  1 2 x x 2  4dx
                         2                     u  x2  4
    1                    1 2
                              1                 du  2 xdx
    2
       du    u           u du
                         2
                                3
                         1 2 2
                         u c
                         2 3
                            3
                         1 2
                        u c
                         3
                        x  4 2  c
                                  3
                         1 2
                         3

                        x  4  x 2  4  c
                         1 2
                         3
x 1
ii                 dx
         4 x  8x  7
            2
x 1
ii                 dx    u  4x2  8x  7
         4 x  8x  7
            2
                           du  8 x  8dx
x 1             1 du
ii 
                               8 u
                      dx              u  4x2  8x  7
         4 x  8x  7
            2
                                      du  8 x  8dx
x 1          1 du
ii 
                            8 u
                      dx                 u  4x2  8x  7
         4 x  8x  7
            2
                                         du  8 x  8dx
                            1
                            log u  c
                            8
x 1          1 du
ii 
                            8 u
                      dx                               u  4x2  8x  7
         4 x  8x  7
            2
                                                       du  8 x  8dx
                            1
                            log u  c
                            8
                            log4 x 2  8 x  7   c
                            1
                            8
x 1          1 du
ii 
                            8 u
                      dx                               u  4x2  8x  7
         4 x  8x  7
            2
                                                       du  8 x  8dx
                            1
                            log u  c
                            8
                            log4 x 2  8 x  7   c
                            1
                            8
           dx
iii 
        xlog x 
                 3
x 1          1 du
ii 
                            8 u
                      dx                               u  4x2  8x  7
         4 x  8x  7
            2
                                                       du  8 x  8dx
                            1
                            log u  c
                            8
                            log4 x 2  8 x  7   c
                            1
                            8
           dx
iii                                                  u  log x
        xlog x 
                 3

                                                           dx
                                                      du 
                                                            x
x 1           1 du
ii 
                             8 u
                      dx                                u  4x2  8x  7
         4 x  8x  7
            2
                                                        du  8 x  8dx
                             1
                             log u  c
                             8
                             log4 x 2  8 x  7   c
                             1
                             8
           dx          du
iii                3                                u  log x
        xlog x 
                 3
                       u
                                                            dx
                       u du
                           3
                                                       du 
                                                             x
x 1           1 du
ii 
                             8 u
                      dx                                u  4x 2  8x  7
         4 x  8x  7
            2
                                                        du  8 x  8dx
                             1
                             log u  c
                             8
                             log4 x 2  8 x  7   c
                             1
                             8
           dx          du
iii                3                                u  log x
        xlog x 
                 3
                       u
                                                             dx
                       u du
                           3
                                                        du 
                                                              x
                        1 2
                       u c
                        2
                         1
                       2 c
                        2u
x 1           1 du
ii 
                             8 u
                      dx                                u  4x 2  8x  7
         4 x  8x  7
            2
                                                        du  8 x  8dx
                             1
                             log u  c
                             8
                             log4 x 2  8 x  7   c
                             1
                             8
           dx          du
iii                3                                u  log x
        xlog x 
                 3
                       u
                                                             dx
                       u du
                           3
                                                        du 
                                                              x
                        1 2
                       u c
                        2
                         1
                       2 c
                        2u
                            1
                                 c
                        2log x 
                                 2
x
iv         dx
         1 x
x
iv         dx    x  1 u2  u  1 x
         1 x
                   dx  2udu
x          1 u2
iv         dx          2udu    x  1 u2  u  1 x
         1 x          u
                                     dx  2udu
x          1 u2
iv         dx            2udu    x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du     dx  2udu
x          1 u2
iv         dx            2udu     x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du      dx  2udu

                      1 u3  u   c
                   2          
                      3        
x          1 u2
iv         dx            2udu        x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du         dx  2udu

                      1 u3  u   c
                   2           
                      3         
                    1 x  2 1 x  c
                    2          3

                    3
x          1 u2
iv         dx            2udu            x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du             dx  2udu

                   2 1 u3  u   c
                                  
                       3         
                    1 x  2 1 x  c
                    2           3

                    3
                    2
                   1  x  1  x  2 1  x  c
                    3
x          1 u2
iv         dx            2udu             x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du              dx  2udu

                    2 1 u3  u   c
                                   
                        3         
                     1 x  2 1 x  c
                     2           3

                     3
                     2
                    1  x  1  x  2 1  x  c
                    3
   2
v  sin 5 x cos xdx
   
   3
x          1 u2
iv         dx            2udu             x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du              dx  2udu

                    2 1 u3  u   c
                                   
                        3         
                     1 x  2 1 x  c
                     2           3

                     3
                     2
                    1  x  1  x  2 1  x  c
                    3
   2
v  sin 5 x cos xdx                        u  sin x
   
   3
                                            du  cos xdx
x          1 u2
iv         dx            2udu             x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du              dx  2udu

                    2 1 u3  u   c
                                   
                        3         
                     1 x  2 1 x  c
                     2           3

                     3
                     2
                    1  x  1  x  2 1  x  c
                    3
   2
                                                                      
v  sin 5 x cos xdx                        u  sin x   x  , u  sin
                                                            3          3
   
   3
                                            du  cos xdx
                                                                     3
                                                               u
                                                                    2
x          1 u2
iv         dx            2udu             x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du              dx  2udu

                    2 1 u3  u   c
                                   
                        3         
                     1 x  2 1 x  c
                     2           3

                     3
                     2
                    1  x  1  x  2 1  x  c
                    3
   2
                                                                      
v  sin 5 x cos xdx                        u  sin x   x  , u  sin
                                                            3          3
   
   3
                                            du  cos xdx
                                                                     3
                                                               u
                                                                    2
                                                                              
                                                          x       , u  sin
                                                               2               2
                                                                    u 1
x          1 u2
iv         dx            2udu            x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du             dx  2udu

                   2 1 u3  u   c
                                  
                       3         
                    1 x  2 1 x  c
                    2           3

                    3
                    2
                   1  x  1  x  2 1  x  c
                   3 1
   2
                                                                     
v  sin 5 x cos xdx   u 5 du            u  sin x   x  , u  sin
                                                           3          3
   
   3                     2
                          3
                                           du  cos xdx
                                                                    3
                                                              u
                                                                   2
                                                                             
                                                         x       , u  sin
                                                              2               2
                                                                   u 1
x          1 u2
iv         dx            2udu            x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du             dx  2udu

                   2 1 u3  u   c
                                  
                       3         
                    1 x  2 1 x  c
                    2           3

                    3
                    2
                   1  x  1  x  2 1  x  c
                   3 1
   2
                                                                     
v  sin 5 x cos xdx   u 5 du            u  sin x   x  , u  sin
                                                           3          3
   
   3                     2
                          3
                                           du  cos xdx
                                                                    3
                       u  3
                       1 61                                   u
                                                                   2
                       6    2                                                
                                                         x       , u  sin
                                                              2               2
                                                                   u 1
x          1 u2
iv         dx            2udu            x  1 u2  u  1 x
         1 x           u
                  2  u 2  1du             dx  2udu

                   2 1 u3  u   c
                                  
                       3         
                    1 x  2 1 x  c
                    2           3

                    3
                    2
                   1  x  1  x  2 1  x  c
                   3 1
   2
                                                                     
v  sin 5 x cos xdx   u 5 du            u  sin x   x  , u  sin
                                                           3          3
   
   3                     2
                          3
                                           du  cos xdx
                                                                    3
                       u  3
                        1 61                                  u
                                                                   2
                        6
                        1 6 2  3 6 
                                                                            
                       1                           x       , u  sin
                        6                                    2               2
                                2                             u 1
                        37
                      
4
          xdx
vi 
    3    25  x 2
4
          xdx
vi                u  25  x 2
         25  x 2
    3
                    du  2 xdx
4
          xdx
vi                u  25  x 2
         25  x 2
    3
                    du  2 xdx
                    x  3, u  16
                    x  4, u  9
4                  9
          xdx
vi               1 du
                                 u  25  x 2
         25  x 2
                    2 16 u
    3
                                   du  2 xdx
                      16       1
                     1     
                 
                     29 u du  2
                                   x  3, u  16
                                   x  4, u  9
4                  9
          xdx
vi               1 du
                                  u  25  x 2
         25  x 2
                    2 16 u
    3
                                    du  2 xdx
                      16        1
                     1      
                 
                     29 u du   2
                                    x  3, u  16
                                    x  4, u  9
                           1 16
                    
                  u     2

                    9
4                  9
          xdx
vi               1 du
                                  u  25  x 2
         25  x 2
                    2 16 u
    3
                                    du  2 xdx
                      16        1
                     1      
                 
                     29 u du   2
                                    x  3, u  16
                                    x  4, u  9
                           1 16
                    
                  u     2

                    9
                  16  9
                 1
5
vii  25  x 2 dx
    0
5
                                           x
vii  25  x dx
             2                          1
                     x  5 sin u  u  sin
    0
                                           5
                    dx  5 cos udu
5
                                           x
vii  25  x dx
             2
                     x  5 sin u  u  sin 1

    0
                                           5
                    dx  5 cos udu
                     x  0, u  sin 1 0
                           u0
                     x  5, u  sin 1 1
                                
                           u
                                2

    5               2
                                                                        x
vii  25  x dx  
             2
                        25  25 sin u  5 cos udu x  5 sin u  u  sin
                                  2                                    1

    0               0
                                                                        5
                                                 dx  5 cos udu
                                                 x  0, u  sin 1 0
                                                       u0
                                                 x  5, u  sin 1 1
                                                            
                                                       u
                                                            2

     5                2
                                                                        x
vii    25  x dx   25  25 sin u  5 cos udu x  5 sin u  u  sin
               2                       2                                1

     0                0
                                                                        5
                       2                         dx  5 cos udu
                       25 cos u  5 cos udu
                                2

                       0
                                                  x  0, u  sin 1 0
                                                        u0
                          2
                      25 cos 2 udu              x  5, u  sin 1 1
                          0
                                                             
                                                        u
                                                             2

     5                2
                                                                        x
vii    25  x dx   25  25 sin u  5 cos udu x  5 sin u  u  sin
               2                       2                                1

     0                0
                                                                        5
                       2                         dx  5 cos udu
                       25 cos u  5 cos udu
                                2

                       0
                                                  x  0, u  sin 1 0
                                                        u0
                          2
                      25 cos 2 udu              x  5, u  sin 1 1
                          0
                                                            
                          2
                                                        u
                      25                                     2
                       1  cos 2u du
                      2 0
                                           
                      25  1       2
                      u  sin 2u 
                      2  2        0

     5                2
                                                                        x
vii    25  x dx   25  25 sin u  5 cos udu x  5 sin u  u  sin
               2                       2                                1

     0                0
                                                                        5
                       2                         dx  5 cos udu
                       25 cos u  5 cos udu
                                2

                       0
                                                  x  0, u  sin 1 0
                                                        u0
                          2
                      25 cos 2 udu              x  5, u  sin 1 1
                          0
                                                            
                          2
                                                        u
                      25                                     2
                       1  cos 2u du
                      2 0
                                           
                       25  1      2
                      u  sin 2u 
                       2  2       0
                       25  1        
                        sin   0
                        2 2 2        
                       25
                     
                         4
5
vii  25  x 2 dx
    0
5                      y
vii  25  x 2 dx        5   y  25  x 2
    0




                      -5         5      x
5                      y
vii  25  x 2 dx        5   y  25  x 2
    0




                      -5         5     x
5                      y
vii  25  x 2 dx        5   y  25  x 2
    0
      1
      5
           2

      4
      25             -5         5     x
    
        4
5                                           y
vii  25  x 2 dx                             5       y  25  x 2
    0
      1
      5
           2

      4
      25                              -5                 5      x
    
        4



        Exercise 6C; 1, 2ace, 3, 4ace, 5ace etc, 6, 7 & 8ac, 11, 12
            Exercise 6D; 1, 2a, 3, 4b, 5ac, 6ace etc, 7ab(i,ii)
                   8ab (i,iii,vi), 9ab (ii,iv,vi), 11, 13

                     Patel Exercise 2A ace in all
              NOTE: substitution is not given in Extension 2

More Related Content

Viewers also liked

11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)Nigel Simmons
 
X2 T02 04 forming polynomials (2010)
X2 T02 04 forming polynomials (2010)X2 T02 04 forming polynomials (2010)
X2 T02 04 forming polynomials (2010)Nigel Simmons
 
X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)Nigel Simmons
 
11X1 T14 08 mathematical induction 1 (2010)
11X1 T14 08 mathematical induction 1 (2010)11X1 T14 08 mathematical induction 1 (2010)
11X1 T14 08 mathematical induction 1 (2010)Nigel Simmons
 
11X1 T13 07 products of intercepts (2010)
11X1 T13 07 products of intercepts (2010)11X1 T13 07 products of intercepts (2010)
11X1 T13 07 products of intercepts (2010)Nigel Simmons
 
11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)Nigel Simmons
 
11X1 T12 06 maxima & minima (2010)
11X1 T12 06 maxima & minima (2010)11X1 T12 06 maxima & minima (2010)
11X1 T12 06 maxima & minima (2010)Nigel Simmons
 
11X1 T09 02 first principles (2010)
11X1 T09 02 first principles (2010)11X1 T09 02 first principles (2010)
11X1 T09 02 first principles (2010)Nigel Simmons
 
11X1 T09 08 implicit differentiation (2010)
11X1 T09 08 implicit differentiation (2010)11X1 T09 08 implicit differentiation (2010)
11X1 T09 08 implicit differentiation (2010)Nigel Simmons
 
12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)Nigel Simmons
 
12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansionsNigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)Nigel Simmons
 
11 x1 t11 04 chords of a parabola (2013)
11 x1 t11 04 chords of a parabola (2013)11 x1 t11 04 chords of a parabola (2013)
11 x1 t11 04 chords of a parabola (2013)Nigel Simmons
 
11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)Nigel Simmons
 
12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)Nigel Simmons
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)Nigel Simmons
 
11X1 T02 05 surdic equalities (2011)
11X1 T02 05 surdic equalities (2011)11X1 T02 05 surdic equalities (2011)
11X1 T02 05 surdic equalities (2011)Nigel Simmons
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsNigel Simmons
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 

Viewers also liked (20)

11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
 
X2 T02 04 forming polynomials (2010)
X2 T02 04 forming polynomials (2010)X2 T02 04 forming polynomials (2010)
X2 T02 04 forming polynomials (2010)
 
X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)
 
11X1 T14 08 mathematical induction 1 (2010)
11X1 T14 08 mathematical induction 1 (2010)11X1 T14 08 mathematical induction 1 (2010)
11X1 T14 08 mathematical induction 1 (2010)
 
11X1 T13 07 products of intercepts (2010)
11X1 T13 07 products of intercepts (2010)11X1 T13 07 products of intercepts (2010)
11X1 T13 07 products of intercepts (2010)
 
11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)
 
11X1 T12 06 maxima & minima (2010)
11X1 T12 06 maxima & minima (2010)11X1 T12 06 maxima & minima (2010)
11X1 T12 06 maxima & minima (2010)
 
11X1 T09 02 first principles (2010)
11X1 T09 02 first principles (2010)11X1 T09 02 first principles (2010)
11X1 T09 02 first principles (2010)
 
11X1 T09 08 implicit differentiation (2010)
11X1 T09 08 implicit differentiation (2010)11X1 T09 08 implicit differentiation (2010)
11X1 T09 08 implicit differentiation (2010)
 
12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)
 
12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
11 x1 t11 04 chords of a parabola (2013)
11 x1 t11 04 chords of a parabola (2013)11 x1 t11 04 chords of a parabola (2013)
11 x1 t11 04 chords of a parabola (2013)
 
11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)11 x1 t08 07 asinx + bcosx = c (2012)
11 x1 t08 07 asinx + bcosx = c (2012)
 
12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
11X1 T02 05 surdic equalities (2011)
11X1 T02 05 surdic equalities (2011)11X1 T02 05 surdic equalities (2011)
11X1 T02 05 surdic equalities (2011)
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 

Similar to 12X1 T06 01 integration using substitution (2010)

X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)Nigel Simmons
 
X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)Nigel Simmons
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)Nigel Simmons
 
11X1 T09 04 chain rule (2011)
11X1 T09 04 chain rule (2011)11X1 T09 04 chain rule (2011)
11X1 T09 04 chain rule (2011)Nigel Simmons
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)Nigel Simmons
 
Derivada por definición y por teorema
Derivada por definición y por teoremaDerivada por definición y por teorema
Derivada por definición y por teoremaolyuny
 
11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)Nigel Simmons
 
11X1 T14 03 indefinite integral
11X1 T14 03 indefinite integral11X1 T14 03 indefinite integral
11X1 T14 03 indefinite integralNigel Simmons
 
11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integralNigel Simmons
 
11 x1 t09 04 chain rule (13)
11 x1 t09 04 chain rule (13)11 x1 t09 04 chain rule (13)
11 x1 t09 04 chain rule (13)Nigel Simmons
 

Similar to 12X1 T06 01 integration using substitution (2010) (13)

X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)
 
X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)
 
11X1 T09 04 chain rule (2011)
11X1 T09 04 chain rule (2011)11X1 T09 04 chain rule (2011)
11X1 T09 04 chain rule (2011)
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)
 
Jesus olvera mata
Jesus olvera mataJesus olvera mata
Jesus olvera mata
 
Jesus olvera mata
Jesus olvera mataJesus olvera mata
Jesus olvera mata
 
Derivada por definición y por teorema
Derivada por definición y por teoremaDerivada por definición y por teorema
Derivada por definición y por teorema
 
11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
 
11X1 T14 03 indefinite integral
11X1 T14 03 indefinite integral11X1 T14 03 indefinite integral
11X1 T14 03 indefinite integral
 
11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral
 
11 x1 t09 04 chain rule (13)
11 x1 t09 04 chain rule (13)11 x1 t09 04 chain rule (13)
11 x1 t09 04 chain rule (13)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

EDUC6506_ClassPresentation_TC330277 (1).pptx
EDUC6506_ClassPresentation_TC330277 (1).pptxEDUC6506_ClassPresentation_TC330277 (1).pptx
EDUC6506_ClassPresentation_TC330277 (1).pptxmekosin001123
 
educ6506presentationtc3302771-240427173057-06a46de5.pptx
educ6506presentationtc3302771-240427173057-06a46de5.pptxeduc6506presentationtc3302771-240427173057-06a46de5.pptx
educ6506presentationtc3302771-240427173057-06a46de5.pptxmekosin001123
 
EDUC6506(001)_ClassPresentation_2_TC330277 (1).pptx
EDUC6506(001)_ClassPresentation_2_TC330277 (1).pptxEDUC6506(001)_ClassPresentation_2_TC330277 (1).pptx
EDUC6506(001)_ClassPresentation_2_TC330277 (1).pptxmekosin001123
 
哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制
哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制
哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制jakepaige317
 
1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...
1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...
1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...黑客 接单【TG/微信qoqoqdqd】
 
泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书
泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书
泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书jakepaige317
 

Recently uploaded (6)

EDUC6506_ClassPresentation_TC330277 (1).pptx
EDUC6506_ClassPresentation_TC330277 (1).pptxEDUC6506_ClassPresentation_TC330277 (1).pptx
EDUC6506_ClassPresentation_TC330277 (1).pptx
 
educ6506presentationtc3302771-240427173057-06a46de5.pptx
educ6506presentationtc3302771-240427173057-06a46de5.pptxeduc6506presentationtc3302771-240427173057-06a46de5.pptx
educ6506presentationtc3302771-240427173057-06a46de5.pptx
 
EDUC6506(001)_ClassPresentation_2_TC330277 (1).pptx
EDUC6506(001)_ClassPresentation_2_TC330277 (1).pptxEDUC6506(001)_ClassPresentation_2_TC330277 (1).pptx
EDUC6506(001)_ClassPresentation_2_TC330277 (1).pptx
 
哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制
哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制
哪里可以购买日本筑波学院大学学位记/做个假的文凭可认证吗/仿制日本大学毕业证/意大利语CELI证书定制
 
1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...
1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...
1.🎉“入侵大学入学考试中心修改成绩”来袭!ALEVEL替考大揭秘,轻松搞定考试成绩! 💥你还在为无法进入大学招生系统而烦恼吗?想知道如何通过技术手段更改...
 
泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书
泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书
泽兰应用科学大学毕业证制作/定制国外大学录取通知书/购买一个假的建国科技大学硕士学位证书
 

12X1 T06 01 integration using substitution (2010)

  • 1. Integration Using Substitution
  • 2. Integration Using Substitution Try to convert the integral into a “standard integral”
  • 3. Integration Using Substitution Try to convert the integral into a “standard integral” STANDARD INTEGRALS 1 n 1  x dx  x , n  1; x  0, if n  0 n n 1
  • 4. Integration Using Substitution Try to convert the integral into a “standard integral” STANDARD INTEGRALS 1 n 1  x dx  x , n  1; x  0, if n  0 n n 1 1  xdx  ln x, x  0
  • 5. Integration Using Substitution Try to convert the integral into a “standard integral” STANDARD INTEGRALS 1 n 1  x dx  x , n  1; x  0, if n  0 n n 1 1  xdx  ln x, x  0
  • 6. Integration Using Substitution Try to convert the integral into a “standard integral” STANDARD INTEGRALS 1 n 1  x dx  x , n  1; x  0, if n  0 n n 1 1  xdx  ln x, x  0 1  e ax dx  e ax , a  0 a
  • 7. Integration Using Substitution Try to convert the integral into a “standard integral” STANDARD INTEGRALS 1 n 1  x dx  x , n  1; x  0, if n  0 n n 1 1  xdx  ln x, x  0 1  e ax dx  e ax , a  0 a 1  cos ax dx  sin ax, a  0 a
  • 8. Integration Using Substitution Try to convert the integral into a “standard integral” STANDARD INTEGRALS 1 n 1  x dx  x , n  1; x  0, if n  0 n n 1 1  xdx  ln x, x  0 1  e ax dx  e ax , a  0 a 1  cos ax dx  sin ax, a  0 a 1  sin ax dx   cos ax, a  0 a
  • 9. 1  sec  tan ax, a  0 2 ax dx a
  • 10. 1  sec  tan ax, a  0 2 ax dx a 1  sec ax tan ax dx  sec ax, a  0 a
  • 11. 1  sec  tan ax, a  0 2 ax dx a 1  sec ax tan ax dx  sec ax, a  0 a 1 1 1 x  a 2  x 2 dx  tan a a , a0
  • 12. 1  sec  tan ax, a  0 2 ax dx a 1  sec ax tan ax dx  sec ax, a  0 a 1 1 1 x  a 2  x 2 dx  tan a a , a0 1 x  a 2  x 2 dx  sin 1 , a  0,  a  x  a a
  • 13. 1  sec  tan ax, a  0 2 ax dx a 1  sec ax tan ax dx  sec ax, a  0 a 1 1 1 x  a 2  x 2 dx  tan a a , a0 1 x  a 2  x 2 dx  sin 1 , a  0,  a  x  a a 1  x 2  a 2 dx    ln x  x 2  a 2 , x  a  0
  • 14. 1  sec  tan ax, a  0 2 ax dx a 1  sec ax tan ax dx  sec ax, a  0 a 1 1 1 x  a 2  x 2 dx  tan a a , a0 1 x  a 2  x 2 dx  sin 1 , a  0,  a  x  a a 1  x 2  a 2 dx    ln x  x 2  a 2 , x  a  0  1 x a 2 2 dx   ln x  x 2  a 2 
  • 15. e.g. (i)  x x 2  4dx
  • 16. e.g. (i)  x x 2  4dx u  x2  4
  • 17. e.g. (i)  x x 2  4dx u  x2  4 u
  • 18. e.g. (i)  x x 2  4dx u  x2  4 du  2 xdx u
  • 19. e.g. (i)  x x 2  4dx u  x2  4 1 du  2 xdx du u 2
  • 20. e.g. (i)  x x 2  4dx  1 2 x x 2  4dx 2 u  x2  4 1 1 2 1 du  2 xdx 2 du u   u du 2
  • 21. e.g. (i)  x x 2  4dx  1 2 x x 2  4dx 2 u  x2  4 1 1 2 1 du  2 xdx 2 du u   u du 2 3 1 2 2   u c 2 3
  • 22. e.g. (i)  x x 2  4dx  1 2 x x 2  4dx 2 u  x2  4 1 1 2 1 du  2 xdx 2 du u   u du 2 3 1 2 2   u c 2 3 3 1 2  u c 3
  • 23. e.g. (i)  x x 2  4dx  1 2 x x 2  4dx 2 u  x2  4 1 1 2 1 du  2 xdx 2 du u   u du 2 3 1 2 2   u c 2 3 3 1 2  u c 3  x  4 2  c 3 1 2 3
  • 24. e.g. (i)  x x 2  4dx  1 2 x x 2  4dx 2 u  x2  4 1 1 2 1 du  2 xdx 2 du u   u du 2 3 1 2 2   u c 2 3 3 1 2  u c 3  x  4 2  c 3 1 2 3  x  4  x 2  4  c 1 2 3
  • 25. x 1 ii  dx 4 x  8x  7 2
  • 26. x 1 ii  dx u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx
  • 27. x 1 1 du ii  8 u dx  u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx
  • 28. x 1 1 du ii  8 u dx  u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8
  • 29. x 1 1 du ii  8 u dx  u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8  log4 x 2  8 x  7   c 1 8
  • 30. x 1 1 du ii  8 u dx  u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8  log4 x 2  8 x  7   c 1 8 dx iii  xlog x  3
  • 31. x 1 1 du ii  8 u dx  u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8  log4 x 2  8 x  7   c 1 8 dx iii  u  log x xlog x  3 dx du  x
  • 32. x 1 1 du ii  8 u dx  u  4x2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8  log4 x 2  8 x  7   c 1 8 dx du iii   3 u  log x xlog x  3 u dx   u du 3 du  x
  • 33. x 1 1 du ii  8 u dx  u  4x 2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8  log4 x 2  8 x  7   c 1 8 dx du iii   3 u  log x xlog x  3 u dx   u du 3 du  x 1 2   u c 2 1   2 c 2u
  • 34. x 1 1 du ii  8 u dx  u  4x 2  8x  7 4 x  8x  7 2 du  8 x  8dx 1  log u  c 8  log4 x 2  8 x  7   c 1 8 dx du iii   3 u  log x xlog x  3 u dx   u du 3 du  x 1 2   u c 2 1   2 c 2u 1  c 2log x  2
  • 35. x iv  dx 1 x
  • 36. x iv  dx x  1 u2  u  1 x 1 x dx  2udu
  • 37. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u dx  2udu
  • 38. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu
  • 39. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  1 u3  u   c  2   3 
  • 40. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  1 u3  u   c  2   3    1 x  2 1 x  c 2 3 3
  • 41. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c 3
  • 42. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 2 v  sin 5 x cos xdx  3
  • 43. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 2 v  sin 5 x cos xdx u  sin x  3 du  cos xdx
  • 44. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 2   v  sin 5 x cos xdx u  sin x x  , u  sin 3 3  3 du  cos xdx 3 u 2
  • 45. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 2   v  sin 5 x cos xdx u  sin x x  , u  sin 3 3  3 du  cos xdx 3 u 2   x , u  sin 2 2 u 1
  • 46. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 1 2   v  sin 5 x cos xdx   u 5 du u  sin x x  , u  sin 3 3  3 2 3 du  cos xdx 3 u 2   x , u  sin 2 2 u 1
  • 47. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 1 2   v  sin 5 x cos xdx   u 5 du u  sin x x  , u  sin 3 3  3 2 3 du  cos xdx 3  u  3 1 61 u 2 6 2   x , u  sin 2 2 u 1
  • 48. x 1 u2 iv  dx    2udu x  1 u2  u  1 x 1 x u  2  u 2  1du dx  2udu  2 1 u3  u   c   3    1 x  2 1 x  c 2 3 3 2  1  x  1  x  2 1  x  c  3 1 2   v  sin 5 x cos xdx   u 5 du u  sin x x  , u  sin 3 3  3 2 3 du  cos xdx 3  u  3 1 61 u 2 6 1 6 2  3 6      1     x , u  sin 6 2 2   2   u 1 37 
  • 49. 4 xdx vi  3 25  x 2
  • 50. 4 xdx vi  u  25  x 2 25  x 2 3 du  2 xdx
  • 51. 4 xdx vi  u  25  x 2 25  x 2 3 du  2 xdx x  3, u  16 x  4, u  9
  • 52. 4 9 xdx vi  1 du   u  25  x 2 25  x 2 2 16 u 3 du  2 xdx 16 1 1   29 u du 2 x  3, u  16 x  4, u  9
  • 53. 4 9 xdx vi  1 du   u  25  x 2 25  x 2 2 16 u 3 du  2 xdx 16 1 1   29 u du 2 x  3, u  16 x  4, u  9 1 16    u  2  9
  • 54. 4 9 xdx vi  1 du   u  25  x 2 25  x 2 2 16 u 3 du  2 xdx 16 1 1   29 u du 2 x  3, u  16 x  4, u  9 1 16    u  2  9  16  9 1
  • 55. 5 vii  25  x 2 dx 0
  • 56. 5 x vii  25  x dx 2 1 x  5 sin u  u  sin 0 5 dx  5 cos udu
  • 57. 5 x vii  25  x dx 2 x  5 sin u  u  sin 1 0 5 dx  5 cos udu x  0, u  sin 1 0 u0 x  5, u  sin 1 1  u 2
  • 58. 5 2 x vii  25  x dx   2 25  25 sin u  5 cos udu x  5 sin u  u  sin 2 1 0 0 5 dx  5 cos udu x  0, u  sin 1 0 u0 x  5, u  sin 1 1  u 2
  • 59. 5 2 x vii  25  x dx   25  25 sin u  5 cos udu x  5 sin u  u  sin 2 2 1 0 0 5 2 dx  5 cos udu   25 cos u  5 cos udu 2 0 x  0, u  sin 1 0  u0 2  25 cos 2 udu x  5, u  sin 1 1 0  u 2
  • 60. 5 2 x vii  25  x dx   25  25 sin u  5 cos udu x  5 sin u  u  sin 2 2 1 0 0 5 2 dx  5 cos udu   25 cos u  5 cos udu 2 0 x  0, u  sin 1 0  u0 2  25 cos 2 udu x  5, u  sin 1 1 0   2 u 25 2   1  cos 2u du 2 0  25  1 2  u  sin 2u  2  2 0
  • 61. 5 2 x vii  25  x dx   25  25 sin u  5 cos udu x  5 sin u  u  sin 2 2 1 0 0 5 2 dx  5 cos udu   25 cos u  5 cos udu 2 0 x  0, u  sin 1 0  u0 2  25 cos 2 udu x  5, u  sin 1 1 0   2 u 25 2   1  cos 2u du 2 0  25  1 2  u  sin 2u  2  2 0 25  1     sin   0 2 2 2  25  4
  • 62. 5 vii  25  x 2 dx 0
  • 63. 5 y vii  25  x 2 dx 5 y  25  x 2 0 -5 5 x
  • 64. 5 y vii  25  x 2 dx 5 y  25  x 2 0 -5 5 x
  • 65. 5 y vii  25  x 2 dx 5 y  25  x 2 0 1   5 2 4 25 -5 5 x  4
  • 66. 5 y vii  25  x 2 dx 5 y  25  x 2 0 1   5 2 4 25 -5 5 x  4 Exercise 6C; 1, 2ace, 3, 4ace, 5ace etc, 6, 7 & 8ac, 11, 12 Exercise 6D; 1, 2a, 3, 4b, 5ac, 6ace etc, 7ab(i,ii) 8ab (i,iii,vi), 9ab (ii,iv,vi), 11, 13 Patel Exercise 2A ace in all NOTE: substitution is not given in Extension 2